Skip to main content
Log in

Review of Electrochemical Sensors and Biosensors Based on First-Row Transition Metals, Their Oxides, and Noble Metals Nanoparticles

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

The use of electrochemical sensors for sensitive disease diagnosis and detecting various species with pharmacological, therapeutic, industrial, food-related, and environmental origins is now widely accepted. A catalytic or binding event resulting from the sensor’s electroactive component recognizing its analyte creates an electrical signal proportionate to the analyte concentration, which is then monitored by a transducer. The development of morphologically distinct metal and metal oxide nanoparticles formed from first-row transition elements (Mn, Cr, Fe, Co, Ti, Ni, Cu, Zn) and noble metals (Pt, Au, Ag, Pd) is described in this review. The effect of these metal nanoparticles has been studied using Tetracyanoquinodimethane (TCNQ), Ferrocene, and other organic compounds as electroactive species using carbon paste-modified electrodes. Electroanalytical sensors, mostly based on ferrocene, are exceedingly sensitive, selective, affordable, and for detecting numerous biomolecules like glucose, dopamine, NADH, ascorbic acid, and a few dyes and are simple to build. In recent decades, charge transfer organic species-based chemosensors have become a prominent study area. This paper outlines current developments in electrochemical biosensors based on transition metal nanoparticles, covering glucose, ascorbic acid, uric acid, and other inorganic and organic analytes. The importance of transition metal and transition metal oxide nanoparticles as potential electrode modifiers for developing sensors is highlighted. A discussion of the present problem and possible solutions, and plausible future directions marks the review’s conclusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

Datasets are available from the author on reasonable request.

References

  1. Kwon OS, Song HS, Park TH, Jang J. Conducting nanomaterial sensor using natural receptors. Chem Rev. 2019;119(1):36–9.

    Article  CAS  PubMed  Google Scholar 

  2. Fang A, Ng HT, Li SFY. A high-performance glucose biosensor based on monomolecular layer of glucose oxidase covalently immobilised on indium-tin oxide surface. Biosens Bioelectron. 2003;19(1):43–9.

    Article  CAS  PubMed  Google Scholar 

  3. Thévenot DR, Toth K, Durst RA, Wilson GS. Electrochemical biosensors: Recommended definitions and classification. Anal Lett. 2001;34(5):635–59.

    Article  Google Scholar 

  4. Zhao J-G, Cao J, Wang W-Z. Peptide-based electrochemical biosensors and their applications in disease detection. J Anal Test. 2022;6:193–203.

    Article  Google Scholar 

  5. Bisht A, Mishra A, Bisht H, Tripathi RM. Nanomaterial based biosensors for detection of viruses including SARS-CoV-2: a review. J Anal Test. 2022;5(4):327–40.

    Article  Google Scholar 

  6. Huang P-JJ, Liu J. Signaling kinetics of DNA and aptamer biosensors revealing graphene oxide surface heterogeneity. J Anal Test. 2022;6:20–7.

    Article  Google Scholar 

  7. Liu JW, Ma DL. Special topic: DNA-based biosensors. J Anal Test. 2022;6(1):1–2.

    Article  Google Scholar 

  8. Sumitha MS, Xavier TS. Recent advances in electrochemical biosensors—a brief review. Hyb Adv. 2023;2: 100023.

    Article  Google Scholar 

  9. Attia NF, Goda ES, Nour MA, Sabaa MW, Hassan MA. Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile-butadiene styrene nanocomposites. Mater Chem Phys. 2015;168:147–58.

    Article  CAS  Google Scholar 

  10. Attia NF, Goda ES, Hassan MA, Sabaa MW, Nour MA. Preparation and certification of novel reference material for smoke density measurements. Mapan: J Metrol Soc India. 2018;33:297–306.

    Article  Google Scholar 

  11. Massaro M, Lazzara G, Milioto S, Noto R, Riela S. Covalently modified halloysite clay nanotubes: synthesis, properties, biological and medical applications. J Mater Chem B. 2017;5(16):2867–82.

    Article  CAS  PubMed  Google Scholar 

  12. Farka Z, Juřík T, Kovář D, Trnková L, Skládal P. Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev. 2017;117(15):9973–10042.

    Article  CAS  PubMed  Google Scholar 

  13. Wei M, Qiao Y, Zhao H, Liang J, Li T, Luo Y, Lu S, Shi X, Lu W, Sun X. Electrochemical non-enzymatic glucose sensors: recent progress and perspectives. Chem Commun. 2020;56:14553–69.

    Article  CAS  Google Scholar 

  14. Luo X, Morrin A, Killard AJ, Smyth MR. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 2006;18(4):319–26.

    Article  CAS  Google Scholar 

  15. Liu S, Leech D, Ju H. Application of colloidal gold in protein immobilization, electron transfer, and biosensing. Anal Lett. 2003;36(1):1–19.

    Article  CAS  Google Scholar 

  16. Kango S, Kalia S, Celli A, Njuguna J, Habibi Y, Kumar R. Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polym Sci. 2013;38(8):1232–61.

    Article  CAS  Google Scholar 

  17. Li H, Liu X, Li L, Mu X, Genov R, Mason AJ. CMOS electrochemical instrumentation for biosensor microsystems: a review. Sens. 2017;17(1):74.

    Google Scholar 

  18. Zheng H, Ma X, Chen L, Lin Z, Guo L, Qiu B, Chen G. Label-free electrochemical impedance biosensor for sequence-specific recognition of double-stranded DNA. Anal Methods. 2013;5:5005–9.

    Article  CAS  Google Scholar 

  19. Liu X, Bai L, Cao X, Wu F, Yin T, Lu W. Rapid determination of SARS-CoV-2 nucleocapsid proteins based on 2D/2D MXene/P–BiOCl/Ru(bpy)32+ heterojunction composites to enhance electrochemiluminescence performance. Anal Chim Acta. 2022;1234: 340522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barek J, Fogg AG, Muck A, Zima J. Polarography and voltammetry at mercury electrodes. Crit Rev Anal Chem. 2001;31:291–309.

    Article  CAS  Google Scholar 

  21. Benck JD, Pinaud BA, Gorlin Y, Jaramillo TF. Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. PLoS ONE. 2014;9(10): e107942.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Blommaerts N, Vanrompay H, Nuti S, Lenaerts S, Bals S, Verbruggen SW. Unraveling structural information of turkevich synthesized plasmonic gold-silver bimetallic nanoparticles. Small. 2019;15(42):1902791.

    Article  CAS  Google Scholar 

  23. Fievet F, Ammar-Merah S, Brayner R, Chau F, Giraud M, Mammeri F, Peron J, Piquemal JY, Sicard L, Viau G. The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem Soc Rev. 2018;47(14):5187–233.

    Article  CAS  PubMed  Google Scholar 

  24. Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed. 2009;48(1):60–103.

    Article  CAS  Google Scholar 

  25. Phan CM, Nguyen HM. Role of capping agent in wet synthesis of nanoparticles. J Phys Chem A. 2017;121(17):3213–9.

    Article  CAS  PubMed  Google Scholar 

  26. Krishnan R, Shibu SN, Poelman D, Badyal AK, Kunti AK, Swart HC, Menon SG. Recent advances in microwave synthesis for photoluminescence and photocatalysis. Mater Today Commun. 2022;32: 103890.

    Article  CAS  Google Scholar 

  27. Mirzaei A, Neri G. Microwave-assisted synthesis of metal oxide nanostructures for gas sensing application: a review. Sens Actuat B Chem. 2016;237:749–75.

    Article  CAS  Google Scholar 

  28. Liu X, He F, Bai L, Cao X, Liu C, Lu W. A two-dimensional G-CoP/N, P-co-doped carbon nanowire electrode for the simultaneous determination of hydroquinone and catechol in domestic wastewater. Anal Chim Acta. 2022;1210: 339871.

    Article  CAS  PubMed  Google Scholar 

  29. Bai L, Shi Y, Zhang X, Cao X, Jia J, Shi H, Lu W. A polyaniline functionalized NiFeP nanosheet array-based electrochemical immunosensor using Au/Cu2O nanocubes as a signal amplifier for the detection of SARS-CoV-2 nucleocapsid protein. Analyst. 2023;148:3359–70.

    Article  CAS  PubMed  Google Scholar 

  30. Yang MH, Jeong JM, Lee KG, Kim DH, Lee SJ, Choi BG. Hierarchical porous microspheres of the Co3O4@graphene with enhanced electrocatalytic performance for electrochemical biosensors. Biosens Bioelectron. 2017;89:612–9.

    Article  CAS  PubMed  Google Scholar 

  31. Nandagudi A, Nagarajarao SH, Santosh MS, Basavaraja BM, Malode SJ, Mascarenhas RJ, Shetti NP. Hydrothermal synthesis of transition metal oxides, transition metal oxide/carbonaceous material nanocomposites for supercapacitor applications. Mater Today Sustain. 2022;19: 100214.

    Article  Google Scholar 

  32. Darr JA, Zhang J, Makwana NM, Weng X. Continuous hydrothermal synthesis of inorganic nanoparticles: applications and future directions. Chem Rev. 2017;117(17):11125–238.

    Article  CAS  PubMed  Google Scholar 

  33. Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft bioelectronics based on nanomaterials. Chem Rev. 2022;122(5):5068–143.

    Article  CAS  PubMed  Google Scholar 

  34. Xia X, Zeng J, Zhang Q, Moran CH, Xia Y. Recent developments in shape-controlled synthesis of silver nanocrystals. J Phys Chem C. 2012;116(41):21647–56.

    Article  CAS  Google Scholar 

  35. Zhang Z, Shen W, Xue J, Liu Y, Liu Y, Yan P, Liu J, Tang J. Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res Lett. 2018;13:1–18.

    Google Scholar 

  36. Khan A, Rashid A, Younas R, Chong R. A chemical reduction approach to the synthesis of copper nanoparticles. Int Nano Lett. 2016;6:21–6.

    Article  CAS  Google Scholar 

  37. Daruich-De-Souza C, Ribeiro-Nogueira B, Rostelato MECM. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction. J Alloys Compd. 2019;798:714–40.

    Article  CAS  Google Scholar 

  38. Egan-Morriss C, Kimber RL, Powell NA, Lloyd JR. Biotechnological synthesis of Pd-based nanoparticle catalysts. Nanoscale Adv. 2022;4(3):654–79.

    Article  CAS  PubMed  Google Scholar 

  39. Hussain I, Singh NB, Singh A, Singh H, Singh SC. Green synthesis of nanoparticles and its potential application. Biotechnol Lett. 2016;38(4):545–60.

    Article  CAS  PubMed  Google Scholar 

  40. Peralta-Videa JR, Huang Y, Parsons JG, Zhao L, Lopez-Moreno L, Hernandez-Viezcas JA, Gardea-Torresdey JL. Plant-based green synthesis of metallic nanoparticles: scientific curiosity or a realistic alternative to chemical synthesis? Nanotechnol Environ Eng. 2016;1:1–29.

    Article  Google Scholar 

  41. Salem SS, Fouda A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol Trace Elem Res. 2011;199:344–70.

    Article  Google Scholar 

  42. Jadoun S, Arif R, Jangid NK, Meena RK. Green synthesis of nanoparticles using plant extracts: a review. Environ Chem Lett. 2021;19(1):355–74.

    Article  CAS  Google Scholar 

  43. Khandel P, Yadaw RK, Soni DK, Kanwar L, Shahi SK. Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem. 2018;8(3):217–54.

    Article  CAS  Google Scholar 

  44. Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, Hong J. Green synthesis of nanoparticles: current developments and limitations. Environ Technol Innov. 2022;26: 102336.

    Article  CAS  Google Scholar 

  45. Gu T, Bu L, Huang Z, Liu Y, Tang Z, Liu Y, Huang S, Xie Q, Yao S, Tu X, Luo X, Luo S. Dual-signal anodic stripping voltammetric determination of trace arsenic(III) at a glassy carbon electrode modified with internal-electrolysis deposited gold nanoparticles. Electrochem Commun. 2013;33:43–6.

    Article  Google Scholar 

  46. Dhara K, Stanley J, Ramachandran T, Nair BG, Babu TGS. Cupric oxide modified screen printed electrode for the nonenzymatic glucose sensing. J Nanosci Nanotechnol. 2016;16:8772–8.

    Article  CAS  Google Scholar 

  47. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK. Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta. 2012;735:37–45.

    Article  CAS  PubMed  Google Scholar 

  48. Gadhari NS, Sanghavi BJ, Karna SP, Srivastava AK. Potentiometric stripping analysis of bismuth based on carbon paste electrode modified with cryptand [2.2.1] and multiwalled carbon nanotubes. Electrochim Acta. 2010;56:627–35.

    Article  CAS  Google Scholar 

  49. Wang Z, Yuan J, Li M, Han D, Zhang Y, Shen Y, Niu L, Ivaska A. Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite. J Electroanal Chem. 2007;599:121–6.

    Article  CAS  Google Scholar 

  50. Wang F, Hu S. Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta. 2009;165:1–22.

    Article  CAS  Google Scholar 

  51. He C, Asif M, Liu Q, Xiao F, Liu H, Xia BY. Noble metal construction for electrochemical nonenzymatic glucose detection. Adv Mater Technol. 2023;8(1):2200272.

    Article  CAS  Google Scholar 

  52. Dong M, Hu H, Ding S, Wang C, Li L. Fabrication of NiMn2O4 nanosheets on reduced graphene oxide for non-enzymatic detection of glucose. Mater Technol. 2021;36:203–11.

    Article  CAS  Google Scholar 

  53. Franco MA, Conti PP, Andre RS, Correa DS. A review on chemiresistive ZnO gas sensors. Sens Actuat Rep. 2022;4: 100100.

    Google Scholar 

  54. Miller DR, Akbar SA, Morris PA. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens Actuat B. 2014;204:250–72.

    Article  CAS  Google Scholar 

  55. Wilkirson EC, Singampalli KL, Li J, Dixit DD, Jiang X, Gonzalez DH, Lillehoj PB. Affinity-based electrochemical sensors for biomolecular detection in whole blood. Anal Bioanal Chem. 2023;415(18):3983–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Naresh V, Lee N. A review on biosensors and recent development of nanostructured materials-enabled biosensors. Sensors. 2021;21(4):1–35.

    Article  Google Scholar 

  57. Owusu KA, Qu L, Li J, Wang Z, Zhao K, Yang C, Hercule KM, Lin C, Shi C, Wei Q, Zhou L, Mai L. Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. Nat Commun. 2017;8(1):14264.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lukatskaya MR, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage. Nat Commun. 2016;7(1):12647.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Maduraiveeran G, Sasidharan M, Ganesan V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron. 2018;103:113–29.

    Article  CAS  PubMed  Google Scholar 

  60. Zeng G, Li W, Ci S, Jia J, Wen Z. Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell. Sci Rep. 2016;6(1):36454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liao J, Lin S, Yang Y, Liu K, Du W. Highly selective and sensitive glucose sensors based on organic electrochemical transistors using TiO2 nanotube arrays-based gate electrodes. Sens Actuat B. 2015;208:457–63.

    Article  CAS  Google Scholar 

  62. He X, Hu C. Building three-dimensional Pt catalysts on TiO2 nanorod arrays for effective ethanol electrooxidation. J Power Sources. 2011;196:3119–23.

    Article  CAS  Google Scholar 

  63. Luo Z, Ma X, Yang D, Yuwen L, Zhu X, Weng L, Wang L. Synthesis of highly dispersed titanium dioxide nanoclusters on reduced graphene oxide for increased glucose sensing. Carbon. 2013;57:470–6.

    Article  CAS  Google Scholar 

  64. Das M, Dhand C, Sumana G, Srivastava AK, Nagarajan R, Nain L, Iwamoto M, Manaka T, Malhotra BD. Electrophoretic fabrication of chitosan-zirconium-oxide nanobiocomposite platform for nucleic acid detection. Biomacromol. 2011;12:540–7.

    Article  CAS  Google Scholar 

  65. Carrière D, Moreau M, Barboux P, Boilot JP, Spalla O. Modification of the surface properties of porous nanometric zirconia particles by covalent grafting. Langmuir. 2004;20:3449–55.

    Article  PubMed  Google Scholar 

  66. Das M, Dhand C, Sumana G, Srivastava AK, Vijayan N, Nagarajan R, Malhotra BD. Zirconia grafted carbon nanotubes based biosensor for M Tuberculosis detection. Appl Phys Lett. 2011. https://doi.org/10.1063/1.3645618.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Naik KK, Rout CS. Electrodeposition of ZnCo2O4 nanoparticles for biosensing applications. RSC Adv. 2015;5:79397–404.

    Article  CAS  Google Scholar 

  68. Tadayon F, Sepehri Z. A new electrochemical sensor based on a nitrogen-doped graphene/CuCo2O4 nanocomposite for simultaneous determination of dopamine, melatonin and tryptophan. RSC Adv. 2015;5:65560–8.

    Article  CAS  Google Scholar 

  69. Kumar V, Mariappan CR, Azmi R, Moock D, Indris S, Bruns M, Ehrenberg H, Vijaya Prakash G. Pseudocapacitance of mesoporous spinel-type MCo2O4 (M = Co, Zn, and Ni) rods fabricated by a facile solvothermal route. ACS Omega. 2017;2:6003–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Burchell D. Timothy carbon materials for advanced technologies. 1st ed. Elsevier Science Ltd; 1999. https://doi.org/10.1016/B978-0-08-042683-9.X5000-6.

    Book  Google Scholar 

  71. Xu ZL, Park J, Yoon G, Kim H, Kang K. Graphitic carbon materials for advanced sodium-ion batteries. Small Methods. 2019;3(4):1800227.

    Article  CAS  Google Scholar 

  72. Béguin F, Frackowiak E. Carbons for electrochemical energy storage and conversion systems. 1st ed. London, New York: CRC Press, Taylor & Francis Group; 2009. https://doi.org/10.1201/9781420055405.

    Book  Google Scholar 

  73. Mao X, Simeon F, Rutledge GC, Hatton TA. Electrospun carbon nanofiber webs with controlled density of states for sensor applications. Adv Mater. 2013;25:1309–14.

    Article  CAS  PubMed  Google Scholar 

  74. Benvidi A, Nafar MT, Jahanbani S, Tezerjani MD, Rezaeinasab M, Dalirnasab S. Developing an electrochemical sensor based on a carbon paste electrode modified with nano-composite of reduced graphene oxide and CuFe2O4 nanoparticles for determination of hydrogen peroxide. Mater Sci Eng C. 2017;75:1435–47.

    Article  CAS  Google Scholar 

  75. Maurya KK, Singh K, Malviya M. Effect of palladium and its nanogeometry on the redox electrochemistry of tetracyanoquinodimethane modified electrode; application in electrochemical sensing of ascorbic acid. J Appl Electrochem. 2023;53:1831–42.

    Article  CAS  Google Scholar 

  76. Singh K, Singh C, Maurya KK, Malviya M. Redox electrochemistry of electrodes tuned with dimethyl ferrocene based on Co–NC–Pd nanogeometry: an impedimetric sensor for NADH sensing. J Mater Sci Mater Electron. 2023;34:1898.

    Article  CAS  Google Scholar 

  77. Elgrishi N, Rountree KJ, McCarthy BD, Rountree ES, Eisenhart TT, Dempsey JL. A practical beginner’s guide to cyclic voltammetry. J Chem Edu. 2018;95:197–206.

    Article  CAS  Google Scholar 

  78. Ren X, Chen D, Meng X, Tang F, Du A, Zhang L. Amperometric glucose biosensor based on a gold nanorods/cellulose acetate composite film as immobilization matrix. Colloids Surf B. 2009;72:188–92.

    Article  CAS  Google Scholar 

  79. Wang L, Lu W, Zhu W, Wu H, Wang F, Xu X. A photoelectrochemical sensor for highly sensitive detection of glucose based on Au–NiO1–x hybrid nanowires. Sens Actuat B. 2020;304: 127330.

    Article  CAS  Google Scholar 

  80. Wang J. Analytical electrochemistry. 3rd ed. Wiley; 2006. https://doi.org/10.1002/0471790303.

    Book  Google Scholar 

  81. He W, Ding Y, Zhang W, Ji L, Zhang X, Yang F. A highly sensitive sensor for simultaneous determination of ascorbic acid, dopamine and uric acid based on ultra-small Ni nanoparticles. J Electroanal Chem. 2016;775:205–11.

    Article  CAS  Google Scholar 

  82. Gupta VK, Jain R, Radhapyari K, Jadon N, Agarwal S. Voltammetric techniques for the assay of pharmaceuticals—a review. Anal Biochem. 2011;408(2):179–96.

    Article  CAS  PubMed  Google Scholar 

  83. Kumar N, Bhadwal AS, Mizaikoff B, Singh S, Kranz C. Electrochemical detection and photocatalytic performance of MoS2/TiO2 nanocomposite against pharmaceutical contaminant: paracetamol. Sens Bio-Sens Res. 2019;24: 100228.

    Google Scholar 

  84. Bao C, Zhang R, Qiao Y, Cao X, He F, Hu W, Wei M, Lu W. Au nanoparticles anchored on cobalt boride nanowire arrays for the electrochemical determination of prostate-specific antigen. ACS Appl Nano Mater. 2021;4:5707–16.

    Article  CAS  Google Scholar 

  85. Bard AJ, Faulkner LR, White HS. Electrochemical methods: fundamentals and applications. 3rd ed. Wiley; 2022.

    Google Scholar 

  86. Brett CMA. Electrochemical sensors for environmental monitoring Strategy and examples. Pure Appl Chem. 2001;73(12):1969–77.

    Article  CAS  Google Scholar 

  87. He Q, Wang B, Liang J, Liu J, Liang B, Li G, Long Y, Zhang G, Liu H. Research on the construction of portable electrochemical sensors for environmental compounds quality monitoring. Mater Today Adv. 2023;17: 100340.

    Article  CAS  Google Scholar 

  88. Shao Y, Ying Y, Ping J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem Soc Rev. 2020;49(13):4405–65.

    Article  CAS  PubMed  Google Scholar 

  89. Gu Y, Li Y, Ren D, Sun L, Zhuang Y, Yi L, Wang S. Recent advances in nanomaterial-assisted electrochemical sensors for food safety analysis. Food Front. 2022;3(3):453–79.

    Article  Google Scholar 

  90. Mostafa IM, Tian Y, Anjum S, Hanif S, Hosseini M, Lou B, Xu G. Comprehensive review on the electrochemical biosensors of different breast cancer biomarkers. Sens Actuat B. 2022;365: 131944.

    Article  CAS  Google Scholar 

  91. del Campo FJ. Self-powered electrochemical sensors. Curr Opin Electrochem. 2023;41: 101356.

    Article  Google Scholar 

  92. Singh K, Maurya KK, Malviya M. Influence of Pd nanostructures on the redox electrochemistry of ferrocene monocarboxylic acid and ferrocene for ascorbic acid sensing. Anal Bioanal Electrochem. 2023;15:516–30.

    Google Scholar 

  93. Chen W, Tang J, Cheng HJ, Xia XH. A simple method for fabrication of sole composition nickel hexacyanoferrate modified electrode and its application. Talanta. 2009;80(2):539–43.

    Article  CAS  PubMed  Google Scholar 

  94. Weng YC, Lee YG, Hsiao YL, Lin CY. A highly sensitive ascorbic acid sensor using a Ni–Pt electrode. Electrochim Acta. 2011;56(27):9937–45.

    Article  CAS  Google Scholar 

  95. Tian L, Bian J, Wang B, Qi Y. Electrochemical study on cobalt film modified glassy carbon electrode and its application. Electrochim Acta. 2010;55(9):3083–8.

    Article  CAS  Google Scholar 

  96. Weng YC, Hsiao YL. Comparison of Pt and Ni foil electrodes for amperometric sensing of ascorbic acid. J Electroanal Chem. 2011;651(2):160–5.

    Article  CAS  Google Scholar 

  97. Khairy M, Mahmoud BG. Copper Oxide microstructures with hemisphere pineapple morphology for selective amperometric determination of vitamin C (l-ascorbic acid) in human fluids. Electroanalysis. 2016;28(10):2606–12.

    Article  CAS  Google Scholar 

  98. Singh A, Sharma A, Ahmed A, Arya S. Highly selective and efficient electrochemical sensing of ascorbic acid via CuO/rGO nanocomposites deposited on conductive fabric. Appl Phys A. 2022;128(4):262.

    Article  CAS  Google Scholar 

  99. Azevedo-Neto NF, Angelico JC, de Silva-Pelissari MR, Camargo LP, Simões RP, Dalla’Antonia LH, Dias-da-Silva JH. Reactive sputtering deposition of Co3O4 films and an evaluation of its use as an electrochemical sensor for ascorbic acid. J Mater Sci Mater Electron. 2022;33(24):19678–92.

    Article  CAS  Google Scholar 

  100. Zhang X, Yu S, He W, Uyama H, Xie Q, Zhang L, Yang F. Electrochemical sensor based on carbon-supported NiCoO2 nanoparticles for selective detection of ascorbic acid. Biosens Bioelectron. 2014;55:446–51.

    Article  CAS  PubMed  Google Scholar 

  101. Hashemi SA, Mousavi SM, Bahrani S, Ramakrishna S, Babapoor A, Chiang WH. Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Anal Chim Acta. 2020;1107:183–92.

    Article  CAS  PubMed  Google Scholar 

  102. Chen X, Yang Z, Tuo X, Huang H, Huang J, Li L, Yu X. Sea-urchin-structured NiCo2O4 decorated nitrogen-doped graphene for enhanced electrochemical detection of ascorbic acid. Solid State Sci. 2022;133: 107000.

    Article  CAS  Google Scholar 

  103. Ahmad R, Tripathy N, Jang NK, Khang G, Hahn YB. Fabrication of highly sensitive uric acid biosensor based on directly grown ZnO nanosheets on electrode surface. Sens Actuat B. 2015;206:146–51.

    Article  CAS  Google Scholar 

  104. Liu Y, Zhu W, Wu D, Wei Q. Electrochemical determination of dopamine in the presence of uric acid using palladium-loaded mesoporous Fe3O4 nanoparticles. Meas J Int Meas Confed. 2015;60:1–5.

    Article  Google Scholar 

  105. Li Q, Xia Y, Wan X, Yang S, Cai Z, Ye Y, Li G. Morphology-dependent MnO2/nitrogen-doped graphene nanocomposites for simultaneous detection of trace dopamine and uric acid. Mater Sci Eng C. 2020;109: 110615.

    Article  CAS  Google Scholar 

  106. Tang T, Zhou M, Lv J, Cheng H, Wang H, Qin D, Hu G, Liu X. Sensitive and selective electrochemical determination of uric acid in urine based on ultrasmall iron oxide nanoparticles decorated urchin-like nitrogen-doped carbon. Colloids Surf B. 2022;216: 112538.

    Article  CAS  Google Scholar 

  107. Fu L, Zheng Y, Wang A, Cai W, Deng B, Zhang Z. An electrochemical sensor based on reduced graphene oxide and zno nanorods-modified glassy carbon electrode for uric acid detection. Arab J Sci Eng. 2016;41:135–41.

    Article  CAS  Google Scholar 

  108. Hassan KM, Hathoot AA, Ashour WFD, Abdel-Azzem M. Electrochemical and analytical applications for NADH detection at glassy carbon electrode modified with nickel nanoparticles dispersed on poly 1,5-diaminonaphthalene. J Solid State Electrochem. 2015;19:1063–72.

    Article  CAS  Google Scholar 

  109. Teymourian H, Salimi A, Khezrian S. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosens Bioelectron. 2013;49:1–8.

    Article  CAS  PubMed  Google Scholar 

  110. Lavanya N, Fazio E, Neri F, Bonavita A, Leonardi SG, Neri G, Sekar C. Electrochemical sensor for simultaneous determination of ascorbic acid, uric acid and folic acid based on Mn-SnO2 nanoparticles modified glassy carbon electrode. J Electroanal Chem. 2016;770:23–32.

    Article  CAS  Google Scholar 

  111. Ghanbari K, Hajheidari N. ZnO-CuxO/polypyrrole nanocomposite modified electrode for simultaneous determination of ascorbic acid, dopamine, and uric acid. Anal Biochem. 2015;473:53–62.

    Article  CAS  PubMed  Google Scholar 

  112. Murugan N, Jerome R, Preethika M, Sundaramurthy A, Sundramoorthy AK. 2D-titanium carbide (MXene) based selective electrochemical sensor for simultaneous detection of ascorbic acid, dopamine and uric acid. J Mater Sci Technol. 2021;72:122–31.

    Article  CAS  Google Scholar 

  113. Zhao D, Fan D, Wang J, Xu C. Hierarchical nanoporous platinum-copper alloy for simultaneous electrochemical determination of ascorbic acid, dopamine, and uric acid. Microchim Acta. 2015;182:1345–52.

    Article  CAS  Google Scholar 

  114. Gaya E, Menendez N, Mazario E, Herrasti P. Fe3O4-nanoparticle-modified sensor for the detection of dopamine, uric acid and ascorbic acid. Chemosensors. 2023;11(2):79.

    Article  CAS  Google Scholar 

  115. Gong W, Li J, Chu Z, Yang D, Subhan S, Li J, Huang M, Zhang H, Zhao Z. A low-cost high-entropy porous CrO/CrN/C biosensor for highly sensitive simultaneous detection of dopamine and uric acid. Microchem J. 2022;175: 107188.

    Article  CAS  Google Scholar 

  116. Aparna TK, Sivasubramanian R, Dar MA. One-pot synthesis of Au-Cu2O/rGO nanocomposite based electrochemical sensor for selective and simultaneous detection of dopamine and uric acid. J Alloys Compd. 2018;741:1130–41.

    Article  CAS  Google Scholar 

  117. Goyal RN, Kaur D, Pandey AK. Voltammetric sensor based on nano TiO2 powder modified glassy carbon electrode for determination of dopamine. Open Chem Biomed Methods J. 2010;3(1):115–22.

    Article  CAS  Google Scholar 

  118. Öztürk Doğan H, Kurt Urhan B, Çepni E, Eryiğit M. Simultaneous electrochemical detection of ascorbic acid and dopamine on Cu2O/CuO/electrochemically reduced graphene oxide (CuxO/ERGO)-nanocomposite-modified electrode. Microchem J. 2019;150: 104157.

    Article  Google Scholar 

  119. Zhu Z, Miao X, Yan D. An electrochemical sensor based on bimetallic PtPd nanoparticles for the determination of bisphenol A. Int J Electrochem Sci. 2021;16(4):1–9.

    Article  Google Scholar 

  120. Park J, Kim J, Min A, Choi MY. Fabrication of nonenzymatic electrochemical sensor based on Zn@ZnO core-shell structures obtained via pulsed laser ablation for selective determination of hydroquinone. Environ Res. 2022;204: 112340.

    Article  CAS  PubMed  Google Scholar 

  121. Balamurugan TST, Manibalan K, Chen SM, Balasubramnian P, Huang ST. High sensitive electrochemical quantification of isoniazid in biofluids using copper particles decorated graphene oxide nano composite. Int J Electrochem Sci. 2017;12(10):9150–60.

    Article  CAS  Google Scholar 

  122. Bai L-W, Shi Y-F, Zhang X, Liu X-B, Wu F, Liu C, Jia J-F, Lu W-B. A two-dimensional NiMoO4 nanowire electrode for the sensitive determination of hydroquinone in four types of actual water samples. J Anal Test. 2022;6(4):382–92.

    Article  Google Scholar 

  123. Wang Q, Wang Q, Li M, Szunerits S, Boukherroub R. Preparation of reduced graphene oxide/Cu nanoparticle composites through electrophoretic deposition: application for nonenzymatic glucose sensing. RSC Adv. 2015;5(21):15861–9.

    Article  CAS  Google Scholar 

  124. Chen H, Mei Z, Qi K, Wang Y, Chen R. A wearable enzyme-free glucose sensor based on nickel nanoparticles decorated laser-induced graphene. J Electroanal Chem. 2022;920: 116585.

    Article  CAS  Google Scholar 

  125. Archana V, Xia Y, Fang R, Gnana Kumar G. Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors. ACS Sustain Chem Eng. 2019;7(7):6707–19.

    Article  CAS  Google Scholar 

  126. Lu W, Zhang R, Zhang X, Shi Y, Wang Y, Shi H. Synthesis of uniformly dispersed Fe2TiO5 nanodisks: a sensitive photoelectrochemical sensor for glucose monitoring in human blood serum. Analyst. 2023;148(21):5469–75.

    Article  CAS  PubMed  Google Scholar 

  127. Bao C, Niu Q, Cao X, Liu C, Wang H, Lu W. Ni-fe hybrid nanocubes: an efficient electrocatalyst for non-enzymatic glucose sensing with a wide detection range. New J Chem. 2019;43:11135–40.

    Article  CAS  Google Scholar 

  128. Wang J, Gao H, Sun F, Xu C. Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sens Actuat B. 2014;191:612–8.

    Article  CAS  Google Scholar 

Download references

Funding

No specific grant was given to this study by any funding organization in the public, private, or non-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: study conceptualization, data collection, prepared figures, interpretation, and writing of original drafts: KS. Analysis, writing, and interpretation of results KKM. And, project administration, resource, and supervision: MM. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Manisha Malviya.

Ethics declarations

Conflict of Interest

The authors declared there are no competing interests.

Ethical Approval

Not applicable.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Maurya, K.K. & Malviya, M. Review of Electrochemical Sensors and Biosensors Based on First-Row Transition Metals, Their Oxides, and Noble Metals Nanoparticles. J. Anal. Test. 8, 143–159 (2024). https://doi.org/10.1007/s41664-023-00292-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00292-w

Keywords

Navigation