Skip to main content
Log in

Highly selective and efficient electrochemical sensing of ascorbic acid via CuO/rGO nanocomposites deposited on conductive fabric

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A nanocomposite of CuO/rGO was prepared by a simple liquid approach. After characterization by XRD, SEM, EDS and FTIR, a facile and inexpensive route has been developed to determine ascorbic acid by modifying the surface of conductive fabric with CuO/rGO through electrochemical deposition. The synergistic effect, arising from combining the unique properties of Gr with the intriguing properties of CuO, shows highly electrocatalytic activity towards the oxidation of ascorbic acid. The electrochemical sensor showed a wide linear response in the concentration range from 500 to 2000 µM with 189.053 µM detection limit. It also exhibited good stability, reproducibility and specificity. The sensor was compared to a range of other available ascorbate sensors and found to be comparable or superior in terms of analytical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings will be available on the reasonable request.

References

  1. M.R. Ganjali, F.G. Nejad, H. Beitollahi, S. Jahani, M. Rezapour, B. Larijani, Highly sensitive voltammetric sensor for determination of ascorbic acid using graphite screen printed electrode modified with ZnO/Al2O3 nanocomposite. Int. J. Electrochem. Sci. 12, 3231–3240 (2017)

    Article  Google Scholar 

  2. H. Lee, C. Song, Y.S. Hong, M.S. Kim, H.R. Cho, T. Kang, K. Shin, S.H. Choi, T. Hyeon, D.H. Kim, Wearable/disposable sweat-based glucose monitoring device with multistage transdermal drug delivery module. Sci. Adv. 3(3), e1601314 (2017)

    Article  ADS  Google Scholar 

  3. Y.M. Tang, D.G. Wang, J. Li, X.H. Li, Q. Wang, N. Liu, W.T. Liu, Y.X. Li, Relationships between micronutrient losses in sweat and blood pressure among heat-exposed steelworkers. Ind. Health. 54(3), 2014–0225 (2016)

    Article  Google Scholar 

  4. L.A. Tortajada-Genaro, Determination of L-ascorbic acid in tomato by capillary electrophoresis. J. Chem. Educ. 89(9), 1194–1197 (2012)

    Article  Google Scholar 

  5. L. Nováková, P. Solich, D. Solichová, HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. TrAC Trends Anal. Chem. 27(10), 942–958 (2008)

    Article  Google Scholar 

  6. Y.L. Chang, M. Rossetti, H. Vlamakis, D. Casero, G. Sunga, N. Harre, S. Miller, R. Humphries, T. Stappenbeck, K.W. Simpson, R.B. Sartor, A screen of crohn’s disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunol. 12(2), 457–467 (2019)

    Article  Google Scholar 

  7. A. Kamišalić, I. Fister, M. Turkanović, S. Karakatič, Sensors and functionalities of non-invasive wrist-wearable devices: a review. Sensors 18(6), 1714 (2018)

    Article  ADS  Google Scholar 

  8. B. Ibarlucea, X. Munoz-Berbel, P. Ortiz, S. Büttgenbach, C. Fernández-Sánchez, A. Llobera, Self-validating lab-on-a-chip for monitoring enzyme-catalyzed biological reactions. Sens. Actuators B Chem. 237, 16–23 (2016)

    Article  Google Scholar 

  9. J. Gupta, S. Arya, S. Verma, A. Singh, A. Sharma, B. Singh, R. Sharma, Performance of template-assisted electrodeposited copper/cobalt bilayered nanowires as an efficient glucose and uric acid senor. Mater. Chem. Phys. 238, 121969 (2019)

    Article  Google Scholar 

  10. A. Singh, A. Sharma, A. Ahmed, A.K. Sundramoorthy, H. Furukawa, S. Arya, A. Khosla, Recent advances in electrochemical biosensors: applications, challenges, and future scope. Biosensors 11(9), 336 (2021)

    Article  Google Scholar 

  11. A. Koh, D. Kang, Y. Xue, S. Lee, R.M. Pielak, J. Kim, T. Hwang, S. Min, A. Banks, P. Bastien, M.C. Manco, A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci. Transl. Med. 8(366), 366ra165-366ra165 (2016)

    Article  Google Scholar 

  12. W. Jia, A.J. Bandodkar, G. Valdés-Ramírez, J.R. Windmiller, Z. Yang, J. Ramírez, G. Chan, J. Wang, Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration. Anal. Chem. 85(14), 6553–6560 (2013)

    Article  Google Scholar 

  13. M.L. Zamora, J.M. Domínguez, R.M. Trujillo, C.B. Goy, M.A. Sanchez, R.E. Madrid, Potentiometric textile-based pH sensor. Sens. Actuators B Chem. 260, 601–608 (2018)

    Article  Google Scholar 

  14. A. Márquez, C. Jiménez-Jorquera, C. Domínguez, X. Muñoz-Berbel, Electrodepositable alginate membranes for enzymatic sensors: an amperometric glucose biosensor for whole blood analysis. Biosens. Bioelectron. 97, 136–142 (2017)

    Article  Google Scholar 

  15. L.R. Stromberg, J.A. Hondred, D. Sanborn, D. Mendivelso-Perez, S. Ramesh, I.V. Rivero, J. Kogot, E. Smith, C. Gomes, J.C. Claussen, Stamped multilayer graphene laminates for disposable in-field electrodes: application to electrochemical sensing of hydrogen peroxide and glucose. Microchim. Acta 186(8), 1–13 (2019)

    Article  Google Scholar 

  16. S.Y. Oh, S.Y. Hong, Y.R. Jeong, J. Yun, H. Park, S.W. Jin, G. Lee, J.H. Oh, H. Lee, S.S. Lee, J.S. Ha, Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces. 10(16), 13729–13740 (2018)

    Article  Google Scholar 

  17. J.R. Sempionatto, A.A. Khorshed, A. Ahmed, A.N. De Loyola e Silva, A. Barfidokht, L. Yin, K.Y. Goud, M.A. Mohamed, E. Bailey, J. May, C. Aebischer, Epidermal enzymatic biosensors for sweat vitamin C: toward personalized nutrition. ACS Sens. 5(6), 1804–1813 (2020)

    Article  Google Scholar 

  18. G. Amala, S.M. Gowtham, Recent advancements, key challenges and solutions in non-enzymatic electrochemical glucose sensors based on graphene platforms. RSC Adv. 7(59), 36949–36976 (2017)

    Article  ADS  Google Scholar 

  19. X. Zhang, Y. Cao, S. Yu, F. Yang, P. Xi, An electrochemical biosensor for ascorbic acid based on carbon-supported PdNinanoparticles. Biosens. Bioelectron. 44, 183–190 (2013)

    Article  Google Scholar 

  20. Y. Zhao, J. Qin, H. Xu, S. Gao, T. Jiang, S. Zhang, J. Jin, Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid. Microchim. Acta 186(1), 1–10 (2019)

    Article  ADS  Google Scholar 

  21. A. Savk, B. Özdil, B. Demirkan, M.S. Nas, M.H. Calimli, M.H. Alma, A.M. Asiri, F. Şen, Multiwalled carbon nanotube-based nanosensor for ultrasensitive detection of uric acid, dopamine, and ascorbic acid. Mater. Sci. Eng. C 99, 248–254 (2019)

    Article  Google Scholar 

  22. F.A. Harraz, M. Faisal, A.A. Ismail, S.A. Al-Sayari, A.E. Al-Salami, A. Al-Hajry, M.S. Al-Assiri, TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor. J. Electroanal. Chem. 832, 225–232 (2019)

    Article  Google Scholar 

  23. S. Krishnan, L. Tong, S. Liu, R. Xing, A mesoporous silver-doped TiO2–SnO2 nanocomposite on gC3N4 nanosheets and decorated with a hierarchical core−shell metal-organic framework for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim. Acta 187(1), 1–9 (2020)

    Article  Google Scholar 

  24. H. Huang, Y. Yue, Z. Chen, Y. Chen, S. Wu, J. Liao, S. Liu, H.R. Wen, Electrochemical sensor based on a nanocomposite prepared from TmPO4 and graphene oxide for simultaneous voltammetric detection of ascorbic acid, dopamine and uric acid. Microchim. Acta 186(3), 1–9 (2019)

    Article  ADS  Google Scholar 

  25. M. Asif, A. Aziz, H. Wang, Z. Wang, W. Wang, M. Ajmal, F. Xiao, X. Chen, H. Liu, Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Microchim. Acta 186(2), 61 (2019)

    Article  Google Scholar 

  26. Y. Zhao, J. Zhou, Z. Jia, D. Huo, Q. Liu, D. Zhong, Y. Hu, M. Yang, M. Bian, C. Hou, In-situ growth of gold nanoparticles on a 3D-network consisting of a MoS2/rGO nanocomposite for simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim. Acta 186(2), 1–10 (2019)

    Article  ADS  Google Scholar 

  27. W. Liang, Y. Rong, L. Fan, C. Zhang, W. Dong, J. Li, J. Niu, C. Yang, S. Shuang, C. Dong, W.Y. Wong, Simultaneous electrochemical sensing of serotonin, dopamine and ascorbic acid by using a nanocomposite prepared from reduced graphene oxide, Fe3O4 and hydroxypropyl-β-cyclodextrin. Microchim. Acta 186(12), 1–9 (2019)

    Article  ADS  Google Scholar 

  28. J.M. George, A. Antony, B. Mathew, Metal oxide nanoparticles in electrochemical sensing and biosensing: a review. Microchim. Acta 185(7), 1–26 (2018)

    Article  Google Scholar 

  29. X. Cheng, X. Zhang, H. Yin, A. Wang, Y. Xu, Modifier effects on chemical reduction synthesis of nanostructured copper. Appl. Surf. Sci. 253(5), 2727–2732 (2006)

    Article  ADS  Google Scholar 

  30. Q. You, T. Liu, J. Pang, D. Jiang, Z. Chu, W. Jin, In situ fabrication of CuO nanowire film for high-sensitive ascorbic acid recognition. Sens. Actuators B Chem. 296, 126617 (2019)

    Article  Google Scholar 

  31. O. Akhavan, E. Ghaderi, R. Rahighi, Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 6(4), 2904–2916 (2012)

    Article  Google Scholar 

  32. H. Bagheri, A. Afkhami, Y. Panahi, H. Khoshsafar, A. Shirzadmehr, Facile stripping voltammetric determination of haloperidol using a high performance magnetite/carbon nanotube paste electrode in pharmaceutical and biological samples. Mater. Sci. Eng. C 37, 264–270 (2014)

    Article  Google Scholar 

  33. O. Akhavan, Bacteriorhodopsin as a superior substitute for hydrazine in chemical reduction of single-layer graphene oxide sheets. Carbon 81, 158–166 (2015)

    Article  Google Scholar 

  34. S. Pruneanu, F. Pogacean, A.R. Biris, M. Coros, F. Watanabe, E. Dervishi, A.S. Biris, Electro-catalytic properties of graphene composites containing gold or silver nanoparticles. Electrochim. Acta 89, 246–252 (2013)

    Article  Google Scholar 

  35. A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor. Electrochim. Acta 88, 347–357 (2013)

    Article  Google Scholar 

  36. J. Hu, C. Zou, Y. Su, M. Li, Y. Han, E.S.W. Kong, Z. Yang, Y. Zhang, An ultrasensitive NO2 gas sensor based on a hierarchical Cu2 O/CuO mesocrystal nanoflower. J. Mater. Chem. A 6(35), 17120–17131 (2018)

    Article  Google Scholar 

  37. O. Akhavan, E. Ghaderi, Cu and CuO nanoparticles immobilized by silica thin films as antibacterial materials and photocatalysts. Surf. Coat. Technol. 205(1), 219–223 (2010)

    Article  Google Scholar 

  38. G.S. Jamila, S. Sajjad, S.A.K. Leghari, T. Mahmood, Role of nitrogen doped carbon quantum dots on CuO nano-leaves as solar induced photo catalyst. J. Phys. Chem. Solids 138, 109233 (2020)

    Article  Google Scholar 

  39. R. Shabu, A.M.E. Raj, C. Sanjeeviraja, C. Ravidhas, Assessment of CuO thin films for its suitablity as window absorbing layer in solar cell fabrications. Mater. Res. Bull. 68, 1–8 (2015)

    Article  Google Scholar 

  40. L. He, J. Liu, L. Yang, Y. Song, M. Wang, D. Peng, Z. Zhang, S. Fang, Copper metal–organic framework-derived CuOx-coated three-dimensional reduced graphene oxide and polyaniline composite: excellent candidate free-standing electrodes for high-performance supercapacitors. Electrochim. Acta 275, 133–144 (2018)

    Article  Google Scholar 

  41. M. Jannesari, O. Akhavan, H.R. Madaah Hosseini, B. Bakhshi, Graphene/CuO2 nanoshuttles with controllable release of oxygen nanobubbles promoting interruption of bacterial respiration. ACS Appl. Mater. Interfaces 12(32), 35813–35825 (2020)

    Article  Google Scholar 

  42. O. Akhavan, H. Tohidi, A.Z. Moshfegh, Synthesis and electrochromic study of sol–gel cuprous oxide nanoparticles accumulated on silica thin film. Thin Solid Films 517(24), 6700–6706 (2009)

    Article  ADS  Google Scholar 

  43. M.M. Sivalingam, J.A. Olmos-Asar, E. Vinoth, T. Tharmar, M. Shkir, Z. Said, K. Balasubramanian, Copper oxide nanorod/reduced graphene oxide composites for NH3 sensing. ACS Appl. Nano Mater. 4(12), 12977–12985 (2021)

    Article  Google Scholar 

  44. A. Gupta, R. Jamatia, R.A. Patil, Y.R. Ma, A.K. Pal, Copper oxide/reduced graphene oxide nanocomposite-catalyzed synthesis of flavanones and flavanones with triazole hybrid molecules in one pot: a green and sustainable approach. ACS Omega 3(7), 7288–7299 (2018)

    Article  Google Scholar 

  45. L. Luo, L. Zhu, Z. Wang, Nonenzymatic amperometric determination of glucose by CuO nanocubes–graphene nanocomposite modified electrode. Bioelectrochemistry 88, 156–163 (2012)

    Article  Google Scholar 

  46. W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)

    Article  Google Scholar 

  47. C. Sun, J. Sun, G. Xiao, H. Zhang, X. Qiu, H. Li, L. Chen, Mesoscale organization of nearly monodisperse flowerlike ceria microspheres. J. Phys. Chem. B 110(27), 13445–13452 (2006)

    Article  Google Scholar 

  48. S.F. Zheng, J.S. Hu, L.S. Zhong, W.G. Song, L.J. Wan, Y.G. Guo, Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chem. Mater. 20(11), 3617–3622 (2008)

    Article  Google Scholar 

  49. F.T. Thema, M.J. Moloto, E.D. Dikio, N.N. Nyangiwe, L. Kotsedi, M. Maaza, M. Khenfouch, Synthesis and characterization of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide. J. Chem. 2013, 150536 (2013)

    Article  Google Scholar 

  50. A. Singh, S. Arya, M. Khanuja, A.K. Hafiz, R. Datt, V. Gupta, A. Khosla, Eu doped NaYF4@Er:TiO2 nanoparticles for tunable ultraviolet light based anti-counterfeiting applications. Microsyst. Technol. 28, 295–304 (2022)

    Article  Google Scholar 

  51. B. Zhao, P. Liu, H. Zhuang, Z. Jiao, T. Fang, W. Xu, B. Lu, Y. Jiang, Hierarchical self-assembly of microscale leaf-like CuO on graphene sheets for high-performance electrochemical capacitors. J. Mater. Chem. A 1(2), 367–373 (2013)

    Article  Google Scholar 

  52. M.S. Alhumaimess, I.H. Alsohaimi, H.M. Alshammari, O.F. Aldosari, H.M. Hassan, Synthesis of gold and palladium nanoparticles supported on CuO/rGO using imidazolium ionic liquid for CO oxidation. Res. Chem. Intermed. 46(12), 5499–5516 (2020)

    Article  Google Scholar 

  53. S. Alehashem, F. Chambers, J.W. Strojek, G.M. Swain, R. Ramesham, Cyclic voltammetric studies of charge transfer reactions at highly boron-doped polycrystalline diamond thin-film electrodes. Anal. Chem. 67(17), 2812–2821 (1995)

    Article  Google Scholar 

  54. S. Bilal, A. Akbar, A.U.H.A. Shah, Highly selective and reproducible electrochemical sensing of ascorbic acid through a conductive polymer coated electrode. Polymers 11(8), 1346 (2019)

    Article  Google Scholar 

  55. S. Liu, X. Jiang, M. Yang, Electrochemical sensing of L-ascorbic acid by using a glassy carbon electrode modified with a molybdophosphate film. Microchim. Acta 186(7), 1–7 (2019)

    Article  ADS  Google Scholar 

  56. J.M.M. Droog, C.A. Alderliesten, P.T. Alderliesten, G.A. Bootsma, Initial stages of anodic oxidation of polycrystalline copper electrodes in alkaline solution. J. Electroanal. Chem. Interfacial Electrochem. 111, 61–70 (1980)

    Article  Google Scholar 

  57. O. Akhavan, E. Ghaderi, Copper oxide nanoflakes as highly sensitive and fast response self-sterilizing biosensors. J. Mater. Chem. 21(34), 12935–12940 (2011)

    Article  Google Scholar 

  58. A. Sharma, S. Arya, D. Chauhan, P.R. Solanki, S. Khajuria, A. Khosla, Synthesis of Au–SnO2 nanoparticles for electrochemical determination of vitamin B12. J. Mater. Res. Technol. 9(6), 14321–14337 (2020)

    Article  Google Scholar 

  59. M. Zhu, C. Zeng, J. Ye, Graphene-modified carbon fiber microelectrode for the detection of dopamine in mice hippocampus tissue. Electroanalysis 23(4), 907–914 (2011)

    Article  Google Scholar 

  60. S. Thiagarajan, S.M. Chen, Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 74(2), 212–222 (2007)

    Article  Google Scholar 

  61. L. Tan, K.G. Zhou, Y.H. Zhang, H.X. Wang, X.D. Wang, Y.F. Guo, H.L. Zhang, Nanomolar detection of dopamine in the presence of ascorbic acid at β-cyclodextrin/graphene nanocomposite platform. Electrochem. Commun. 12(4), 557–560 (2010)

    Article  Google Scholar 

  62. C.F. Tang, S.A. Kumar, S.M. Chen, Zinc oxide/redox mediator composite films-based sensor for electrochemical detection of important biomolecules. Anal. Biochem. 380(2), 174–183 (2008)

    Article  Google Scholar 

  63. Y. Wang, Y. Li, L. Tang, J. Lu, J. Li, Application of graphene-modified electrode for selective detection of dopamine. Electrochem. Commun. 11(4), 889–892 (2009)

    Article  Google Scholar 

  64. M. Li, W. Guo, H. Li, W. Dai, B. Yang, Electrochemical biosensor based on one-dimensional MgO nanostructures for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Sens. Actuators, B Chem. 204, 629–636 (2014)

    Article  Google Scholar 

  65. Z. Zhuang, J. Li, R. Xu, D. Xiao, Electrochemical detection of dopamine in the presence of ascorbic acid using overoxidized polypyrrole/graphene modified electrodes. Int. J. Electrochem. Sci. 6(6), 2149–2161 (2011)

    Google Scholar 

  66. W. Ren, H.Q. Luo, N.B. Li, Simultaneous voltammetric measurement of ascorbic acid, epinephrine and uric acid at a glassy carbon electrode modified with caffeic acid. Biosens. Bioelectron. 21(7), 1086–1092 (2006)

    Article  Google Scholar 

  67. H. Cheng, X. Wang, H. Wei, Ratiometric electrochemical sensor for effective and reliable detection of ascorbic acid in living brains. Anal. Chem. 87(17), 8889–8895 (2015)

    Article  Google Scholar 

  68. F. Wantz, C.E. Banks, R.G. Compton, Direct oxidation of ascorbic acid at an edge plane pyrolytic graphite electrode: a comparison of the electroanalytical response with other carbon electrodes. Electroanal. Int. J. Devoted Fundam. Pract Asp. Electroanal. 17(17), 1529–1533 (2005)

    Google Scholar 

Download references

Acknowledgements

The principal author is grateful to the CSIR, New Delhi, India, for financial support (JRF (CSIR) Fellowship, 09/100(0246)/2020-EMR-I)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Arya.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Sharma, A., Ahmed, A. et al. Highly selective and efficient electrochemical sensing of ascorbic acid via CuO/rGO nanocomposites deposited on conductive fabric. Appl. Phys. A 128, 262 (2022). https://doi.org/10.1007/s00339-022-05436-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05436-w

Keywords

Navigation