Skip to main content

Advertisement

Log in

Energy Release Rate Formulations for Non-conventional Fracture Test Geometries

  • 100 Years of the Griffith Fracture Criteria
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Non-conventional fracture test geometries such as single cantilever bending, clamped beam bending and clamped wire bending have been developed over the years to suit the needs of micro- and nano-scale testing. The same geometries can also be used at the macro-scale if testing standards are well established. Development of length scale compatible geometries helps the materials engineer to seamlessly extract material properties across multiple length scales. This article proposes the crack driving force (or energy release rate G) criteria for the above three geometries. These geometries have found widespread use at the micro-scale and can be adapted to the macro-scale. Use of a global energy-based criterion instead of the local stress-based criteria (stress intensity factor K) has its own advantages, especially in multi-phase materials and interface-dominated structures which display an R-curve. Aspects of crack stability even under load control arising because of the geometric factors, especially the beam or wire aspect ratio, are discussed in this context. Validation of the compliance approach is carried out by comparing it to the J-integral extracted directly for a linear elastic material using extended finite element modeling and also using the analytical formulation for a double-cantilever beam specimen. Experimental evidence of the validity of the solutions in determining the fracture energy of a linear elastic brittle material, PMMA, as a homogeneous model system is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.A. Griffith, Philos. Trans. 221, 163. (1920).

    Google Scholar 

  2. G.R. Irwin, Fracturing of Metals (American Society for Metals, Cleveland, 1948), p 147.

    Google Scholar 

  3. L.B. Freund and S. Suresh, Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003).

    MATH  Google Scholar 

  4. T.H. Courtney, Mechanical Behaviour of Materials (Waveland Press, Long Grove, 2005).

    Google Scholar 

  5. D.P. Clausing, Int. J. Fract. Mech. 5, 211. (1969).

    Article  Google Scholar 

  6. F.I. Baratta, Int. J. Fract. 62, 29. (1993).

    Article  Google Scholar 

  7. J.I. Bluhm, Analysis and Mechanics (Pergamon Press, New York, 1978), p 409.

    Book  Google Scholar 

  8. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications (CRC Press, Boca Raton, 2005).

    Book  Google Scholar 

  9. F.I. Baratta and W.A. Dunlay, Mech. Mater. 10, 149. (1990).

    Article  Google Scholar 

  10. G. Dehm, B.N. Jaya, R. Raghavan, and C. Kirchlechner, Acta Mater. 142, 248. (2018).

    Article  Google Scholar 

  11. B.N. Jaya, S. Bhowmick, S.A.S. Asif, and V. Jayaram, J. Mater. Res. 30, 3343. (2015).

    Article  Google Scholar 

  12. K. Matoy, H. Schönherr, T. Detzel, T. Schöberl, R. Pippan, C. Motz, and G. Dehm, Thin Solid Films 518, 247. (2009).

    Article  Google Scholar 

  13. B.N. Jaya, S. Bhowmick, S.A.S. Asif, and O.L. Warren, Philos. Mag. 6435, 1945. (2015).

    Article  Google Scholar 

  14. M.A. Monn, K. Vijaykumar, S. Kochiyama, and H. Kesari, Nat. Commun. 11, 1. (2020).

    Article  Google Scholar 

  15. G. Sernicola, T. Giovannini, P. Patel, J.R. Kermode, D.S. Balint, T. Ben Britton, and F. Giuliani, Nat. Commun. 8, 9. (2017).

    Article  Google Scholar 

  16. B.N. Jaya and V. Jayaram, Int. J. Fract. 188, 213. (2014).

    Article  Google Scholar 

  17. A.K. Mishra, A. Lambai, V. Jayaram, and B.N. Jaya, Theor. Appl. Fract. Mech. 105, 102409. (2020).

    Article  Google Scholar 

  18. J. Ast, M. Ghidelli, K. Durst, M. Göken, M. Sebastiani, and A.M. Korsunsky, Mater. Des. 173, 107762. (2019).

    Article  Google Scholar 

  19. Y.W. Mai and A.G. Atkins, J. Strain Anal. Eng. Des. 15, 63. (1980).

    Article  Google Scholar 

  20. J.H. Underwood, F.I. Baratta, and J.J. Zalinka, Exp. Mech. 31, 353. (1991).

    Article  Google Scholar 

  21. B.N. Jaya and V. Jayaram, JOM 68, 94. (2016).

    Article  Google Scholar 

  22. K. Venkatraman and V. Jayaram, Philos. Mag. 99, 2016. (2019).

    Article  Google Scholar 

  23. M.R.M. Aliha and M.R. Ayatollahi, Mater. Sci. Eng. A 527, 526. (2010).

    Article  Google Scholar 

  24. M.G. Mueller, V. Pejchal, G. Žagar, A. Singh, M. Cantoni, and A. Mortensen, Acta Mater. 86, 385. (2015).

    Article  Google Scholar 

  25. S. Brinckmann, C. Kirchlechner, and G. Dehm, Scr. Mater. 127, 76. (2017).

    Article  Google Scholar 

  26. E. Breitbarth, T. Strohmann, M. Besel, and S. Reh, Frattura Ed Integrita Strutturale 13, 12. (2019).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the TATA Center for Technology and Design, IIT-Bombay, for providing laser machining facilities for PMMA specimen, the FIST Laboratory at the Department of MEMS, IIT-Bombay, for providing the mechanical testing facility for the PMMA experiments and the Max Planck Partner Group Project and the IITB Seed Grant for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Nagamani Jaya.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhari, T.S., Mathews, N.G., Mishra, A.K. et al. Energy Release Rate Formulations for Non-conventional Fracture Test Geometries. JOM 73, 1597–1606 (2021). https://doi.org/10.1007/s11837-021-04637-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04637-7

Navigation