Skip to main content
Log in

Non-conventional Small-Scale Mechanical Testing of Materials

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Development of non-conventional mechanical testing techniques was primarily driven by the requirement to measure mechanical properties at smaller length scales with increasing miniaturization of devices, as well as the need for microstructure design from bottom up. This review covers the techniques involved in determining the small-scale deformation and fracture response of materials under different stress states. This is an attempt to provide a summary of choices and test protocols to potential users based on the property of interest to them. It begins with the basics of test instrumentation and sample preparation, followed by a short introduction to modeling tools that accompany testing, and later gets into the details of individual tests and their advantages and limitations. Selected applications from recent published works are presented to provide a flavor of material systems whose behaviour differs significantly from the macro-scale due to their size and/or architecture. At the end fallacies in data interpretation and a roadmap to standardization followed by ideas and future scope for non-conventional small-scale testing are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:

Similar content being viewed by others

Availability of Data and Material (Data Transparency)

Not applicable.

Code Availability (Software Application or Custom Code)

Not applicable.

References

  1. McGeough J (2021) Micromachining of engineering materials, 1st edn. CRC Press, Boca Raton. https://doi.org/10.1243/0954405021520094

    Book  Google Scholar 

  2. Descoeudres A (2006) Characterization of electrical discharge machining plasmas. PhD Thesis. https://doi.org/10.5075/epfl-thesis-3542

  3. Li W, Kara S (2015) Characterising energy efficiency of electrical discharge machining (EDM) processes. Procedia CIRP 29:263–268. https://doi.org/10.1016/j.procir.2015.01.039

    Article  Google Scholar 

  4. Lauer B, Jäggi B, Neuenschwander B (2014) Influence of the pulse duration onto the material removal rate and machining quality for different types of steel. Phys Procedia 56:963–972. https://doi.org/10.1016/j.phpro.2014.08.116

    Article  Google Scholar 

  5. Best JP, Zechner J, Shorubalko I, Oboňa JV, Wehrs J, Morstein M, Michler J (2016) A comparison of three different notching ions for small-scale fracture toughness measurement. Scripta Mater 112:71–74. https://doi.org/10.1016/j.scriptamat.2015.09.014

    Article  CAS  Google Scholar 

  6. Kiener D, Motz C, Rester M, Jenko M, Dehm G (2007) FIB damage of Cu and possible consequences for miniaturized mechanical tests. Mater Sci Eng, A 459:262–272. https://doi.org/10.1016/j.msea.2007.01.046

    Article  CAS  Google Scholar 

  7. Marien J, Plitzko JM, Spolenak R, Keller RM, Mayer J (1999) Quantitative electron spectroscopic imaging studies of microelectronic metallization layers. J Microsc 194:71–78. https://doi.org/10.1046/j.1365-2818.1999.00476.x

    Article  CAS  Google Scholar 

  8. Bei H, Shim S, Miller MK, Pharr GM, George EP (2007) Effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal. Appl Phys Lett 91:1–4. https://doi.org/10.1063/1.2784948

    Article  CAS  Google Scholar 

  9. Yu J, Liu J, Zhang J, Wu J (2006) TEM investigation of FIB induced damages in preparation of metal material TEM specimens by FIB. Mater Lett 60:206–209. https://doi.org/10.1016/j.matlet.2005.08.018

    Article  CAS  Google Scholar 

  10. Gane N (1970) The direct measurement of the strength of metals on a sub-micrometre scale. Proc R Soc A 317:361–397. https://doi.org/10.1098/rspa.1970.0122

    Article  Google Scholar 

  11. Pethica JB, Tabor D (1979) Contact of characterised metal surfaces at very low loads: deformation and adhesion. Surf Sci 89:182–190. https://doi.org/10.1016/0039-6028(79)90606-X

    Article  CAS  Google Scholar 

  12. Yang B, Motz C, Grosinger W, Kammrath W, Dehm G (2008) Tensile behaviour of micro-sized copper wires studied using a novel fibre tensile module. Int J Mater Res 99:716–724. https://doi.org/10.3139/146.101690

    Article  CAS  Google Scholar 

  13. Kiener D, Grosinger W, Dehm G, Pippan R (2008) A further step towards an understanding of size-dependent crystal plasticity: in situ tension experiments of miniaturized single-crystal copper samples. Acta Mater 56:580–592. https://doi.org/10.1016/j.actamat.2007.10.015

    Article  CAS  Google Scholar 

  14. Boyce BL, Uchic MD (2019) Progress toward autonomous experimental systems for alloy development. MRS Bull 44:273–280. https://doi.org/10.1557/mrs.2019.75

    Article  CAS  Google Scholar 

  15. Kirchlechner C, Imrich PJ, Grosinger W, Kapp MW, Keckes J, Micha JS, Ulrich O, Thomas O, Labat S, Motz C, Dehm G (2012) Expected and unexpected plastic behavior at the micron scale: an in situ μ Laue tensile study. Acta Mater 60:1252–1258. https://doi.org/10.1016/j.actamat.2011.10.058

    Article  CAS  Google Scholar 

  16. Davydok A, Nagamani B, Robach O, Ulrich O, Micha J, Kirchlechner C (2016) Analysis of the full stress tensor in a micropillar: ability of and difficulties arising during synchrotron based μ Laue diffraction. Mater Des 108:68–75. https://doi.org/10.1016/j.matdes.2016.06.098

    Article  Google Scholar 

  17. Kirchlechner C, Kiener D, Motz C, Labat S, Vaxelaire N, Perroud O, Micha J-S, Ulrich O, Thomas O, Dehm G, Keckes J (2011) Dislocation storage in single slip-oriented Cu micro-tensile samples: new insights via X-ray microdiffraction. Philos Mag 91:1256–1264. https://doi.org/10.1080/14786431003785639

    Article  CAS  Google Scholar 

  18. Barnoush A, Hosemann P, Molina-Aldareguia J, Wheeler JM (2019) In situ small-scale mechanical testing under extreme environments. MRS Bull 44:471–477. https://doi.org/10.1557/mrs.2019.126

    Article  Google Scholar 

  19. Haque MA, Saif MTA (2001) Microscale materials testing using MEMS actuators. J Microelectromech Syst 10:146–152. https://doi.org/10.1109/84.911103

    Article  Google Scholar 

  20. Depover T, Wan D, Wang D, Barnoush A, Verbeken K (2020) The effect of hydrogen on the crack initiation site of TRIP-assisted steels during in-situ hydrogen plasma micro-tensile testing: leading to an improved ductility? Mater Charact 167:110493. https://doi.org/10.1016/j.matchar.2020.110493

    Article  CAS  Google Scholar 

  21. Wheeler JM, Armstrong DEJ, Heinz W, Schwaiger R (2015) High temperature nanoindentation: the state of the art and future challenges. Curr Opin Solid State Mater Sci 19:354–366. https://doi.org/10.1016/j.cossms.2015.02.002

    Article  Google Scholar 

  22. Gianola DS, Eberl C (2009) Micro- and nanoscale tensile testing of materials. JOM. https://doi.org/10.1007/s11837-009-0037-3

    Article  Google Scholar 

  23. Peters W, Ranson W (1982) Digital imaging techniques in experimental stress analysis digital imaging techniques in experimental stress analysis. Opt Eng 21:427–431. https://doi.org/10.1117/12.7972925

    Article  Google Scholar 

  24. Sutton MA, Li N, Garcia D, Cornille N, Orteu JJ, McNeill SR, Schreier HW, Li X (2006) Metrology in a scanning electron microscope: theoretical developments and experimental validation. Meas Sci Technol 17:2613–2622. https://doi.org/10.1088/0957-0233/17/10/012

    Article  CAS  Google Scholar 

  25. Kammers AD, Daly S (2013) Digital image correlation under scanning electron microscopy: methodology and validation. Exp Mech 53:1743–1761. https://doi.org/10.1007/s11340-013-9782-x

    Article  Google Scholar 

  26. Schreier HW, Garcia D, Sutton MA (2004) Advances in light microscope stereo vision. Exp Mech 44:278–288. https://doi.org/10.1177/0014485104041546

    Article  Google Scholar 

  27. Pan B, Xie HM, Xu BQ, Dai FL (2006) Performance of sub-pixel registration algorithms in digital image correlation. Meas Sci Technol 17:1615–1621. https://doi.org/10.1088/0957-0233/17/6/045

    Article  CAS  Google Scholar 

  28. Liu XY, Tan QC, Xiong L, Liu GD, Liu JY, Yang X, Wang CY (2012) Performance of iterative gradient-based algorithms with different intensity change models in digital image correlation. Opt Laser Technol 44:1060–1067. https://doi.org/10.1016/j.optlastec.2011.10.009

    Article  Google Scholar 

  29. Pan B, Li K, Tong W (2013) Fast, robust and accurate digital image correlation calculation without redundant computations. Exp Mech 53:1277–1289. https://doi.org/10.1007/s11340-013-9717-6

    Article  Google Scholar 

  30. Réthoré J, Hild F, Roux S (2007) Shear-band capturing using a multiscale extended digital image correlation technique. Comput Methods Appl Mech Eng 196:5016–5030. https://doi.org/10.1016/j.cma.2007.06.019

    Article  Google Scholar 

  31. Poissant J, Barthelat F (2010) A novel “subset splitting” procedure for digital image correlation on discontinuous displacement fields. Exp Mech 50:353–364. https://doi.org/10.1007/s11340-009-9220-2

    Article  Google Scholar 

  32. Valle V, Hedan S, Cosenza P, Fauchille AL, Berdjane M (2015) Digital image correlation development for the study of materials including multiple crossing cracks. Exp Mech 55:379–391. https://doi.org/10.1007/s11340-014-9948-1

    Article  Google Scholar 

  33. Bourdin F, Stinville JC, Echlin MP, Callahan PG, Lenthe WC, Torbet CJ, Texier D, Bridier F, Cormier J, Villechaise P, Pollock TM, Valle V (2018) Measurements of plastic localization by heaviside-digital image correlation. Acta Mater 157:307–325. https://doi.org/10.1016/j.actamat.2018.07.013

    Article  CAS  Google Scholar 

  34. Bhattacharya AK, Nix WD (1988) Finite element simulation of indentation experiments. Int J Solids Struct 24:881–891. https://doi.org/10.1016/0020-7683(88)90039-X

    Article  Google Scholar 

  35. Pelletier H, Krier J, Cornet A, Mille P (2000) Limits of using bilinear stress–strain curve for finite element modeling of nanoindentation response on bulk materials. Thin Solid Films 379:147–155. https://doi.org/10.1016/S0040-6090(00)01559-5

    Article  CAS  Google Scholar 

  36. Lichinchi M, Lenardi C, Haupt J, Vitali R (1998) Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312:240–248. https://doi.org/10.1016/S0040-6090(97)00739-6

    Article  CAS  Google Scholar 

  37. Matoy K, Schönherr H, Detzel T, Schöberl T, Pippan R, Motz C, Dehm G (2009) A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518:247–256. https://doi.org/10.1016/j.tsf.2009.07.143

    Article  CAS  Google Scholar 

  38. Iqbal F, Ast J, Göken M, Durst K (2012) In situ micro-cantilever tests to study fracture properties of NiAl single crystals. Acta Mater 60:1193–1200. https://doi.org/10.1016/j.actamat.2011.10.060

    Article  CAS  Google Scholar 

  39. Wurster S, Motz C, Pippan R (2012) Characterization of the fracture toughness of micro-sized tungsten single crystal notched specimens. Philos Mag 92:1803–1825. https://doi.org/10.1080/14786435.2012.658449

    Article  CAS  Google Scholar 

  40. Deng Y, Rune B, Rogne S, Barnoush A (2019) In-situ microscale examination of hydrogen effect on fracture toughness: a case study on B2 and D03 ordered iron aluminides intermetallic alloys. Eng Fract Mech 217:106551. https://doi.org/10.1016/j.engfracmech.2019.106551

    Article  Google Scholar 

  41. Chan H, Roberts SG, Gong J (2016) Micro-scale fracture experiments on zirconium hydrides and phase boundaries. J Nucl Mater 475:105–112. https://doi.org/10.1016/j.jnucmat.2016.03.026

    Article  CAS  Google Scholar 

  42. Jaya BN, Jayaram V, Biswas SK (2012) A new method for fracture toughness determination of graded (Pt, Ni)Al bond coats by microbeam bend tests. Philos Mag 92:3326–3345. https://doi.org/10.1080/14786435.2012.669068

    Article  CAS  Google Scholar 

  43. Jaya BN, Jayaram V (2014) Crack stability in edge-notched clamped beam specimens: modeling and experiments. Int J Fract 188:213–228. https://doi.org/10.1007/s10704-014-9956-2

    Article  CAS  Google Scholar 

  44. Mishra AK, Lambai A, Jayaram V, Jaya BN (2020) The edge-notched clamped beam bend specimen as a fracture toughness test geometry. Theor Appl Fract Mech 105:102409. https://doi.org/10.1016/j.tafmec.2019.102409

    Article  CAS  Google Scholar 

  45. Chaudhari TS, Mathews NG, Mishra AK, Sahasrabuddhe HP, Jaya BN (2021) Energy release rate formulations for non-conventional fracture test geometries. JOM 73:1597–1606. https://doi.org/10.1007/s11837-021-04637-7

    Article  Google Scholar 

  46. Mathews NG, Mishra AK, Jaya BN (2021) Mode dependent evaluation of fracture behaviour using cantilever bending. Theor Appl Fract Mech 115:103069. https://doi.org/10.1016/j.tafmec.2021.103069

    Article  CAS  Google Scholar 

  47. Pang JHL, Tsang KS, Hoh HJ (2016) 3D stress intensity factors for weld toe semi-elliptical surface cracks using XFEM. Mar Struct 48:1–14. https://doi.org/10.1016/j.marstruc.2016.04.001

    Article  Google Scholar 

  48. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40:727–758. https://doi.org/10.1002/(SICI)1097-0207(19970228)40:4%3c727::AID-NME86%3e3.0.CO;2-N

    Article  Google Scholar 

  49. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5%3c601::AID-NME598%3e3.0.CO;2-S

    Article  Google Scholar 

  50. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150. https://doi.org/10.1002/(SICI)1097-0207(19990910)46:1%3c131::AID-NME726%3e3.0.CO;2-J

    Article  Google Scholar 

  51. Sukumar N (2003) Modeling quasi-static crack growth with the extended finite element method Part I : computer implementation. 40:7513–7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002

  52. Laborde P, Pommier J, Renard Y, Salaün M (2005) High-order extended finite element method for cracked domains. Int J Numer Methods Eng 64:354–381. https://doi.org/10.1002/nme.1370

    Article  Google Scholar 

  53. Dancette S, Delannay L, Renard K, Melchior MA, Jacques PJ (2012) Crystal plasticity modeling of texture development and hardening in TWIP steels. Acta Mater 60:2135–2145. https://doi.org/10.1016/j.actamat.2012.01.015

    Article  CAS  Google Scholar 

  54. Kitayama K, Tomé CN, Rauch EF, Gracio JJ, Barlat F (2013) A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels. Int J Plast 46:54–69. https://doi.org/10.1016/j.ijplas.2012.09.004

    Article  CAS  Google Scholar 

  55. Wong SL, Madivala M, Prahl U, Roters F, Raabe D (2016) A crystal plasticity model for twinning- and transformation-induced plasticity. Acta Mater 118:140–151. https://doi.org/10.1016/j.actamat.2016.07.032

    Article  CAS  Google Scholar 

  56. Lu X, Zhao J, Wang Z, Gan B, Zhao J, Kang G, Zhang X (2020) Crystal plasticity finite element analysis of gradient nanostructured TWIP steel. Int J Plast 130:102703. https://doi.org/10.1016/j.ijplas.2020.102703

    Article  CAS  Google Scholar 

  57. Guery A, Hild F, Latourte F, Roux S (2016) Slip activities in polycrystals determined by coupling DIC measurements with crystal plasticity calculations. Int J Plast 81:249–266. https://doi.org/10.1016/j.ijplas.2016.01.008

    Article  CAS  Google Scholar 

  58. Thool K, Patra A, Fullwood D, Krishna KVM, Srivastava D, Samajdar I (2020) The role of crystallographic orientations on heterogeneous deformation in a zirconium alloy: a combined experimental and modeling study. Int J Plast 133:102785. https://doi.org/10.1016/j.ijplas.2020.102785

    Article  CAS  Google Scholar 

  59. Ranjan D, Narayanan S, Kadau K, Patra A (2021) Crystal plasticity modeling of non-Schmid yield behavior: from Ni3Al single crystals to Ni-based superalloys. Model Simul Mater Sci Eng. https://doi.org/10.1088/1361-651X/abd621

    Article  Google Scholar 

  60. Pant P, Schwarz KW, Baker SP (2003) Dislocation interactions in thin FCC metal films. Acta Mater 51:3243–3258. https://doi.org/10.1016/S1359-6454(03)00156-3

    Article  CAS  Google Scholar 

  61. Mani Krishna KV, Pant P (2013) Dislocation dynamics simulations. Mater Sci Forum 736:13–20. https://doi.org/10.4028/www.scientific.net/MSF.736.13

    Article  CAS  Google Scholar 

  62. Lemarchand C, Devincre B, Kubin LP, Chaboche JL (1998) Coupled meso-macro simulations of plasticity: validation tests. MRS Online Proc Libr 538:63–68. https://doi.org/10.1557/PROC-538-63

    Article  Google Scholar 

  63. Lemarchand C, Devincre B, Kubin LP (2001) Homogenization method for a discrete-continuum simulation of dislocation dynamics. J Mech Phys Solids 49:1969–1982. https://doi.org/10.1016/S0022-5096(01)00026-6

    Article  Google Scholar 

  64. Brenner SS (1957) Plastic deformation of copper and silver whiskers. J Appl Phys 28:1023–1026. https://doi.org/10.1063/1.1722900

    Article  CAS  Google Scholar 

  65. Sharpe WN, Yuan B, Vaidyanathan R, Edwards RL (1996) New test structures and techniques for measurement of mechanical properties of MEMS materials. Proc SPIE Int Soc Opt Eng 2880:78–91. https://doi.org/10.1117/12.250969

    Article  CAS  Google Scholar 

  66. Read DT, Dally JW (1993) A new method for measuring the strength and ductility of thin films. J Mater Res 8:1542–1549. https://doi.org/10.1557/JMR.1993.1542

    Article  CAS  Google Scholar 

  67. Ando T, Shikida M, Sato K (2001) Tensile-mode fatigue testing of silicon films as structural materials for MEMS. Sens Actuators A 93:70–75. https://doi.org/10.1016/S0924-4247(01)00623-9

    Article  CAS  Google Scholar 

  68. Zupan M, Hayden MJ, Boehlert CJ, Hemker KJ (2001) Development of high-temperature microsample testing. Exp Mech 41:242–247. https://doi.org/10.1007/BF02323140

    Article  CAS  Google Scholar 

  69. Alam MZ, Srivathsa B, Kamat SV, Jayaram V, Das DK (2011) Microtensile testing of a free-standing Pt-aluminide bond coat. Mater Des 32:1242–1252. https://doi.org/10.1016/j.matdes.2010.10.003

    Article  CAS  Google Scholar 

  70. Kumar K, Pooleery A, Madhusoodanan K, Singh RN, Chakravartty JK, Dutta BK, Sinha RK (2014) Use of miniature tensile specimen for measurement of mechanical properties. Procedia Eng 86:899–909. https://doi.org/10.1016/j.proeng.2014.11.112

    Article  Google Scholar 

  71. Sergueeva AV, Zhou J, Meacham BE, Branagan DJ (2009) Gage length and sample size effect on measured properties during tensile testing. Mater Sci Eng, A 526:79–83. https://doi.org/10.1016/j.msea.2009.07.046

    Article  CAS  Google Scholar 

  72. Sahasrabuddhe H (2021) Extrinsic size effects in fracture behaviour of materials. Dual Degree Thesis, Indian Institute of Technology Bombay

  73. Ehrfeld W (1990) The LIGA process for microsystems. In: Reichl H (ed) Micro system technologies, vol 90. Springer, Berlin. https://doi.org/10.1007/978-3-642-45678-7_73

    Chapter  Google Scholar 

  74. Kim JH, Nizami A, Hwangbo Y, Jang B, Lee HJ, Woo CS, Hyun S, Kim TS (2013) Tensile testing of ultra-thin films on water surface. Nat Commun 4:1–6. https://doi.org/10.1038/ncomms3520

    Article  CAS  Google Scholar 

  75. Salzbrenner BC, Rodelas JM, Madison JD, Jared BH, Swiler LP, Shen YL, Boyce BL (2017) High-throughput stochastic tensile performance of additively manufactured stainless steel. J Mater Process Technol 241:1–12. https://doi.org/10.1016/j.jmatprotec.2016.10.023

    Article  CAS  Google Scholar 

  76. Heckman NM, Ivanoff TA, Roach AM, Jared BH, Tung DJ, Brown-Shaklee HJ, Huber T, Saiz DJ, Koepke JR, Rodelas JM, Madison JD, Salzbrenner BC, Swiler LP, Jones RE, Boyce BL (2020) Automated high-throughput tensile testing reveals stochastic process parameter sensitivity. Mater Sci Eng A 772:138632. https://doi.org/10.1016/j.msea.2019.138632

    Article  CAS  Google Scholar 

  77. Ahn J, He E, Chen L, Dear J, Shao Z, Davies C (2018) In-situ micro-tensile testing of AA2024-T3 fibre laser welds with digital image correlation as a function of welding speed. Int J Lightweight Mater Manuf 1:179–188. https://doi.org/10.1016/j.ijlmm.2018.07.003

    Article  Google Scholar 

  78. Yang B, Xuan FZ, Chen JK (2018) Evaluation of the microstructure related strength of CrMoV weldment by using the in-situ tensile test of miniature specimen. Mater Sci Eng A 736:193–201. https://doi.org/10.1016/j.msea.2018.08.099

    Article  CAS  Google Scholar 

  79. Ahmadkhaniha D, Huang Y, Jaskari M, Järvenpää A, Sohi MH, Zanella C, Karjalainen LP, Langdon TG (2018) Effect of high-pressure torsion on microstructure, mechanical properties and corrosion resistance of cast pure Mg. J Mater Sci 53:16585–16597. https://doi.org/10.1007/s10853-018-2779-1

    Article  CAS  Google Scholar 

  80. Liew LA, Read DT, Martin ML, Christenson TR, Geaney JT (2021) Microfabricated fiducial markers for digital image correlation-based micromechanical testing of LIGA Ni alloys. Eng Res Expresss. https://doi.org/10.1088/2631-8695/abfb10

    Article  Google Scholar 

  81. Lu Y, Peng C, Ganesan Y, Huang JY, Lou J (2011) Quantitative in situ TEM tensile testing of an individual nickel nanowire. Nanotechnology. https://doi.org/10.1088/0957-4484/22/35/355702

    Article  Google Scholar 

  82. Boyce B, Salzbrenner B (2021) United States Patent, Patent No.: US 11,002,649 B1. 1

  83. Lee Y, Tada J, Isono Y (2005) Mechanical characterization of single crystal silicon and UV-LIGA nickel thin films using tensile tester operated in AFM. Fatigue Fract Eng Mater Struct 28:675–686. https://doi.org/10.1111/j.1460-2695.2005.00883.x

    Article  CAS  Google Scholar 

  84. Sim GD, Choi YS, Lee D, Oh KH, Vlassak JJ (2016) High tensile strength of sputter-deposited ZrB2 ceramic thin films measured up to 1016 K. Acta Mater 113:32–40. https://doi.org/10.1016/j.actamat.2016.04.047

    Article  CAS  Google Scholar 

  85. Kang W, Beniam I, Qidwai SM (2016) In situ electron microscopy studies of electromechanical behavior in metals at the nanoscale using a novel microdevice-based system. Rev Sci Instrum 87:95001. https://doi.org/10.1063/1.4961663

    Article  CAS  Google Scholar 

  86. Jacob K, Yadav D, Dixit S, Hohenwarter A, Jaya BN (2021) High pressure torsion processing of maraging steel 250: microstructure and mechanical behaviour evolution. Mater Sci Eng A 802:140665. https://doi.org/10.1016/j.msea.2020.140665

    Article  CAS  Google Scholar 

  87. Basu S, Jaya BN, Patra A, Ganguly S, Dutta M, Hohenwarter A, Samajdar I (2021) The role of phase hardness differential on the non-uniform elongation of a ferrite-martensite dual phase steel. Metall Mater Trans A 52:4018–4032. https://doi.org/10.1007/s11661-021-06361-y

    Article  CAS  Google Scholar 

  88. Yan D, Tasan CC, Raabe D (2015) High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. Acta Mater 96:399–409. https://doi.org/10.1016/j.actamat.2015.05.038

    Article  CAS  Google Scholar 

  89. Oh HS, Biggs K, Güvenç O, Ghassemi-Armaki H, Pottore N, Tasan CC (2021) In-situ investigation of strain partitioning and microstructural strain path development up to and beyond necking. Acta Mater 215:117023. https://doi.org/10.1016/j.actamat.2021.117023

    Article  CAS  Google Scholar 

  90. Uchic MD, Dimiduk DM, Florando JN (2004) Sample dimensions influence strength and crystal plasticity. Science 305:986–990. https://doi.org/10.1126/science.1098993

    Article  CAS  Google Scholar 

  91. Wollschlager N, Osterle W, Hausler I, Stewart M (2015) Ga+ implantation in a PZT film during focused ion beam micro-machining. Physi Status Solidi 317:314–317. https://doi.org/10.1002/pssc.201400096

    Article  CAS  Google Scholar 

  92. Rubanov S, Munroe PR (2004) FIB-induced damage in silicon. J Microsc 214:213–221. https://doi.org/10.1111/j.0022-2720.2004.01327.x

    Article  CAS  Google Scholar 

  93. Schilling JMGA, Adams T, Bowman RM (2007) Strategies for gallium removal after FIB patterning of ferro oxide structures. Nanotechnology 18:1–6. https://doi.org/10.1088/0957-4484/18/3/035301

    Article  CAS  Google Scholar 

  94. Sneddon IN (1945) Boussinesq’s problem for a flat-ended cylinder. Proc Camb Philos Soc 42:29–39. https://doi.org/10.1017/S0305004100022702

    Article  Google Scholar 

  95. Choi I, Gan Y, Kaufmann D, Kraft O, Schwaiger R (2012) Measurement of Young’s modulus of anisotropic materials using microcompression testing. J Mater Res 27:2752–2759. https://doi.org/10.1557/jmr.2012.18

    Article  CAS  Google Scholar 

  96. Schuster BE, Wei Q, Zhang H, Ramesh KT (2006) Microcompression of nanocrystalline nickel. Appl Phys Lett 88:103112. https://doi.org/10.1063/1.2183814

    Article  CAS  Google Scholar 

  97. Mathews NG, Saxena AK, Kirchlechner C, Dehm G, Jaya BN (2020) Effect of size and domain orientation on strength of Barium Titanate. Scripta Mater 182:68–73. https://doi.org/10.1016/j.scriptamat.2020.02.039

    Article  CAS  Google Scholar 

  98. Greer JR, Hosson JTMD (2011) Progress in materials science plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724. https://doi.org/10.1016/j.pmatsci.2011.01.005

    Article  CAS  Google Scholar 

  99. Dunstan DJ, Ehrler B, Bossis R, Joly S, P’ng KMY, Bushby AJ (2009) Elastic limit and strain hardening of thin wires in torsion. Phys Rev Lett 103:155501. https://doi.org/10.1103/PhysRevLett.103.155501

    Article  CAS  Google Scholar 

  100. Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487. https://doi.org/10.1016/0956-7151(94)90502-9

    Article  CAS  Google Scholar 

  101. Liu D, He Y, Tang X, Ding H, Hu P, Cao P (2012) Size effects in the torsion of microscale copper wires: experiment and analysis. Scripta Mater 66:406–409. https://doi.org/10.1016/j.scriptamat.2011.12.003

    Article  CAS  Google Scholar 

  102. Lu W-Y, Song B (2011) Quasi-static torsion characterization of micro-diameter copper wires. Exp Mech 51:729–737. https://doi.org/10.1007/s11340-010-9377-8

    Article  Google Scholar 

  103. Cook RF, Boyce BL, Friedman LH, Delrio FW (2021) High-throughput bend-strengths of ultra-small polysilicon MEMS components. Appl Phys Lett. https://doi.org/10.1063/5.0049521

    Article  Google Scholar 

  104. Ast J, Schwiedrzik JJ, Rohbeck N, Maeder X, Michler J (2020) Novel micro-scale specimens for mode-dependent fracture testing of brittle materials: a case study on GaAs single crystals. Mater Design. https://doi.org/10.1016/j.matdes.2020.108765

    Article  Google Scholar 

  105. Pethicai JB, Hutchings R, Oliver WC (1983) Hardness measurement at penetration depths as small as 20 nm. Philos Mag A 48:593–606. https://doi.org/10.1080/01418618308234914

    Article  Google Scholar 

  106. Fischer Cripps AC (2011) Nanoindentation, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  107. Janakiram S, Phani PS, Ummethala G, Malladi SK, Gautam J, Kestens LAI (2021) New insights on recovery and early recrystallization of ferrite-pearlite banded cold rolled high strength steels by high speed nanoindentation mapping. Scripta Mater 194:113676. https://doi.org/10.1016/j.scriptamat.2020.113676

    Article  CAS  Google Scholar 

  108. Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9:32–40. https://doi.org/10.1016/S1369-7021(06)71495-X

    Article  CAS  Google Scholar 

  109. Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19:3–20. https://doi.org/10.1557/jmr.2004.19.1.3

    Article  CAS  Google Scholar 

  110. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation techniques. J Mater Res 7:1564–1583. https://doi.org/10.1557/JMR.1992.1564

    Article  CAS  Google Scholar 

  111. Hertz H (1896) Miscellaneous papers. MacMillan and Co., Ltd., New York

    Google Scholar 

  112. Field JS, Swain MV (1995) Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J Mater Res 10:101–112. https://doi.org/10.1557/JMR.1995.0101

    Article  CAS  Google Scholar 

  113. Fischer-Cripps AC (1997) Elastic-plastic behaviour in materials loaded with a spherical indenter. J Mater Sci 32:727–736. https://doi.org/10.1023/A:1018552222072

    Article  CAS  Google Scholar 

  114. Taljat B, Zacharia T, Kosel F (1998) New analytical procedure to determine stress–strain curve from spherical indentation data. Int J Solids Struct 35:4411–4426. https://doi.org/10.1016/S0020-7683(97)00249-7

    Article  Google Scholar 

  115. Yoffe EH (1984) Modified Hertz theory for spherical indentation. Philos Mag A 50:813–828. https://doi.org/10.1080/01418618408237539

    Article  Google Scholar 

  116. Pathak S (2009) Development and validation of a novel data analysis procedure for spherical nanoindentation. Drexel University, p 194. https://search.proquest.com/docview/304872866?accountid=14166%0Ahttp://xg9ax2jm9j.search.serialssolutions.com?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&rfr_id=info:sid/ProQuest+Dissertations+%26+Theses+Global&rft_val_fmt=info:ofi/fmt:kev:mtx:disserta

  117. Pathak S, Kalidindi SR (2015) Spherical nanoindentation stress–strain curves. Mater Sci Eng R Rep 91:1–36. https://doi.org/10.1016/j.mser.2015.02.001

    Article  Google Scholar 

  118. Priddy MW (2016) Exploration of forward and inverse protocols for property optimization of Ti-6Al-4V. PhD. Thesis, Georgia Institute of Technology

  119. Weaver JS (2015) Hierarchical and high throughput mechanical characterization of titanium alloys using spherical indentation stress–strain curves. PhD. Thesis, Georgia Institute of Technology

  120. Kalidindi SR, Pathak S (2008) Determination of the effective zero-point and the extraction of spherical nanoindentation stress–strain curves. Acta Mater 56:3523–3532. https://doi.org/10.1016/j.actamat.2008.03.036

    Article  CAS  Google Scholar 

  121. Pathak S, Stojakovic D, Doherty R, Kalidindi SR (2009) Importance of surface preparation on the nano-indentation stress–strain curves measured in metals. J Mater Res 24:1142–1155. https://doi.org/10.1557/jmr.2009.0137

    Article  CAS  Google Scholar 

  122. Hay J, Agee P, Herbert E (2010) Continuous stiffness measurement during instrumented indentation testing. Exp Tech 34:86–94. https://doi.org/10.1111/j.1747-1567.2010.00618.x

    Article  Google Scholar 

  123. Patel DK, Kalidindi SR (2016) Correlation of spherical nanoindentation stress–strain curves to simple compression stress–strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater 112:295–302. https://doi.org/10.1016/j.actamat.2016.04.034

    Article  CAS  Google Scholar 

  124. Pathak S, Shaffer J, Kalidindi SR (2009) Determination of an effective zero-point and extraction of indentation stress–strain curves without the continuous stiffness measurement signal. Scripta Mater 60:439–442. https://doi.org/10.1016/j.scriptamat.2008.11.028

    Article  CAS  Google Scholar 

  125. Weihs TP, Hong S, Bravman JC, Nix WD (1988) Mechanical deflection of cantilever microbeams: a new technique for testing the mechanical properties of thin films. J Mater Res 3:931–942. https://doi.org/10.1557/JMR.1988.0931

    Article  Google Scholar 

  126. Di Maio D, Roberts SG (2005) Measuring fracture toughness of coatings using focused-ion-beam-machined microbeams. J Mater Res 20:299–302. https://doi.org/10.1557/JMR.2005.0048

    Article  CAS  Google Scholar 

  127. Bhowmick S, Asif SAS, Warren OL, Jaya BN, Jayaram V (2012) In situ SEM study of microbeam bending of diffusion aluminide bond coats. Microsc and Microanal 18(S2):780–781. https://doi.org/10.1017/S1431927612005752

    Article  Google Scholar 

  128. Kumar A, Saxena AK, Kirchlechner C, Herbig M, Brinckmann S, Petrov RH, Sietsma J (2019) In situ study on fracture behaviour of white etching layers formed on rails. Acta Mater 180:60–72. https://doi.org/10.1016/j.actamat.2019.08.060

    Article  CAS  Google Scholar 

  129. Mueller MG, Pejchal V, Žagar G, Singh A, Cantoni M, Mortensen A (2015) Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams. Acta Mater 86:385–395. https://doi.org/10.1016/j.actamat.2014.12.016

    Article  CAS  Google Scholar 

  130. Li BS, Marrow TJ, Roberts SG, Armstrong DEJ (2019) Evaluation of fracture toughness measurements using Chevron-notched silicon and tungsten microcantilevers. JOM 71:3378–3389. https://doi.org/10.1007/s11837-019-03696-1

    Article  CAS  Google Scholar 

  131. Jaya BN, Goto S, Richter G, Kirchlechner C, Dehm G (2017) Fracture behavior of nanostructured heavily cold drawn pearlitic steel wires before and after annealing. Mater Sci Eng A 707:164–171. https://doi.org/10.1016/j.msea.2017.09.010

    Article  CAS  Google Scholar 

  132. Saxena AK, Brinckmann S, Völker B, Dehm G, Kirchlechner C (2020) Experimental conditions affecting the measured fracture toughness at the microscale: Notch geometry and crack extension measurement. Mater Des 191:1–11. https://doi.org/10.1016/j.matdes.2020.108582

    Article  Google Scholar 

  133. Soler R, Gleich S, Kirchlechner C, Scheu C, Schneider JM, Dehm G (2018) Fracture toughness of Mo2BC thin films: Intrinsic toughness versus system toughening. Mater Design 154:20–27. https://doi.org/10.1016/j.matdes.2018.05.015

    Article  CAS  Google Scholar 

  134. Matoy K, Detzel T, Müller M, Motz C, Dehm G (2009) Interface fracture properties of thin films studied by using the micro-cantilever deflection technique. Surf Coat Technol 204:878–881. https://doi.org/10.1016/j.surfcoat.2009.09.013

    Article  CAS  Google Scholar 

  135. Alfreider M, Zechner J, Kiener D (2020) Addressing fracture properties of individual constituents within a Cu–WTi–SiOx–Si multilayer. JOM 72:4551–4558. https://doi.org/10.1007/s11837-020-04444-6

    Article  CAS  Google Scholar 

  136. Jaya BN, Kirchlechner C, Dehm G (2015) Can microscale fracture tests provide reliable fracture toughness values? A case study in silicon. J Mater Res 30:686–698. https://doi.org/10.1557/jmr.2015.2

    Article  CAS  Google Scholar 

  137. Ast J, Przybilla T, Maier V, Durst K, Göken M (2014) Microcantilever bending experiments in NiAl—evaluation, size effects, and crack tip plasticity. J Mater Res 29:2129–2140. https://doi.org/10.1557/jmr.2014.240

    Article  CAS  Google Scholar 

  138. Ast J, Merle B, Durst K, Göken M (2016) Fracture toughness evaluation of NiAl single crystals by microcantilevers—a new continuous J-integral method. J Mater Res 31:3786–3794. https://doi.org/10.1557/jmr.2016.393

    Article  CAS  Google Scholar 

  139. Alfreider M, Kolitsch S, Wurster S, Kiener D (2020) An analytical solution for the correct determination of crack lengths via cantilever stiffness. Mater Des 194:108914. https://doi.org/10.1016/j.matdes.2020.108914

    Article  CAS  Google Scholar 

  140. Kolitsch S, Kolednik O (2021) Stress intensity factors for micro- and macroscale bimaterial cantilevers and bend specimens. Thin Solid Films 732:138750. https://doi.org/10.1016/j.tsf.2021.138750

    Article  CAS  Google Scholar 

  141. Mishra AK, Gopalan H, Hans M, Kirchlechner C, Schneider JM, Dehm G, Jaya BN (2022) Strategies for damage tolerance enhancement in metal/ceramic thin films: lessons learned from Ti/TiN. Acta Mater 228:117777. https://doi.org/10.1016/j.actamat.2022.117777

    Article  CAS  Google Scholar 

  142. Jaya BN, Bhowmick S, Asif SAS, Warren OL (2015) Optimization of clamped beam geometry for fracture toughness testing of micron-scale samples. Philos Mag 6435:1945–1966. https://doi.org/10.1080/14786435.2015.1010623

    Article  CAS  Google Scholar 

  143. Venkatraman K, Jayaram V (2019) Stiffness based technique to probe cyclic damage accumulation in micro-structurally graded bond coats via micro-beam bending tests. Philos Mag 99:2016–2050. https://doi.org/10.1080/14786435.2019.1608381

    Article  CAS  Google Scholar 

  144. Mishra AK, Kumari N, Jaya BN (2022) Clamped beam bending for mixed mode fracture toughness measurements. In: Jonnalagadda K, Alankar A, Balila NJ, Bhandakkar T (eds) Advances in Structural Integrity. Springer, Singapore, pp 83–91. https://doi.org/10.1007/978-981-16-8724-2_8

    Chapter  Google Scholar 

  145. Liu S, Wheeler JM, Howie PR, Zeng XT, Michler J, Clegg WJ (2013) Measuring the fracture resistance of hard coatings. Appl Phys Lett 102:4–7. https://doi.org/10.1063/1.4803928

    Article  CAS  Google Scholar 

  146. Sernicola G, Giovannini T, Patel P, Kermode JR, Balint DS, BenBritton T, Giuliani F (2017) In situ stable crack growth at the micron scale. Nat Commun. https://doi.org/10.1038/s41467-017-00139-w

    Article  Google Scholar 

  147. Jaya BN, Jayaram V, Biswas SK (2016) A new method for fracture toughness determination of graded (Pt, Ni) Al bond coats by microbeam bend tests. Philos Mag 6435:3326–3345. https://doi.org/10.1080/14786435.2012.669068

    Article  CAS  Google Scholar 

  148. Jaya BN, Wheeler JM, Wehrs J, Best JP, Soler R, Michler J, Kirchlechner C, Dehm G (2016) Microscale fracture behavior of single crystal silicon beams at elevated temperatures. Nano Lett. https://doi.org/10.1021/acs.nanolett.6b03461

    Article  Google Scholar 

  149. Schnabel V, Jaya BN, Köhler M, Music D, Kirchlechner C (2016) Electronic hybridisation implications for the damage-tolerance of thin film metallic glasses. Sci Rep. https://doi.org/10.1038/srep36556

    Article  Google Scholar 

  150. Mehtani HK, Khan MI, Jaya BN, Parida S, Prasad MJNV, Samajdar I (2021) The oxidation behavior of iron-chromium alloys: the defining role of substrate chemistry on kinetics, microstructure and mechanical properties of the oxide scale. J Alloy Compd 871:159583. https://doi.org/10.1016/j.jallcom.2021.159583

    Article  CAS  Google Scholar 

  151. Charalambides PG, Lund J, Evans AG, McMeeking RM (1989) A test specimen for determining the fracture resistance of bimaterial interfaces. J Appl Mech 56:77–82. https://doi.org/10.1115/1.3176069

    Article  Google Scholar 

  152. Hofinger I, Raab K, Möller J, Bobeth M (2002) Effect of substrate surface roughness on the adherence of NiCrAlY thermal spray coatings. J Therm Spray Technol 11:387–392. https://doi.org/10.1361/105996302770348781

    Article  CAS  Google Scholar 

  153. Mead JL, Lu M, Huang H (2017) Inducing stable interfacial delamination in a multilayer system by four-point bending of microbridges. Surf Coat Technol 320:478–482. https://doi.org/10.1016/j.surfcoat.2016.11.069

    Article  CAS  Google Scholar 

  154. Charalambides PG, Cao HC, Lund J, Evans AG (1990) Development of a test method for measuring the mixed mode fracture resistance of bimaterial interfaces. Mech Mater 8:269–283. https://doi.org/10.1016/0167-6636(90)90047-J

    Article  Google Scholar 

  155. Hofinger I, Oechsner M, Bahr HA, Swain MV (1998) Modified four-point bending specimen for determining the interface fracture energy for thin, brittle layers. Int J Fract 92:213–220. https://doi.org/10.1023/A:1007530932726

    Article  CAS  Google Scholar 

  156. Hutchinson RG, Hutchinson JW (2011) Lifetime assessment for thermal barrier coatings: tests for measuring mixed mode delamination toughness. J Am Ceram Soc 94:s85–s95. https://doi.org/10.1111/j.1551-2916.2011.04499.x

    Article  CAS  Google Scholar 

  157. Martin RH, Davidson BD (1999) Mode II fracture toughness evaluation using four point bend, end notched flexure test. Plast Rubber Compos 28:401–406. https://doi.org/10.1179/146580199101540565

    Article  CAS  Google Scholar 

  158. Vaunois JR, Poulain M, Kanouté P, Chaboche JL (2017) Development of bending tests for near shear mode interfacial toughness measurement of EB-PVD thermal barrier coatings. Eng Fract Mech 171:110–134. https://doi.org/10.1016/j.engfracmech.2016.11.009

    Article  Google Scholar 

  159. Eberl C, Wang X, Gianola DS, Nguyen TD, He MY, Evans AG, Hemker KJ (2011) In situ measurement of the toughness of the interface between a thermal barrier coating and a Ni alloy. J Am Ceram Soc 94:s120–s127. https://doi.org/10.1111/j.1551-2916.2011.04588.x

    Article  CAS  Google Scholar 

  160. Kitamura T, Shibutani T, Ueno T (2002) Crack initiation at free edge of interface between thin films in advanced LSI. Eng Fract Mech 69:1289–1299. https://doi.org/10.1016/S0013-7944(02)00009-7

    Article  Google Scholar 

  161. Shang F, Kitamura T, Hirakata H, Kanno I, Kotera H, Terada K (2005) Experimental and theoretical investigations of delamination at free edge of interface between piezoelectric thin films on a substrate. Int J Solids Struct 42:1729–1741. https://doi.org/10.1016/j.ijsolstr.2004.08.004

    Article  CAS  Google Scholar 

  162. Watanabe M, Kuroda S, Yokoyama K, Inoue T, Gotoh Y (2008) Modified tensile adhesion test for evaluation of interfacial toughness of HVOF sprayed coatings. Surf Coat Technol 202:1746–1752. https://doi.org/10.1016/j.surfcoat.2007.07.028

    Article  CAS  Google Scholar 

  163. Okajima Y, Sakaguchi M, Inoue H (2017) A finite element assessment of influential factors in evaluating interfacial fracture toughness of thermal barrier coating. Surf Coat Technol 313:184–190. https://doi.org/10.1016/j.surfcoat.2017.01.052

    Article  CAS  Google Scholar 

  164. Sahasrabuddhe H, Mishra AK, Zubair A, Jaya BN (2022) Defining role of wire aspect ratio on fracture toughness determination of brittle materials in cylindrical configuration. J Mater Res 37:990–1002.https://doi.org/10.1557/s43578-022-00503-7

    Article  CAS  Google Scholar 

  165. Wan KT, Mai YW (1995) Fracture mechanics of a new blister test with stable crack growth. Acta Metall Mater 43:4109–4115. https://doi.org/10.1016/0956-7151(95)00108-8

    Article  CAS  Google Scholar 

  166. Cotterell B, Chen Z (1997) The blister test—transition from plate to membrane behaviour for an elastic material. Int J Fract 86:191–198. https://doi.org/10.1023/A:1007448915245

    Article  Google Scholar 

  167. Jiang LM, Zhou YC, Liao YG, Sun CQ (2008) A pressurized blister test model for the interface adhesion of dissimilar elastic–plastic materials. Mater Sci Eng A 487:228–234. https://doi.org/10.1016/j.msea.2007.10.014

    Article  CAS  Google Scholar 

  168. Agrawal DC, Raj R (1989) Measurement of the ultimate shear strength of a metal-ceramic interface. Acta Metall 37:1265–1270. https://doi.org/10.1016/0001-6160(89)90120-X

    Article  CAS  Google Scholar 

  169. Gupta V, Argon AS, Cornie JA, Parks DM (1990) Measurement of interface strength by laser-pulse-induced spallation. Mater Sci Eng A 126:105–117. https://doi.org/10.1016/0921-5093(90)90116-K

    Article  Google Scholar 

  170. Kobayashi A, Jain A, Gupta V, Kireev V (2004) Study on the interface strength of zirconia coatings by a laser spallation technique. Vacuum 73:533–539. https://doi.org/10.1016/j.vacuum.2003.12.084

    Article  CAS  Google Scholar 

  171. Guipont V, Bégué G, Fabre G, Maurel V (2019) Buckling and interface strength analyses of thermal barrier coatings combining Laser Shock Adhesion Test to thermal cycling. Surf Coat Technol. https://doi.org/10.1016/j.surfcoat.2019.124938

    Article  Google Scholar 

  172. Manapuram A (2021) Interface fracture energy measurements on coatings. M Tech Thesis, Indian Institute of Technology Bombay

  173. Lawn B, Wilshaw R (1975) Indentation fracture: principles and applications. J Mater Sci 10:1049–1081. https://doi.org/10.1007/BF00823224

    Article  Google Scholar 

  174. Evans AG, Charles EA (1976) Fracture toughness determinations by indentation. J Am Ceram Soc 59:371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x

    Article  CAS  Google Scholar 

  175. Lawn BR, Evans AG (1980) Elastic/plastic indentation damage in ceramics: the median/radial crack system. J Am Ceram Soc 63:574–581. https://doi.org/10.1111/j.1151-2916.1980.tb10768.x

    Article  CAS  Google Scholar 

  176. Field J, Swain M, Dukino R (2003) Determination of fracture toughness from the extra penetration produced by indentation-induced pop-in. J Mater Res 18(6):1412–1419. https://doi.org/10.1557/JMR.2003.0194

    Article  CAS  Google Scholar 

  177. Marshall DB, Evans AG (1984) Measurement of adherence of residually stressed thin films by indentation. I. Mechanics of interface delamination. J Appl Phys 56:2632–2638. https://doi.org/10.1063/1.333794

    Article  CAS  Google Scholar 

  178. Vlassak JJ, Drory MD, Nix WD (1997) A simple technique for measuring the adhesion of brittle films to ductile substrates with application to diamond-coated titanium. J Mater Res 12:1900–1910. https://doi.org/10.1557/JMR.1997.0260

    Article  CAS  Google Scholar 

  179. Volinsky A, Moody N, Gerberich W (2002) Interfacial toughness measurements for thin films on substrates. Acta Mater 50:441–466. https://doi.org/10.1016/S1359-6454(01)00354-8

    Article  CAS  Google Scholar 

  180. Evans AG, Hutchinson JW (1984) On the mechanics of delamination and spalling in compressed films. Int J Solids Struct 20:455–466. https://doi.org/10.1016/0020-7683(84)90012-X

    Article  Google Scholar 

  181. De Boer MP, Gerberich WW (1996) Microwedge indentation of the thin film fine line—II. Experiment. Acta Mater 44:3177–3187. https://doi.org/10.1016/1359-6454(95)00430-0

    Article  Google Scholar 

  182. Rosenfeld LG, Ritter JE, Lardner TJ, Lin MR (1990) Use of the microindentation technique for determining interfacial fracture energy. J Appl Phys 67:3291–3296. https://doi.org/10.1063/1.345363

    Article  Google Scholar 

  183. Wang X, Wang C, Atkinson A (2012) Interface fracture toughness in thermal barrier coatings by cross-sectional indentation. Acta Mater 60:6152–6163. https://doi.org/10.1016/j.actamat.2012.07.058

    Article  CAS  Google Scholar 

  184. Chicot D, Démarécaux P, Lesage J (1996) Apparent interface toughness of substrate and coating couples from indentation tests. Thin Solid Films 283:151–157. https://doi.org/10.1016/0040-6090(96)08763-9

    Article  CAS  Google Scholar 

  185. Sánchez JM, El-Mansy S, Sun B, Scherban T, Fang N, Pantuso D, Ford W, Elizalde MR, Martínez-Esnaola JM, Martín-Meizoso A, Gil-Sevillano J, Fuentes M, Maiz J (1999) Cross-sectional nanoindentation: a new technique for thin film interfacial adhesion characterization. Acta Mater 47:4405–4413. https://doi.org/10.1016/S1359-6454(99)00254-2

    Article  Google Scholar 

  186. Yamazaki Y, Arai M, Miyashita Y, Waki H, Suzuki M (2013) Determination of interfacial fracture toughness of thermal spray coatings by indentation. J Therm Spray Technol 22:1358–1365. https://doi.org/10.1007/s11666-013-9961-4

    Article  Google Scholar 

  187. Okajima Y, Nakamura T, Sampath S (2013) Effect of powder injection on the interfacial fracture toughness of plasma-sprayed zirconia. J Therm Spray Technol 22:166–174. https://doi.org/10.1007/s11666-013-9898-7

    Article  CAS  Google Scholar 

  188. Kim SS, Liu YF, Kagawa Y (2007) Evaluation of interfacial mechanical properties under shear loading in EB-PVD TBCs by the pushout method. Acta Mater 55:3771–3781. https://doi.org/10.1016/j.actamat.2007.02.027

    Article  CAS  Google Scholar 

  189. Xu ZH, Yang Y, Huang P, Li X (2010) Determination of interfacial properties of thermal barrier coatings by shear test and inverse finite element method. Acta Mater 58:5972–5979. https://doi.org/10.1016/j.actamat.2010.07.013

    Article  CAS  Google Scholar 

  190. Aoki Y, Inoue J, Kagawa Y, Igashira K (2017) A simple method for measurement of shear delamination toughness in environmental barrier coatings. Surf Coat Technol 321:213–218. https://doi.org/10.1016/j.surfcoat.2017.03.073

    Article  CAS  Google Scholar 

  191. Arai Y, Aoki Y, Kagawa Y (2017) Effect of cristobalite formation on the delamination resistance of an oxide/Si/(SiC/SiC) environmental barrier coating system after cyclic high temperature thermal exposure. Scripta Mater 139:58–62. https://doi.org/10.1016/j.scriptamat.2017.06.006

    Article  CAS  Google Scholar 

  192. Kiener D, Motz C, Dehm G (2009) Micro-compression testing: a critical discussion of experimental constraints. Mater Sci Eng A 505:79–87. https://doi.org/10.1016/j.msea.2009.01.005

    Article  CAS  Google Scholar 

  193. Brinckmann S, Kim J-Y, Jennings A, Greer JR (2009) Effects of sample geometry on the uniaxial tensile stress state at the nanoscale. Int J Multiscale Comput Eng 7:187–194. https://doi.org/10.1615/IntJMultCompEng.v7.i3.20

    Article  CAS  Google Scholar 

  194. Kiener D, Grosinger W, Dehm G (2009) On the importance of sample compliance in uniaxial microtesting. Scripta Mater 60:148–151. https://doi.org/10.1016/j.scriptamat.2008.09.024

    Article  CAS  Google Scholar 

  195. Brenner SS (1956) Tensile strength of whiskers. J Appl Phys 27:1484–1491. https://doi.org/10.1063/1.1722294

    Article  CAS  Google Scholar 

  196. Chen M, Pethö L, Sologubenko AS, Ma H, Michler J, Spolenak R, Wheeler JM (2020) Achieving micron-scale plasticity and theoretical strength in silicon. Nat Commun 11:1–10. https://doi.org/10.1038/s41467-020-16384-5

    Article  CAS  Google Scholar 

  197. Pürstl JT, Jones HO, Edwards TEJ, Thompson RP, Di Gioacchino F, Jones NG, Clegg WJ (2021) On the extraction of yield stresses from micro-compression experiments. Mater Sci Eng A 800:140323. https://doi.org/10.1016/j.msea.2020.140323

    Article  CAS  Google Scholar 

  198. Yue Y, Gao Y, Hu W, Xu B, Wang J, Zhang X, Zhang Q, Wang Y, Ge B, Yang Z, Li Z, Ying P, Liu X, Yu D, Wei B, Wang Z, Zhou XF, Guo L, Tian Y (2020) Hierarchically structured diamond composite with exceptional toughness. Nature 582:370–374. https://doi.org/10.1038/s41586-020-2361-2

    Article  CAS  Google Scholar 

  199. Ast J, Ghidelli M, Durst K, Göken M, Sebastiani M, Korsunsky AM (2019) A review of experimental approaches to fracture toughness evaluation at the micro-scale. Mater Des 173:107762. https://doi.org/10.1016/j.matdes.2019.107762

    Article  Google Scholar 

  200. Molotnikov A, Lapovok R, Davies CHJ, Cao W, Estrin Y (2008) Size effect on the tensile strength of fine-grained copper. Scripta Mater 59:1182–1185. https://doi.org/10.1016/j.scriptamat.2008.08.004

    Article  CAS  Google Scholar 

  201. Lord JD, Roebuck B, Morrell R, Lube T (2010) 25 year perspective: Aspects of strain and strength measurement in miniaturised testing for engineering metals and ceramics. Mater Sci Technol 26:127–148. https://doi.org/10.1179/026708309X12584564052012

    Article  CAS  Google Scholar 

  202. Keller C, Hug E, Chateigner D (2009) On the origin of the stress decrease for nickel polycrystals with few grains across the thickness. Mater Sci Eng A 500:207–215. https://doi.org/10.1016/j.msea.2008.09.054

    Article  CAS  Google Scholar 

  203. ASTM E8/E8M-21 standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken (n.d.)

  204. Corwin W, Lucas D (eds) (1986) The use of small-scale specimens for testing irradiated material. ASTM International, West Conshohocken

    Google Scholar 

  205. D3379-75(1989) e1 (1989) ASTM standard test method for tensile strength and young’s modulus for high-modulus single-filament materials. ASTM International, West Conshohocken

    Google Scholar 

  206. ASTM E345-16 standard test methods of tension testing of metallic foil. ASTM International, West Conshohocken (n.d.)

  207. Kramer SLB, Jones A, Mostafa A, Ravaji B, Tancogne-Dejean T, Roth CC, Bandpay MG, Pack K, Foster JT, Behzadinasab M, Sobotka JC, McFarland JM, Stein J, Spear AD, Newell P, Czabaj MW, Williams B, Simha H, Gesing M, Gilkey LN, Jones CA, Dingreville R, Sanborn SE, Bignell JL, Cerrone AR, Keim V, Nonn A, Cooreman S, Thibaux P, Ames N, Connor DO, Parno M, Davis B, Tucker J, Coudrillier B, Karlson KN, Ostien JT, Foulk JW, Hammetter CI, Grange S, Emery JM, Brown JA, Bishop JE, Johnson KL, Ford KR, Brinckmann S, Neilsen MK, Jackiewicz J, Ravi-Chandar K, Ivanoff T, Salzbrenner BC, Boyce BL (2019) The third Sandia fracture challenge: predictions of ductile fracture in additively manufactured metal. Springer Netherlands, Dordrecht. https://doi.org/10.1007/s10704-019-00361-1

    Book  Google Scholar 

  208. Tasan CC, Diehl M, Yan D, Zambaldi C, Shanthraj P, Roters F, Raabe D (2014) Integrated experimental-simulation analysis of stress and strain partitioning in multiphase alloys. Acta Mater 81:386–400. https://doi.org/10.1016/j.actamat.2014.07.071

    Article  CAS  Google Scholar 

  209. Tasan CC, Hoefnagels JPM, Diehl M, Yan D, Roters F, Raabe D (2014) Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. Int J Plast 63:198–210. https://doi.org/10.1016/j.ijplas.2014.06.004

    Article  CAS  Google Scholar 

  210. Yan W, Lian Y, Yu C, Kafka OL, Liu Z, Liu WK, Wagner GJ (2018) An integrated process–structure–property modeling framework for additive manufacturing. Comput Methods Appl Mech Eng 339:184–204. https://doi.org/10.1016/j.cma.2018.05.004

    Article  Google Scholar 

  211. Basu S, Mathews NG, Jaya BN (2021) Impact of extrinsic and intrinsic factors on the indentation behavior of a dual phase steel-a finite element modeling study. In: NMD ATM international virtual conference

  212. Yadav R, Basu S, Jaya BN (2021) Modelling hole expansion ratio of dual-phase steels. In: NMD ATM international virtual conference

  213. Parambil NK, Gururaja S (2019) Bridging micro-to-macro scale damage in UD-FRP laminates under tensile loading. Int J Mech Sci 157–158:184–197. https://doi.org/10.1016/j.ijmecsci.2019.03.039

    Article  Google Scholar 

  214. Khandelwal S, Basu S, Patra A (2021) A Machine Learning-based surrogate modeling framework for predicting the history-dependent deformation of dual phase microstructures. Mater Today Commun 29:102914. https://doi.org/10.1016/j.mtcomm.2021.102914

    Article  CAS  Google Scholar 

  215. Wolff SJ, Gan Z, Lin S, Bennett JL, Yan W, Hyatt G, Ehmann KF, Wagner GJ, Liu WK, Cao J (2019) Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel. Addit Manuf 27:540–551. https://doi.org/10.1016/j.addma.2019.03.019

    Article  CAS  Google Scholar 

  216. Xie X, Bennett J, Saha S, Lu Y, Cao J, Liu WK, Gan Z (2021) Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing. NPJ Comput Mater 7:1–12. https://doi.org/10.1038/s41524-021-00555-z

    Article  CAS  Google Scholar 

  217. Dehm G, Jaya BN, Raghavan R, Kirchlechner C (2018) Overview on micro- and nanomechanical testing: new insights in interface plasticity and fracture at small length scales. Acta Mater 142:248–282. https://doi.org/10.1016/j.actamat.2017.06.019

    Article  CAS  Google Scholar 

  218. Raghavan R, Kirchlechner C, Jaya BN, Feuerbacher M, Dehm G (2017) Mechanical size effects in a single crystalline equiatomic FeCrCoMnNi high entropy alloy. Scripta Mater 129:52–55. https://doi.org/10.1016/j.scriptamat.2016.10.026

    Article  CAS  Google Scholar 

  219. Jaya BN, Alam Z (2013) Small-scale mechanical testing of materials. Curr Sci 105:1073–1099

    CAS  Google Scholar 

  220. Pippan R, Hohenwarter A (2016) The importance of fracture toughness in ultrafine and nanocrystalline bulk materials. Mater Res Lett 4:127–136. https://doi.org/10.1080/21663831.2016.1166403

    Article  CAS  Google Scholar 

  221. Sebastiani M, Johanns KE, Herbert EG, Pharr GM (2015) Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges. Curr Opin Solid State Mater Sci 19:324–333. https://doi.org/10.1016/j.cossms.2015.04.003

    Article  CAS  Google Scholar 

  222. Prakash RV (2014) A decade of experience with small specimen testing to evaluate mechanical properties of materials. https://doi.org/10.1115/IMECE2014-37356

  223. Prakash RV, Arunkumar S (2016) Influence of friction on the response of small punch test. Trans Indian Inst Met 69:617–622. https://doi.org/10.1007/s12666-015-0769-4

    Article  Google Scholar 

  224. Jalali SIA, Kumar P, Jayaram V (2020) Customized high-temperature bending with DIC for high-throughput determination of creep parameters: technique, instrumentation, and optimization. JOM 72:4522–4538. https://doi.org/10.1007/s11837-020-04445-5

    Article  Google Scholar 

  225. Jalali SIA, Kumar P, Jayaram V (2020) Microstructural equivalence between bending and uniaxial creep. Scripta Mater 186:99–103. https://doi.org/10.1016/j.scriptamat.2020.04.033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. R Raghavan, formerly at IISc Bangalore, for a critical reading and valuable suggestions on this manuscript.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to the writing, editing and analysis of this manuscript.

Corresponding author

Correspondence to B. Nagamani Jaya.

Ethics declarations

Conflict of interest (include appropriate disclosures)

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaya, B.N., Mathews, N.G., Mishra, A.K. et al. Non-conventional Small-Scale Mechanical Testing of Materials. J Indian Inst Sci 102, 139–171 (2022). https://doi.org/10.1007/s41745-022-00302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-022-00302-3

Navigation