Skip to main content

Advertisement

Log in

Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The green synthesis of nanoparticles (NPs) using living cells is a promising and novelty tool in bionanotechnology. Chemical and physical methods are used to synthesize NPs; however, biological methods are preferred due to its eco-friendly, clean, safe, cost-effective, easy, and effective sources for high productivity and purity. High pressure or temperature is not required for the green synthesis of NPs, and the use of toxic and hazardous substances and the addition of external reducing, stabilizing, or capping agents are avoided. Intra- or extracellular biosynthesis of NPs can be achieved by numerous biological entities including bacteria, fungi, yeast, algae, actinomycetes, and plant extracts. Recently, numerous methods are used to increase the productivity of nanoparticles with variable size, shape, and stability. The different mechanical, optical, magnetic, and chemical properties of NPs have been related to their shape, size, surface charge, and surface area. Detection and characterization of biosynthesized NPs are conducted using different techniques such as UV–vis spectroscopy, FT-IR, TEM, SEM, AFM, DLS, XRD, zeta potential analyses, etc. NPs synthesized by the green approach can be incorporated into different biotechnological fields as antimicrobial, antitumor, and antioxidant agents; as a control for phytopathogens; and as bioremediative factors, and they are also used in the food and textile industries, in smart agriculture, and in wastewater treatment. This review will address biological entities that can be used for the green synthesis of NPs and their prospects for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

Abbreviations

NPs:

nanoparticles

FT-IR:

Fourier transformation infrared spectroscopy

TEM:

transmission electron microscopy

SEM:

scanning electron microscopy

AFM:

atomic force microscope

DLS:

dynamic light scattering

XRD:

powder X-ray diffraction

EDX:

energy-dispersive spectroscopy

SPR:

surface plasmon resonance

XPS:

X-ray photoelectron spectroscopy

Ag-NPs:

silver nanoparticles

Cu-NPs:

copper nanoparticles

CuO-NPs:

copper oxide nanoparticles

Cu2S-NPs:

chalcocite nanoparticles

ZnO-NPs:

zinc oxide nanoparticles

ZnS-NPs:

zinc sulfide nanoparticles

Au-NPs:

gold nanoparticles

Pt-NPs:

platinum nanoparticles

Pd-NPs:

palladium nanoparticles

Si-NPs:

silicon nanoparticles

Ni-NPs:

nickel nanoparticles

FeO-NPs:

iron oxide nanoparticles

MgO-NPs:

magnesium oxide nanoparticles

TiO2-NPs:

titanium dioxide nanoparticles

ZrO2-NPs:

zirconium oxide nanoparticles

TeO3-NPs:

tellurium oxide nanoparticles

SeO3-NPs:

selenite nanoparticles

Cd-NPs:

cadmium nanoparticles

CdS-NPs:

cadmium sulfide

Te-NPs:

tellurium nanoparticles

Co3O4-NPs:

cobalt oxide nanoparticles

Se-NPs:

selenium nanoparticles

PbS-NPs:

lead sulfide nanoparticles

MoS-NPs:

molybdenum sulfide nanoparticles

Al2O3-NPs:

aluminum oxide nanoparticles

CoO-NPs:

cobalt oxide nanoparticles

CdTe-NPs:

cadmium telluride nanoparticles

SiO2-NPs:

silicon dioxide nanoparticles

BaTiO3-NPs:

barium titanium oxide nanoparticles

Mn-NPs:

manganese nanoparticles

MRSA:

methicillin-resistant Staphylococcus aureus

LSP:

lipopolysaccharides

References

  1. Elfeky AS, Salem SS, Elzaref AS, Owda ME, Eladawy HA, Saeed AM, Awad MA, Abou-Zeid RE, Fouda A (2020) Multifunctional cellulose nanocrystal/metal oxide hybrid, photo-degradation, antibacterial and larvicidal activities. Carbohydr Polym 230:115711. https://doi.org/10.1016/j.carbpol.2019.115711

    Article  CAS  PubMed  Google Scholar 

  2. Dulinska-Molak I, Chlanda A, Li J, Wang X, Bystrzejewski M, Kawazoe N, Chen G, Swieszkowski W (2018) The influence of carbon-encapsulated iron nanoparticles on elastic modulus of living human mesenchymal stem cells examined by atomic force microscopy. Micron 108:41–48. https://doi.org/10.1016/j.micron.2018.02.006

    Article  CAS  PubMed  Google Scholar 

  3. Sharaf OM, Al-Gamal MS, Ibrahim GA, Dabiza NM, Salem SS, El-ssayad MF, Youssef AM (2019) Evaluation and characterization of some protective culture metabolites in free and nano-chitosan-loaded forms against common contaminants of Egyptian cheese. Carbohydr Polym 223:115094. https://doi.org/10.1016/j.carbpol.2019.115094

    Article  CAS  PubMed  Google Scholar 

  4. Hassan SE-D, Fouda A, Radwan AA, Salem SS, Barghoth MG, Awad MA, Abdo AM, El-Gamal MS (2019) Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications. JBIC J Biol Inorg Chem 24(3):377–393

    CAS  PubMed  Google Scholar 

  5. Mohamed AA, Fouda A, Abdel-Rahman MA, Hassan SE-D, El-Gamal MS, Salem SS, Shaheen TI (2019) Fungal strain impacts the shape, bioactivity and multifunctional properties of green synthesized zinc oxide nanoparticles. Biocatal Agric Biotechnol 19:101103

    Google Scholar 

  6. Fouda A, Abdel-Maksoud G, Abdel-Rahman MA, Salem SS, Hassan SE-D, El-Sadany MA-H (2019) Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. Int Biodeterior Biodegradation 142:160–169

    CAS  Google Scholar 

  7. Shaheen TI, Fouda A (2018) Green approach for one-pot synthesis of silver nanorod using cellulose nanocrystal and their cytotoxicity and antibacterial assessment. Int J Biol Macromol 106:784–792. https://doi.org/10.1016/j.ijbiomac.2017.08.070

    Article  CAS  PubMed  Google Scholar 

  8. Fouda A, Saad E, Salem SS, Shaheen TI (2018) In-vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized zinc oxide nanoparticles for medical textile applications. Microb Pathog 125:252–261

    CAS  PubMed  Google Scholar 

  9. Tomar RS, Chauhan PS, Shrivastava V (2014) A critical review on nanoparticle synthesis: physicochemical v/s biological approach. World J Pharm Res 4(1):595–620

    Google Scholar 

  10. Vidhu VK, Philip D (2014) Catalytic degradation of organic dyes using biosynthesized silver nanoparticles. Micron 56:54–62. https://doi.org/10.1016/j.micron.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  11. Kotil T, Akbulut C, Yön ND (2017) The effects of titanium dioxide nanoparticles on ultrastructure of zebrafish testis (Danio rerio). Micron 100:38–44. https://doi.org/10.1016/j.micron.2017.04.006

    Article  CAS  PubMed  Google Scholar 

  12. Hashmi ASK, Rudolph M (2008) Gold catalysis in total synthesis. Chem Soc Rev 37(9):1766–1775

    CAS  PubMed  Google Scholar 

  13. Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy

  14. Guo T, Lin M, Huang J, Zhou C, Tian W, Yu H, Jiang X, Ye J, Shi Y, Xiao Y (2018) The recent advances of magnetic nanoparticles in medicine. J Nanomater 2018

  15. Wells J, Kazakova O, Posth O, Steinhoff U, Petronis S, Bogart LK, Southern P, Pankhurst Q, Johansson C (2017) Standardisation of magnetic nanoparticles in liquid suspension. J Phys D Appl Phys 50(38):383003

    Google Scholar 

  16. Usman AI, Aziz AA, Noqta OA (2019) Green sonochemical synthesis of gold nanoparticles using palm oil leaves extracts. Mater Today Proc 7:803–807

    CAS  Google Scholar 

  17. Gawande MB, Goswami A, Asefa T, Guo H, Biradar AV, Peng D-L, Zboril R, Varma RS (2015) Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem Soc Rev 44(21):7540–7590

    CAS  PubMed  Google Scholar 

  18. Ulbrich K, Hola K, Subr V, Bakandritsos A, Tucek J, Zboril R (2016) Targeted drug delivery with polymers and magnetic nanoparticles: covalent and noncovalent approaches, release control, and clinical studies. Chem Rev 116(9):5338–5431

    CAS  PubMed  Google Scholar 

  19. Fouda A, Hassan SE-D, Abdo AM, El-Gamal MS (2019) Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by endophytic Streptomyces spp. Biol Trace Elem Res. https://doi.org/10.1007/s12011-019-01883-4

  20. Hassan SELD, Salem SS, Fouda A, Awad MA, El-Gamal MS, Abdo AM (2018) New approach for antimicrobial activity and bio-control of various pathogens by biosynthesized copper nanoparticles using endophytic actinomycetes. J Radiat Res Appl Sci 11(3):262–270. https://doi.org/10.1016/j.jrras.2018.05.003

    Article  CAS  Google Scholar 

  21. Keijok WJ, Pereira RHA, Alvarez LAC, Prado AR, da Silva AR, Ribeiro J, de Oliveira JP, Guimarães MCC (2019) Controlled biosynthesis of gold nanoparticles with Coffea arabica using factorial design. Sci Rep 9(1):1–10

    CAS  Google Scholar 

  22. Kumar PV, Kala SMJ (2018) Green synthesis, characterisation and biological activity of platinum nanoparticle using Croton caudatus Geisel leaf extract

  23. Molaei R, Farhadi K, Forough M, Hajizadeh S (2018) Green biological fabrication and characterization of highly monodisperse palladium nanoparticles using Pistacia atlantica fruit broth. J Nanostruct 8(1):47–54

    Google Scholar 

  24. Liong M, Lu J, Tamanoi F, Zink JI, Nel A (2018) Mesoporous silica nanoparticles for biomedical applications. Google Patents

  25. Woodard A, Xu L, Barragan AA, Nava G, Wong BM, Mangolini L (2018) On the non-thermal plasma synthesis of nickel nanoparticles. Plasma Process Polym 15(1):1700104

    Google Scholar 

  26. Muthukumar H, Mohammed SN, Chandrasekaran N, Sekar AD, Pugazhendhi A, Matheswaran M (2019) Effect of iron doped zinc oxide nanoparticles coating in the anode on current generation in microbial electrochemical cells. Int J Hydrog Energy 44(4):2407–2416

    CAS  Google Scholar 

  27. Goutam SP, Saxena G, Singh V, Yadav AK, Bharagava RN, Thapa KB (2018) Green synthesis of TiO2 nanoparticles using leaf extract of Jatropha curcas L. for photocatalytic degradation of tannery wastewater. Chem Eng J 336:386–396

    CAS  Google Scholar 

  28. Fathima JB, Pugazhendhi A, Venis R (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 110:245–251

    CAS  PubMed  Google Scholar 

  29. Ahmad S, Munir S, Zeb N, Ullah A, Khan B, Ali J, Bilal M, Omer M, Alamzeb M, Salman SM (2019) Green nanotechnology: a review on green synthesis of silver nanoparticles—an ecofriendly approach. Int J Nanomedicine 14:5087

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37(9):1783–1791

    CAS  PubMed  Google Scholar 

  31. Chen Y, Pepin A (2001) Nanofabrication: conventional and nonconventional methods. Electrophoresis 22(2):187–207

    CAS  PubMed  Google Scholar 

  32. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    CAS  PubMed  Google Scholar 

  33. Sotiropoulou S, Sierra-Sastre Y, Mark SS, Batt CA (2008) Biotemplated nanostructured materials. Chem Mater 20(3):821–834

    CAS  Google Scholar 

  34. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Papp S, Patakfalvi R, Dekany I (2007) Formation and stabilization of noble metal nanoparticles. Croat Chem Acta 80(3–4):493–502

    CAS  Google Scholar 

  36. Wani IA, Khatoon S, Ganguly A, Ahmed J, Ganguli AK, Ahmad T (2010) Silver nanoparticles: large scale solvothermal synthesis and optical properties. Mater Res Bull 45(8):1033–1038

    CAS  Google Scholar 

  37. Dar MI, Chandiran AK, Grätzel M, Nazeeruddin MK, Shivashankar SA (2014) Controlled synthesis of TiO2 nanoparticles and nanospheres using a microwave assisted approach for their application in dye-sensitized solar cells. J Mater Chem A 2(6):1662–1667

    CAS  Google Scholar 

  38. Asanithi P, Chaiyakun S, Limsuwan P (2012) Growth of silver nanoparticles by DC magnetron sputtering. J Nanomater 2012:79

    Google Scholar 

  39. Phuoc TX (2014) Complete green synthesis of gold nanoparticles using laser ablation in deionized water containing chitosan and starch. J Mater Sci Nanotechnol 2(2):1–7

    Google Scholar 

  40. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. ACS Publications

  41. Boroumand Moghaddam A, Namvar F, Moniri M, Azizi S, Mohamad R (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565

    PubMed  PubMed Central  Google Scholar 

  42. Fouda A, Mohamed A, Elgamal MS, EL-Din Hassan S, Salem Salem S, Shaheen TI (2017) Facile approach towards medical textiles via myco-synthesis of silver nanoparticles. Pharma Chem 9

  43. Gade A, Gaikwad S, Duran N, Rai M (2014) Green synthesis of silver nanoparticles by Phoma glomerata. Micron 59:52–59. https://doi.org/10.1016/j.micron.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  44. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156(1–2):1–13

    CAS  Google Scholar 

  45. Mohmed AA, Saad E, Fouda A, Elgamal MS, Salem SS (2017) Extracellular biosynthesis of silver nanoparticles using Aspergillus sp. and evaluation of their antibacterial and cytotoxicity. J Appl Life Sci Int 11(2):1–12

    Google Scholar 

  46. Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32

    Google Scholar 

  47. Makarov V, Love A, Sinitsyna O, Makarova S, Yaminsky I, Taliansky M, Kalinina N (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (англоязычная версия) 6 (1 (20))

  48. Banu AN, Balasubramanian C (2014) Optimization and synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res 113(10):3843–3851

    PubMed  Google Scholar 

  49. John MS, Nagoth JA, Ramasamy KP, Mancini A, Giuli G, Natalello A, Ballarini P, Miceli C, Pucciarelli S (2020) Synthesis of bioactive silver nanoparticles by a Pseudomonas strain associated with the Antarctic psychrophilic protozoon Euplotes focardii. Mar Drugs 18(1):38

    CAS  PubMed Central  Google Scholar 

  50. Khan R, Fulekar M (2016) Biosynthesis of titanium dioxide nanoparticles using Bacillus amyloliquefaciens culture and enhancement of its photocatalytic activity for the degradation of a sulfonated textile dye Reactive Red 31. J Colloid Interface Sci 475:184–191

    CAS  PubMed  Google Scholar 

  51. Srinath B, Namratha K, Byrappa K (2018) Eco-friendly synthesis of gold nanoparticles by Bacillus subtilis and their environmental applications. Adv Sci Lett 24(8):5942–5946

    Google Scholar 

  52. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559

    CAS  PubMed  Google Scholar 

  53. Iqtedar M, Aslam M, Akhyar M, Shehzaad A, Abdullah R, Kaleem A (2019) Extracellular biosynthesis, characterization, optimization of silver nanoparticles (AgNPs) using Bacillus mojavensis BTCB15 and its antimicrobial activity against multidrug resistant pathogens. Prep Biochem Biotechnol 49(2):136–142

    CAS  PubMed  Google Scholar 

  54. Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G (2008) Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29):4411–4413

    CAS  Google Scholar 

  55. Thomas R, Janardhanan A, Varghese RT, Soniya E, Mathew J, Radhakrishnan E (2014) Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp. Braz J Microbiol 45(4):1221–1227

    CAS  PubMed  Google Scholar 

  56. Elbeshehy EK, Elazzazy AM, Aggelis G (2015) Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Front Microbiol 6:453

  57. Monowar T, Rahman M, Bhore SJ, Raju G, Sathasivam KV (2018) Silver nanoparticles synthesized by using the endophytic bacterium Pantoea ananatis are promising antimicrobial agents against multidrug resistant bacteria. Molecules 23(12):3220

    PubMed Central  Google Scholar 

  58. Saravanan M, Barik SK, MubarakAli D, Prakash P, Pugazhendhi A (2018) Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog 116:221–226

    CAS  PubMed  Google Scholar 

  59. Wypij M, Golinska P, Dahm H, Rai M (2016) Actinobacterial-mediated synthesis of silver nanoparticles and their activity against pathogenic bacteria. IET Nanobiotechnol 11(3):336–342

    PubMed Central  Google Scholar 

  60. Manikprabhu D, Cheng J, Chen W, Sunkara AK, Mane SB, Kumar R, Hozzein WN, Duan Y-Q, Li W-J (2016) Sunlight mediated synthesis of silver nanoparticles by a novel actinobacterium (Sinomonas mesophila MPKL 26) and its antimicrobial activity against multi drug resistant Staphylococcus aureus. J Photochem Photobiol B Biol 158:202–205

    CAS  Google Scholar 

  61. Gan L, Zhang S, Zhang Y, He S, Tian Y (2018) Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant Bacillus endophyticus SCU-L. Prep Biochem Biotechnol 48(7):582–588

    CAS  PubMed  Google Scholar 

  62. Shanthi S, Jayaseelan BD, Velusamy P, Vijayakumar S, Chih CT, Vaseeharan B (2016) Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb Pathog 93:70–77

    CAS  PubMed  Google Scholar 

  63. Wang C, Kim YJ, Singh P, Mathiyalagan R, Jin Y, Yang DC (2016) Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity. Artif Cells Nanomed Biotechnol 44(4):1127–1132

    CAS  PubMed  Google Scholar 

  64. Malhotra A, Dolma K, Kaur N, Rathore YS, Mayilraj S, Choudhury AR (2013) Biosynthesis of gold and silver nanoparticles using a novel marine strain of Stenotrophomonas. Bioresour Technol 142:727–731

    CAS  PubMed  Google Scholar 

  65. Kaur H, Dolma K, Kaur N, Malhotra A, Kumar N, Dixit P, Sharma D, Mayilraj S, Choudhury AR (2015) Marine microbe as nano-factories for copper biomineralization. Biotechnol Bioprocess Eng 20(1):51–57

    CAS  Google Scholar 

  66. Lv Q, Zhang B, Xing X, Zhao Y, Cai R, Wang W, Gu Q (2018) Biosynthesis of copper nanoparticles using Shewanella loihica PV-4 with antibacterial activity: novel approach and mechanisms investigation. J Hazard Mater 347:141–149

    CAS  PubMed  Google Scholar 

  67. Kimber RL, Lewis EA, Parmeggiani F, Smith K, Bagshaw H, Starborg T, Joshi N, Figueroa AI, van der Laan G, Cibin G (2018) Biosynthesis and characterization of copper nanoparticles using Shewanella oneidensis: application for click chemistry. Small 14(10):1703145

    Google Scholar 

  68. Ahmed E, Kalathil S, Shi L, Alharbi O, Wang P (2018) Synthesis of ultra-small platinum, palladium and gold nanoparticles by Shewanella loihica PV-4 electrochemically active biofilms and their enhanced catalytic activities. J Saudi Chem Soc 22(8):919–929

    CAS  Google Scholar 

  69. Tuo Y, Liu G, Dong B, Yu H, Zhou J, Wang J, Jin R (2017) Microbial synthesis of bimetallic PdPt nanoparticles for catalytic reduction of 4-nitrophenol. Environ Sci Pollut Res 24(6):5249–5258

    CAS  Google Scholar 

  70. Wang W, Zhang B, He Z (2019) Bioelectrochemical deposition of palladium nanoparticles as catalysts by Shewanella oneidensis MR-1 towards enhanced hydrogen production in microbial electrolysis cells. Electrochim Acta 318:794–800

    CAS  Google Scholar 

  71. Zonaro E, Piacenza E, Presentato A, Monti F, Dell’Anna R, Lampis S, Vallini G (2017) Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Microbial Cell Factories 16 (1):215

  72. Husseiny M, El-Aziz MA, Badr Y, Mahmoud M (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A Mol Biomol Spectrosc 67(3–4):1003–1006

    CAS  PubMed  Google Scholar 

  73. He S, Zhang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24(2):476–480

    CAS  PubMed  Google Scholar 

  74. Du L, Jiang H, Liu X, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9(5):1165–1170

    CAS  Google Scholar 

  75. Jafari M, Rokhbakhsh-Zamin F, Shakibaie M, Moshafi MH, Ameri A, Rahimi HR, Forootanfar H (2018) Cytotoxic and antibacterial activities of biologically synthesized gold nanoparticles assisted by Micrococcus yunnanensis strain J2. Biocatal Agric Biotechnol 15:245–253

    Google Scholar 

  76. Camas M, Camas AS, Kyeremeh K (2018) Extracellular synthesis and characterization of gold nanoparticles using Mycobacterium sp. BRS2A-AR2 isolated from the aerial roots of the Ghanaian mangrove plant, Rhizophora racemosa. Indian J Microbiol 58(2):214–221

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Shah R, Oza G, Pandey S, Sharon M (2012) Biogenic fabrication of gold nanoparticles using Halomonas salina. J Microbiol Biotechnol Res 2(4):485–492

    CAS  Google Scholar 

  78. Tuo Y, Liu G, Dong B, Zhou J, Wang A, Wang J, Jin R, Lv H, Dou Z, Huang W (2015) Microbial synthesis of Pd/Fe3O4, Au/Fe3O4 and PdAu/Fe3O4 nanocomposites for catalytic reduction of nitroaromatic compounds. Sci Rep 5(1):1–12

    Google Scholar 

  79. Raj R, Dalei K, Chakraborty J, Das S (2016) Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. J Colloid Interface Sci 462:166–175

    CAS  PubMed  Google Scholar 

  80. Órdenes-Aenishanslins NA, Saona LA, Durán-Toro VM, Monrás JP, Bravo DM, Pérez-Donoso JM (2014) Use of titanium dioxide nanoparticles biosynthesized by Bacillus mycoides in quantum dot sensitized solar cells. Microb Cell Factories 13(1):90

    Google Scholar 

  81. Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim S-K, Iyappan M, Siva C (2013) Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 107:82–89

    CAS  PubMed  Google Scholar 

  82. Jha AK, Prasad K, Kulkarni A (2009) Synthesis of TiO2 nanoparticles using microorganisms. Colloids Surf B: Biointerfaces 71(2):226–229

    CAS  PubMed  Google Scholar 

  83. Vaigankar DC, Dubey SK, Mujawar SY, D’Costa A, Shyama S (2018) Tellurite biotransformation and detoxification by Shewanella baltica with simultaneous synthesis of tellurium nanorods exhibiting photo-catalytic and anti-biofilm activity. Ecotoxicol Environ Saf 165:516–526

    CAS  PubMed  Google Scholar 

  84. Shim H-W, Jin Y-H, Seo S-D, Lee S-H, Kim D-W (2010) Highly reversible lithium storage in Bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 5(1):443–449

    PubMed  Google Scholar 

  85. Che L, Dong Y, Wu M, Zhao Y, Liu L, Zhou H (2017) Characterization of selenite reduction by Lysinibacillus sp. ZYM-1 and photocatalytic performance of biogenic selenium nanospheres. ACS Sustain Chem Eng 5(3):2535–2543

    CAS  Google Scholar 

  86. Wang T, Yang L, Zhang B, Liu J (2010) Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids Surf B: Biointerfaces 80(1):94–102

    CAS  PubMed  Google Scholar 

  87. Saravanan M, Gopinath V, Chaurasia MK, Syed A, Ameen F, Purushothaman N (2018) Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog 115:57–63

    CAS  PubMed  Google Scholar 

  88. Taran M, Rad M, Alavi M (2018) Biosynthesis of TiO2 and ZnO nanoparticles by Halomonas elongata IBRC-M 10214 in different conditions of medium. BioImpacts 8(2):81

    CAS  PubMed  Google Scholar 

  89. Rajabairavi N, Raju CS, Karthikeyan C, Varutharaju K, Nethaji S, Hameed ASH, Shajahan A (2017) Biosynthesis of novel zinc oxide nanoparticles (ZnO NPs) using endophytic bacteria Sphingobacterium thalpophilum. In: Recent trends in materials science and applications. Springer, In, pp 245–254

    Google Scholar 

  90. Rauf MA, Owais M, Rajpoot R, Ahmad F, Khan N, Zubair S (2017) Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible S. aureus skin infection in experimental animals. RSC Adv 7(58):36361–36373

    CAS  Google Scholar 

  91. Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K (2016) Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review. Crit Rev Microbiol 42(2):209–221

    CAS  PubMed  Google Scholar 

  92. Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097

    CAS  PubMed  Google Scholar 

  93. Składanowski M, Wypij M, Laskowski D, Golińska P, Dahm H, Rai M (2017) Silver and gold nanoparticles synthesized from Streptomyces sp. isolated from acid forest soil with special reference to its antibacterial activity against pathogens. J Clust Sci 28(1):59–79

    Google Scholar 

  94. Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28(3):1081–1086

    CAS  PubMed  Google Scholar 

  95. El-Gamal MS, Salem SS, Abdo AM (2018) Biosynthesis, characterization, and antimicrobial activities of silver nanoparticles synthesized by endophytic Streptomyces sp. J Biotechnol 56

  96. Manivasagan P, Venkatesan J, Senthilkumar K, Sivakumar K, Kim S-K (2013) Biosynthesis, antimicrobial and cytotoxic effect of silver nanoparticles using a novel Nocardiopsis sp. MBRC-1. BioMed Res Int 2013

  97. Buszewski B, Railean-Plugaru V, Pomastowski P, Rafińska K, Szultka-Mlynska M, Golinska P, Wypij M, Laskowski D, Dahm H (2018) Antimicrobial activity of biosilver nanoparticles produced by a novel Streptacidiphilus durhamensis strain. J Microbiol Immunol Infect 51(1):45–54

    CAS  PubMed  Google Scholar 

  98. Abd-Elnaby HM, Abo-Elala GM, Abdel-Raouf UM, Hamed MM (2016) Antibacterial and anticancer activity of extracellular synthesized silver nanoparticles from marine Streptomyces rochei MHM13. Egypt J Aquat Res 42(3):301–312

    Google Scholar 

  99. Sholkamy EN, Ahamd MS, Yasser MM, Eslam N (2019) Anti-microbiological activities of bio-synthesized silver nano-stars by Saccharopolyspora hirsuta. Saudi J Biol Sci 26(1):195–200

    CAS  PubMed  Google Scholar 

  100. Silva-Vinhote NM, Caballero NED, de Amorim ST, Quelemes PV, de Araújo AR, de Moraes ACM, dos Santos Câmara AL, Longo J, Azevedo RB, da Silva D (2017) Extracellular biogenic synthesis of silver nanoparticles by Actinomycetes from amazonic biome and its antimicrobial efficiency. Afr J Biotechnol 16(43):2072–2082

    CAS  Google Scholar 

  101. Ranjani A, Gopinath PM, Ananth S, Narchonai G, Santhanam P, Thajuddin N, Dhanasekaran D (2018) Multidimensional dose–response toxicity exploration of silver nanoparticles from Nocardiopsis flavascens RD30. Appl Nanosci 8(4):699–713

    CAS  Google Scholar 

  102. Sowani H, Mohite P, Munot H, Shouche Y, Bapat T, Kumar AR, Kulkarni M, Zinjarde S (2016) Green synthesis of gold and silver nanoparticles by an actinomycete Gordonia amicalis HS-11: mechanistic aspects and biological application. Process Biochem 51(3):374–383

    CAS  Google Scholar 

  103. Vijayabharathi R, Sathya A, Gopalakrishnan S (2018) Extracellular biosynthesis of silver nanoparticles using Streptomyces griseoplanus SAI-25 and its antifungal activity against Macrophomina phaseolina, the charcoal rot pathogen of sorghum. Biocatal Agric Biotechnol 14:166–171

    Google Scholar 

  104. Otari S, Patil R, Ghosh S, Thorat N, Pawar S (2015) Intracellular synthesis of silver nanoparticle by actinobacteria and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 136:1175–1180

    CAS  PubMed  Google Scholar 

  105. Al-Dhabi NA, Mohammed Ghilan A-K, Arasu MV (2018) Characterization of silver nanomaterials derived from marine Streptomyces sp. Al-Dhabi-87 and its in vitro application against multidrug resistant and extended-spectrum beta-lactamase clinical pathogens. Nanomaterials 8 (5):279

  106. Balagurunathan R, Radhakrishnan M, Rajendran RB, Velmurugan D (2011) Biosynthesis of gold nanoparticles by actinomycete Streptomyces viridogens strain HM10

  107. Gopal JV, Thenmozhi M, Kannabiran K, Rajakumar G, Velayutham K, Rahuman AA (2013) Actinobacteria mediated synthesis of gold nanoparticles using Streptomyces sp. VITDDK3 and its antifungal activity. Mater Lett 93:360–362

    Google Scholar 

  108. Manivasagan P, Alam MS, Kang K-H, Kwak M, Kim S-K (2015) Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities. Bioprocess Biosyst Eng 38(6):1167–1177

    CAS  PubMed  Google Scholar 

  109. Ranjitha V, Rai VR (2017) Actinomycetes mediated synthesis of gold nanoparticles from the culture supernatant of Streptomyces griseoruber with special reference to catalytic activity. 3 Biotech 7(5):299

  110. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824

    CAS  Google Scholar 

  111. Waghmare SS, Deshmukh AM, Sadowski Z (2014) Biosynthesis, optimization, purification and characterization of gold nanoparticles. Afr J Microbiol Res 8(2):138–146

    Google Scholar 

  112. Karthik L, Kumar G, Keswani T, Bhattacharyya A, Reddy BP, Rao KB (2013) Marine actinobacterial mediated gold nanoparticles synthesis and their antimalarial activity. Nanomedicine 9(7):951–960

    CAS  PubMed  Google Scholar 

  113. Ramya S, Shanmugasundaram T, Balagurunathan R (2015) Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol 32:30–39

    CAS  PubMed  Google Scholar 

  114. Ahmad MS, Yasser MM, Sholkamy EN, Ali AM, Mehanni MM (2015) Anticancer activity of biostabilized selenium nanorods synthesized by Streptomyces bikiniensis strain Ess_amA-1. Int J Nanomedicine 10:3389

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Balraj B, Senthilkumar N, Siva C, Krithikadevi R, Julie A, Potheher IV, Arulmozhi M (2017) Synthesis and characterization of zinc oxide nanoparticles using marine Streptomyces sp. with its investigations on anticancer and antibacterial activity. Res Chem Intermed 43(4):2367–2376

    CAS  Google Scholar 

  116. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol 32(1):49–73

    CAS  PubMed  Google Scholar 

  117. Spagnoletti FN, Spedalieri C, Kronberg F, Giacometti R (2019) Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J Environ Manag 231:457–466

    CAS  Google Scholar 

  118. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170

    CAS  Google Scholar 

  119. Chan S, Don M (2012) Characterization of Ag nanoparticles produced by white-rot fungi and its in vitro antimicrobial activities. Int Arabic J Antimicrob Agents 2(3):1–8

    Google Scholar 

  120. Durán N, Marcato PD, Alves OL, De Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3(1):8

    Google Scholar 

  121. El Domany EB, Essam TM, Ahmed AE, Farghali AA (2018) Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. J Appl Pharm Sci 2018:8

  122. Elamawi RM, Al-Harbi RE, Hendi AA (2018) Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control 28(1):28

    Google Scholar 

  123. Sarkar J, Mollick MMR, Chattopadhyay D, Acharya K (2017) An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites. Bioprocess Biosyst Eng 40(3):351–359

    CAS  PubMed  Google Scholar 

  124. Mohmed AA, Fouda A, Elgamal MS, Hassan S, Shaheen TI, Salem SS (2017) Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new Egyptian strain Fusarium keratoplasticum A1-3. Egyptian Journal of Chemistry 60 (conference issue (the 8th international conference of the Textile Research Division (ICTRD 2017), National Research Centre, Cairo 12622, Egypt.)):63-71

  125. Gaikwad SC, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai M, Duran N (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24(12):1974–1982

    CAS  Google Scholar 

  126. Shelar GB, Chavan AM (2014) Fungus–mediated biosynthesis of silver nanoparticles and its antibacterial activity. Arch App Sci Res 6:111–114

    Google Scholar 

  127. Metuku RP, Pabba S, Burra S, Gudikandula K, Charya MS (2014) Biosynthesis of silver nanoparticles from Schizophyllum radiatum HE 863742.1: their characterization and antimicrobial activity. 3 Biotech 4(3):227–234

    PubMed  Google Scholar 

  128. Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios 7(3):999–1005

    Google Scholar 

  129. Thakker JN, Dalwadi P, Dhandhukia PC (2012) Biosynthesis of gold nanoparticles using Fusarium oxysporum f. sp. cubense JT1, a plant pathogenic fungus. ISRN Biotechnology 2013

  130. Vala AK (2015) Exploration on green synthesis of gold nanoparticles by a marine-derived fungus Aspergillus sydowii. Environ Prog Sustain Energy 34(1):194–197

    CAS  Google Scholar 

  131. Pavani K, Kumar NS (2013) Adsorption of iron and synthesis of iron nanoparticles by Aspergillus species kvp 12. Am J Nanomater 1(2):24–26

    Google Scholar 

  132. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109

    CAS  PubMed  Google Scholar 

  133. Soliman H, Elsayed A, Dyaa A (2018) Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp. strain ATL72. Egypt J Basic Appl Sci 5(3):228–233

    Google Scholar 

  134. Rónavári A, Igaz N, Gopisetty MK, Szerencsés B, Kovács D, Papp C, Vágvölgyi C, Boros IM, Kónya Z, Kiricsi M (2018) Biosynthesized silver and gold nanoparticles are potent antimycotics against opportunistic pathogenic yeasts and dermatophytes. Int J Nanomedicine 13:695

    PubMed  PubMed Central  Google Scholar 

  135. Lian S, Diko CS, Yan Y, Li Z, Zhang H, Ma Q, Qu Y (2019) Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech 9 (6):221. https://doi.org/10.1007/s13205-019-1748-y

  136. AbdelRahim K, Mahmoud SY, Ali AM, Almaary KS, Mustafa AE-ZM, Husseiny SM (2017) Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci 24(1):208–216

    CAS  PubMed  Google Scholar 

  137. Jalal M, Ansari MA, Alzohairy MA, Ali SG, Khan HM, Almatroudi A, Raees K (2018) Biosynthesis of silver nanoparticles from oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials 8(8):586

    PubMed Central  Google Scholar 

  138. Kobashigawa JM, Robles CA, Ricci MLM, Carmarán CC (2019) Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii. Saudi J Biol Sci 26(7):1331–1337

    CAS  PubMed  Google Scholar 

  139. Ahmed A-A, Hamzah H, Maaroof M (2018) Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turk J Biol 42(1):54–62

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Singh PS, Vidyasagar G (2018) Biosynthesis of antibacterial silver nano-particles from Aspergillus terreus. World News Nat Sci 16:117–124

    CAS  Google Scholar 

  141. Mohanta YK, Nayak D, Biswas K, Singdevsachan SK, Abd_Allah EF, Hashem A, Alqarawi AA, Yadav D, Mohanta TK (2018) Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules 23 (3):655

  142. Popli D, Anil V, Subramanyam AB, Namratha MN, Ranjitha VR, Rao SN, Rai RV, Govindappa M (2018) Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol 46(sup1):676–683

    CAS  PubMed  Google Scholar 

  143. Siddiqi KS, Husen A (2016) Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett 11(1):98

    PubMed  PubMed Central  Google Scholar 

  144. Ma L, Su W, Liu J-X, Zeng X-X, Huang Z, Li W, Liu Z-C, Tang J-X (2017) Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater Sci Eng C 77:963–971

    CAS  Google Scholar 

  145. Rajput S, Werezuk R, Lange RM, McDermott MT (2016) Fungal isolate optimized for biogenesis of silver nanoparticles with enhanced colloidal stability. Langmuir 32(34):8688–8697

    CAS  PubMed  Google Scholar 

  146. Husseiny SM, Salah TA, Anter HA (2015) Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef Univ J Basic Appl Sci 4(3):225–231

    Google Scholar 

  147. Amerasan D, Nataraj T, Murugan K, Panneerselvam C, Madhiyazhagan P, Nicoletti M, Benelli G (2016) Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci 89(1):249–256

    Google Scholar 

  148. Guilger M, Pasquoto-Stigliani T, Bilesky-Jose N, Grillo R, Abhilash P, Fraceto LF, De Lima R (2017) Biogenic silver nanoparticles based on Trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Sci Rep 7:44421

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Hamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati SA (2017) Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artif Cells Nanomed Biotechnol 45(8):1588–1596

    CAS  PubMed  Google Scholar 

  150. Bonilla JJA, Guerrero DJP, Sáez RGT, Ishida K, Fonseca BB, Rozental S, López CCO (2017) Green synthesis of silver nanoparticles using maltose and cysteine and their effect on cell wall envelope shapes and microbial growth of Candida spp. J Nanosci Nanotechnol 17(3):1729–1739

    CAS  Google Scholar 

  151. Joshi CG, Danagoudar A, Poyya J, Kudva AK, Dhananjaya B (2017) Biogenic synthesis of gold nanoparticles by marine endophytic fungus-Cladosporium cladosporioides isolated from seaweed and evaluation of their antioxidant and antimicrobial properties. Process Biochem 63:137–144

    Google Scholar 

  152. Tripathi RM, Shrivastav BR, Shrivastav A (2018) Antibacterial and catalytic activity of biogenic gold nanoparticles synthesised by Trichoderma harzianum. IET Nanobiotechnol 12(4):509–513

    PubMed  PubMed Central  Google Scholar 

  153. Shen W, Qu Y, Pei X, Li S, You S, Wang J, Zhang Z, Zhou J (2017) Catalytic reduction of 4-nitrophenol using gold nanoparticles biosynthesized by cell-free extracts of Aspergillus sp. WL-Au. J Hazard Mater 321:299–306

    CAS  PubMed  Google Scholar 

  154. Kitching M, Choudhary P, Inguva S, Guo Y, Ramani M, Das SK, Marsili E (2016) Fungal surface protein mediated one-pot synthesis of stable and hemocompatible gold nanoparticles. Enzym Microb Technol 95:76–84

    CAS  Google Scholar 

  155. Subramaniyan SA, Sheet S, Vinothkannan M, Yoo DJ, Lee YS, Belal SA, Shim KS (2018) One-pot facile synthesis of Pt nanoparticles using cultural filtrate of microgravity simulated grown P. chrysogenum and their activity on bacteria and cancer cells. J Nanosci Nanotechnol 18(5):3110–3125

    CAS  PubMed  Google Scholar 

  156. Kalpana V, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Rajeswari VD (2018) Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano 3:48–55

    Google Scholar 

  157. Mashrai A, Khanam H, Aljawfi RN (2017) Biological synthesis of ZnO nanoparticles using C. albicans and studying their catalytic performance in the synthesis of steroidal pyrazolines. Arab J Chem 10:S1530–S1536

    Google Scholar 

  158. Moghaddam AB, Moniri M, Azizi S, Rahim RA, Ariff AB, Saad WZ, Namvar F, Navaderi M, Mohamad R (2017) Biosynthesis of ZnO nanoparticles by a new Pichia kudriavzevii yeast strain and evaluation of their antimicrobial and antioxidant activities. Molecules 22(6):872

    Google Scholar 

  159. Elsoud MMA, Al-Hagar OE, Abdelkhalek ES, Sidkey N (2018) Synthesis and investigations on tellurium myconanoparticles. Biotechnol Rep 18:e00247

    Google Scholar 

  160. Uddandarao P, Balakrishnan RM, Ashok A, Swarup S, Sinha P (2019) Bioinspired ZnS: Gd nanoparticles synthesized from an endophytic fungi Aspergillus flavus for fluorescence-based metal detection. Biomimetics 4(1):11

    CAS  PubMed Central  Google Scholar 

  161. Suryavanshi P, Pandit R, Gade A, Derita M, Zachino S, Rai M (2017) Colletotrichum sp.-mediated synthesis of sulphur and aluminium oxide nanoparticles and its in vitro activity against selected food-borne pathogens. LWT Food Sci Technol 81:188–194

    CAS  Google Scholar 

  162. Vijayanandan AS, Balakrishnan RM (2018) Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J Environ Manag 218:442–450

    CAS  Google Scholar 

  163. Korbekandi H, Mohseni S, Mardani Jouneghani R, Pourhossein M, Iravani S (2016) Biosynthesis of silver nanoparticles using Saccharomyces cerevisiae. Artif Cells Nanomed Biotechnol 44(1):235–239

    CAS  PubMed  Google Scholar 

  164. Fernández JG, Fernández-Baldo MA, Berni E, Camí G, Durán N, Raba J, Sanz MI (2016) Production of silver nanoparticles using yeasts and evaluation of their antifungal activity against phytopathogenic fungi. Process Biochem 51(9):1306–1313

    Google Scholar 

  165. Salvadori MR (2019) Processing of nanoparticles by biomatrices in a green approach. In: Microbial nanobionics. Springer, In, pp 1–28

    Google Scholar 

  166. Cunha FA, da CSO Cunha M, da Frota SM, Mallmann EJ, Freire TM, Costa LS, Paula AJ, Menezes EA, Fechine PB (2018) Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities. World J Microbiol Biotechnol 34(9):127

    PubMed  Google Scholar 

  167. Wei R (2017) Biosynthesis of Au–Ag alloy nanoparticles for sensitive electrochemical determination of paracetamol. Int J Electrochem Sci 12:9131–9140

    CAS  Google Scholar 

  168. Yang Z, Li Z, Lu X, He F, Zhu X, Ma Y, He R, Gao F, Ni W, Yi Y (2017) Controllable biosynthesis and properties of gold nanoplates using yeast extract. Nano Lett 9(1):5

    Google Scholar 

  169. Qu Y, You S, Zhang X, Pei X, Shen W, Li Z, Li S, Zhang Z (2018) Biosynthesis of gold nanoparticles using cell-free extracts of Magnusiomyces ingens LH-F1 for nitrophenols reduction. Bioprocess Biosyst Eng 41(3):359–367

    CAS  PubMed  Google Scholar 

  170. Sriramulu M, Sumathi S (2018) Biosynthesis of palladium nanoparticles using Saccharomyces cerevisiae extract and its photocatalytic degradation behaviour. Adv Nat Sci Nanosci Nanotechnol 9(2):025018

    Google Scholar 

  171. Luo QY, Lin Y, Li Y, Xiong LH, Cui R, Xie ZX, Pang DW (2014) Nanomechanical analysis of yeast cells in CdSe quantum dot biosynthesis. Small 10(4):699–704

    CAS  PubMed  Google Scholar 

  172. Luangpipat T, Beattie IR, Chisti Y, Haverkamp RG (2011) Gold nanoparticles produced in a microalga. J Nanopart Res 13(12):6439–6445

    CAS  Google Scholar 

  173. Mata Y, Torres E, Blazquez M, Ballester A, González F, Munoz J (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166(2–3):612–618

    CAS  PubMed  Google Scholar 

  174. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286(5442):1129–1132

    PubMed  Google Scholar 

  175. Scarano G, Morelli E (2003) Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165(4):803–810

    CAS  Google Scholar 

  176. Singaravelu G, Arockiamary J, Kumar VG, Govindaraju K (2007) A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B: Biointerfaces 57(1):97–101

    CAS  PubMed  Google Scholar 

  177. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128(3):648–653

    CAS  PubMed  Google Scholar 

  178. Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Livage J, Fiévet F, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7(8):2696–2708

    CAS  PubMed  Google Scholar 

  179. Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G (2014) Algae mediated green fabrication of silver nanoparticles and examination of its antifungal activity against clinical pathogens. Int J Met 2014

  180. El-Rafie H, El-Rafie M, Zahran M (2013) Green synthesis of silver nanoparticles using polysaccharides extracted from marine macro algae. Carbohydr Polym 96(2):403–410

    CAS  PubMed  Google Scholar 

  181. Azizi S, Namvar F, Mahdavi M, Ahmad M, Mohamad R (2013) Biosynthesis of silver nanoparticles using brown marine macroalga, Sargassum muticum aqueous extract. Materials 6(12):5942–5950

    PubMed  PubMed Central  Google Scholar 

  182. Fatima R, Priya M, Indurthi L, Radhakrishnan V, Sudhakaran R (2020) Biosynthesis of silver nanoparticles using red algae Portieria hornemannii and its antibacterial activity against fish pathogens. Microb Pathog 138:103780

    CAS  PubMed  Google Scholar 

  183. Bhuyar P, Rahim MHA, Sundararaju S, Ramaraj R, Maniam GP, Govindan N (2020) Synthesis of silver nanoparticles using marine macroalgae Padina sp. and its antibacterial activity towards pathogenic bacteria. Beni-Suef Univ J Basic Appl Sci 9(1):1–15

    Google Scholar 

  184. Husain S, Afreen S, Yasin D, Afzal B, Fatma T (2019) Cyanobacteria as a bioreactor for synthesis of silver nanoparticles-an effect of different reaction conditions on the size of nanoparticles and their dye decolorization ability. J Microbiol Methods 162:77–82

    CAS  PubMed  Google Scholar 

  185. González-Ballesteros N, Rodríguez-Argüelles MC, Prado-López S, Lastra M, Grimaldi M, Cavazza A, Nasi L, Salviati G, Bigi F (2019) Macroalgae to nanoparticles: study of Ulva lactuca L. role in biosynthesis of gold and silver nanoparticles and of their cytotoxicity on colon cancer cell lines. Mater Sci Eng C 97:498–509

    Google Scholar 

  186. Abdel-Raouf N, Al-Enazi NM, Ibraheem IBM, Alharbi RM, Alkhulaifi MM (2019) Biosynthesis of silver nanoparticles by using of the marine brown alga Padina pavonia and their characterization. Saudi J Biol Sci 26(6):1207–1215

    CAS  PubMed  Google Scholar 

  187. Pugazhendhi A, Prabakar D, Jacob JM, Karuppusamy I, Saratale RG (2018) Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog 114:41–45

    CAS  PubMed  Google Scholar 

  188. Aboelfetoh EF, El-Shenody RA, Ghobara MM (2017) Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environ Monit Assess 189(7):349

    PubMed  Google Scholar 

  189. Ibraheem I, Abd-Elaziz B, Saad W, Fathy W (2016) Green biosynthesis of silver nanoparticles using marine red algae Acanthophora specifera and its antimicrobial activity. J Nanomed Nanotechnol 7(409):1–4

    Google Scholar 

  190. de Aragao AP, de Oliveira TM, Quelemes PV, Perfeito MLG, Araujo MC, Santiago JAS, Cardoso VS, Quaresma P, de Almeida JRS, da Silva DA (2019) Green synthesis of silver nanoparticles using the seaweed Gracilaria birdiae and their antibacterial activity. Arab J Chem 12(8):4182–4188

    Google Scholar 

  191. Madhiyazhagan P, Murugan K, Kumar AN, Nataraj T, Dinesh D, Panneerselvam C, Subramaniam J, Kumar PM, Suresh U, Roni M (2015) Sargassum muticum-synthesized silver nanoparticles: an effective control tool against mosquito vectors and bacterial pathogens. Parasitol Res 114(11):4305–4317

    PubMed  Google Scholar 

  192. Ebrahimzadeh Z, Salehzadeh A, Naeemi A, Jalali A (2020) Silver nanoparticles biosynthesized by Anabaena flos-aquae enhance the apoptosis in breast cancer cell line. Bull Mater Sci 43(1):1–7

    Google Scholar 

  193. Moshfegh A, Jalali A, Salehzadeh A, Jozani AS (2019) Biological synthesis of silver nanoparticles by cell-free extract of Polysiphonia algae and their anticancer activity against breast cancer MCF-7 cell lines. Micro Nano Lett 14(5):581–584

    CAS  Google Scholar 

  194. Senthilkumar P, Surendran L, Sudhagar B, Kumar DRS (2019) Facile green synthesis of gold nanoparticles from marine algae Gelidiella acerosa and evaluation of its biological potential. SN Appl Sci 1(4):284

    Google Scholar 

  195. Colin JA, Pech-Pech I, Oviedo M, Águila SA, Romo-Herrera JM, Contreras OE (2018) Gold nanoparticles synthesis assisted by marine algae extract: biomolecules shells from a green chemistry approach. Chem Phys Lett 708:210–215

    CAS  Google Scholar 

  196. González-Ballesteros N, Prado-López S, Rodríguez-González J, Lastra M, Rodríguez-Argüelles M (2017) Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surf B: Biointerfaces 153:190–198

    PubMed  Google Scholar 

  197. Li L, Zhang Z (2016) Biosynthesis of gold nanoparticles using green alga Pithophora oedogonia with their electrochemical performance for determining carbendazim in soil. Int J Electrochem Sci 11:4550–4559

    CAS  Google Scholar 

  198. Ramakrishna M, Babu DR, Gengan RM, Chandra S, Rao GN (2016) Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. J Nanostruct Chem 6(1):1–13

    CAS  Google Scholar 

  199. Suganya KU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Mater Sci Eng C 47:351–356

    Google Scholar 

  200. Mishra V, Arya A, Chundawat TS (2020) High catalytic activity of Pd nanoparticles synthesized from green alga Chlorella vulgaris in Buchwald-Hartwig synthesis of N-aryl piperazines. Curr Organocatal 7(1):23–33

    Google Scholar 

  201. Arsiya F, Sayadi MH, Sobhani S (2017) Green synthesis of palladium nanoparticles using Chlorella vulgaris. Mater Lett 186:113–115

    CAS  Google Scholar 

  202. Momeni S, Nabipour I (2015) A simple green synthesis of palladium nanoparticles with Sargassum alga and their electrocatalytic activities towards hydrogen peroxide. Appl Biochem Biotechnol 176(7):1937–1949

    CAS  PubMed  Google Scholar 

  203. Prasad BN, Padmesh T (2014) Seaweed (Sargassum ilicifolium) assisted green synthesis of palladium nanoparticles. Int J Sci Eng Res 5:229–231

    Google Scholar 

  204. Khalafi T, Buazar F, Ghanemi K (2019) Phycosynthesis and enhanced photocatalytic activity of zinc oxide nanoparticles toward organosulfur pollutants. Sci Rep 9(1):1–10

    CAS  Google Scholar 

  205. Sanaeimehr Z, Javadi I, Namvar F (2018) Antiangiogenic and antiapoptotic effects of green-synthesized zinc oxide nanoparticles using Sargassum muticum algae extraction. Cancer Nanotechnol 9(1):3

    PubMed  PubMed Central  Google Scholar 

  206. Rao MD, Gautam P (2016) Synthesis and characterization of ZnO nanoflowers using Chlamydomonas reinhardtii: a green approach. Environ Prog Sustain Energy 35(4):1020–1026

    CAS  Google Scholar 

  207. Thema F, Manikandan E, Dhlamini M, Maaza M (2015) Green synthesis of ZnO nanoparticles via Agathosma betulina natural extract. Mater Lett 161:124–127

    CAS  Google Scholar 

  208. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277

    CAS  Google Scholar 

  209. Gu H, Chen X, Chen F, Zhou X, Parsaee Z (2018) Ultrasound-assisted biosynthesis of CuO-NPs using brown alga Cystoseira trinodis: characterization, photocatalytic AOP, DPPH scavenging and antibacterial investigations. Ultrason Sonochem 41:109–119

    CAS  PubMed  Google Scholar 

  210. Arya A, Gupta K, Chundawat TS, Vaya D (2018) Biogenic synthesis of copper and silver nanoparticles using green alga Botryococcus braunii and its antimicrobial activity. Bioinorg Chem Appl 2018

  211. Ramaswamy SVP, Narendhran S, Sivaraj R (2016) Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities. Bull Mater Sci 39(2):361–364

    CAS  Google Scholar 

  212. Abboud Y, Saffaj T, Chagraoui A, El Bouari A, Brouzi K, Tanane O, Ihssane B (2014) Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Appl Nanosci 4(5):571–576

    CAS  Google Scholar 

  213. Salem DM, Ismail MM, Aly-Eldeen MA (2019) Biogenic synthesis and antimicrobial potency of iron oxide (Fe3O4) nanoparticles using algae harvested from the Mediterranean Sea, Egypt. Egypt J Aquat Res 45(3):197–204

    Google Scholar 

  214. El-Kassas HY, Aly-Eldeen MA, Gharib SM (2016) Green synthesis of iron oxide (Fe3O4) nanoparticles using two selected brown seaweeds: characterization and application for lead bioremediation. Acta Oceanol Sin 35(8):89–98

    CAS  Google Scholar 

  215. Mahdavi M, Namvar F, Ahmad MB, Mohamad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18(5):5954–5964

    PubMed  PubMed Central  Google Scholar 

  216. Kahzad N, Salehzadeh A (2020) Green synthesis of CuFe2O4@ Ag nanocomposite using the Chlorella vulgaris and evaluation of its effect on the expression of norA efflux pump gene among Staphylococcus aureus strains. Biol Trace Elem Res:1–12

  217. Shokoofeh N, Moradi-Shoeili Z, Naeemi AS, Jalali A, Hedayati M, Salehzadeh A (2019) Biosynthesis of Fe3O4@ Ag nanocomposite and evaluation of its performance on expression of norA and norB efflux pump genes in ciprofloxacin-resistant Staphylococcus aureus. Biol Trace Elem Res 191(2):522–530

    CAS  PubMed  Google Scholar 

  218. Salehzadeh A, Naeemi AS, Khaknezhad L, Moradi-Shoeili Z, Shandiz SAS (2019) Fe3O4/Ag nanocomposite biosynthesised using Spirulina platensis extract and its enhanced anticancer efficiency. IET Nanobiotechnol 13(7):766–770

    PubMed  PubMed Central  Google Scholar 

  219. Kurgan N, Karbivskyy V (2019) Properties of nanowires based on the tobacco mosaic virus and gold nanoparticles. Applied Nanoscience:1–5

  220. Chen CC, Stark M, Baikoghli M, Cheng RH (2018) Surface functionalization of hepatitis E virus nanoparticles using chemical conjugation methods. JoVE (J Vis Exp) 135:e57020

    Google Scholar 

  221. Ahiwale S, Bankar A, Tagunde S, Kapadnis B (2017) A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian J Microbiol 57(2):188–194

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Seo Y, Manivannan S, Kang I, Lee S-W, Kim K (2017) Gold dendrites co-deposited with M13 virus as a biosensor platform for nitrite ions. Biosens Bioelectron 94:87–93

    CAS  PubMed  Google Scholar 

  223. Le DH, Lee KL, Shukla S, Commandeur U, Steinmetz NF (2017) Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale 9(6):2348–2357

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Chen P-Y, Dang X, Klug MT, Courchesne N-MD, Qi J, Hyder MN, Belcher AM, Hammond PT (2015) M13 virus-enabled synthesis of titanium dioxide nanowires for tunable mesoporous semiconducting networks. Chem Mater 27(5):1531–1540

    Google Scholar 

  225. Love AJ, Makarov V, Yaminsky I, Kalinina NO, Taliansky ME (2014) The use of tobacco mosaic virus and cowpea mosaic virus for the production of novel metal nanomaterials. Virology 449:133–139

    CAS  PubMed  Google Scholar 

  226. Zeng Q, Wen H, Wen Q, Chen X, Wang Y, Xuan W, Liang J, Wan S (2013) Cucumber mosaic virus as drug delivery vehicle for doxorubicin. Biomaterials 34(19):4632–4642

    CAS  PubMed  Google Scholar 

  227. Yang F, Li Y, Liu T, Xu K, Zhang L, Xu C, Gao J (2013) Plasma synthesis of Pd nanoparticles decorated-carbon nanotubes and its application in Suzuki reaction. Chem Eng J 226:52–58

    CAS  Google Scholar 

  228. Aljabali AA, Barclay JE, Lomonossoff GP, Evans DJ (2010) Virus templated metallic nanoparticles. Nanoscale 2(12):2596–2600

    CAS  PubMed  Google Scholar 

  229. Mao C, Flynn CE, Hayhurst A, Sweeney R, Qi J, Georgiou G, Iverson B, Belcher AM (2003) Viral assembly of oriented quantum dot nanowires. Proc Natl Acad Sci 100(12):6946–6951

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Jeong CK, Kim I, Park K-I, Oh MH, Paik H, Hwang G-T, No K, Nam YS, Lee KJ (2013) Virus-directed design of a flexible BaTiO3 nanogenerator. ACS Nano 7(12):11016–11025

    CAS  PubMed  Google Scholar 

  231. Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19 (4):1357–1361

  232. Kato H (2011) In vitro assays: tracking nanoparticles inside cells. Nat Nanotechnol 6(3):139

    CAS  PubMed  Google Scholar 

  233. Gunalan S, Sivaraj R, Venckatesh R (2012) Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim Acta A Mol Biomol Spectrosc 97:1140–1144

    CAS  PubMed  Google Scholar 

  234. Rafique M, Shafiq F, Gillani SSA, Shakil M, Tahir MB, Sadaf I (2019) Eco-friendly green and biosynthesis of copper oxide nanoparticles using Citrofortunella microcarpa leaves extract for efficient photocatalytic degradation of Rhodamin B dye form textile wastewater. Optik:164053

  235. Shekhawat M, Ravindran C, Manokari M (2015) An ecofriendly method for the synthesis of zinc oxide nanoparticles using Lawsonia inermis L. aqueous extracts. Int J Innov 5(1):1

    Google Scholar 

  236. Shekhawat M, Kannan N, Manokari M (2012) Biogenesis of silver nanoparticles using leaf extract of Turnera ulmifolia Linn. and screening of their antimicrobial activity. J Ecobiotechnol

  237. Shekhawat M, Anusuya P, Kannan N, Manokari M, Revathi J, Ilavarasi V (2013) Green synthesis of silver nanoparticles using Couroupita guianensis Aubl. and their characterization. Int J Green Herb Chem 2:1041–1049

    Google Scholar 

  238. Parida UK, Bindhani BK, Nayak P (2011) Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J Nano Sci Eng 1(04):93

    CAS  Google Scholar 

  239. Wang K, Liu Y, Jin X, Chen Z (2019) Characterization of iron nanoparticles/reduced graphene oxide composites synthesized by one step eucalyptus leaf extract. Environ Pollut 250:8–13. https://doi.org/10.1016/j.envpol.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  240. Basnet P, Inakhunbi Chanu T, Samanta D, Chatterjee S (2018) A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J Photochem Photobiol B Biol 183:201–221. https://doi.org/10.1016/j.jphotobiol.2018.04.036

    Article  CAS  Google Scholar 

  241. Ahn E-Y, Jin H, Park Y (2019) Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Mater Sci Eng C 101:204–216. https://doi.org/10.1016/j.msec.2019.03.095

    Article  CAS  Google Scholar 

  242. Razavi R, Molaei R, Moradi M, Tajik H, Ezati P, Yordshahi AS (2020) Biosynthesis of metallic nanoparticles using mulberry fruit (Morus alba L.) extract for the preparation of antimicrobial nanocellulose film. Appl Nanosci 10(2):465–476

    CAS  Google Scholar 

  243. Parthiban E, Manivannan N, Ramanibai R, Mathivanan N (2019) Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol Rep 21:e00297

    Google Scholar 

  244. Rolim WR, Pelegrino MT, de Araújo LB, Ferraz LS, Costa FN, Bernardes JS, Rodigues T, Brocchi M, Seabra AB (2019) Green tea extract mediated biogenic synthesis of silver nanoparticles: characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci 463:66–74

    CAS  Google Scholar 

  245. Girón-Vázquez N, Gómez-Gutiérrez C, Soto-Robles C, Nava O, Lugo-Medina E, Castrejón-Sánchez V, Vilchis-Nestor A, Luque P (2019) Study of the effect of Persea americana seed in the green synthesis of silver nanoparticles and their antimicrobial properties. Results Phys 13:102142

    Google Scholar 

  246. Francis S, Joseph S, Koshy EP, Mathew B (2018) Microwave assisted green synthesis of silver nanoparticles using leaf extract of Elephantopus scaber and its environmental and biological applications. Artif Cells Nanomed Biotechnol 46(4):795–804

    CAS  PubMed  Google Scholar 

  247. Sreekanth T, Nagajyothi P, Muthuraman P, Enkhtaivan G, Vattikuti S, Tettey C, Kim DH, Shim J, Yoo K (2018) Ultra-sonication-assisted silver nanoparticles using Panax ginseng root extract and their anti-cancer and antiviral activities. J Photochem Photobiol B Biol 188:6–11

    CAS  Google Scholar 

  248. Kahsay MH, RamaDevi D, Kumar YP, Mohan BS, Tadesse A, Battu G, Basavaiah K (2018) Synthesis of silver nanoparticles using aqueous extract of Dolichos lablab for reduction of 4-nitrophenol, antimicrobial and anticancer activities. OpenNano 3:28–37

    Google Scholar 

  249. Vaali-Mohammed M-A, Al-Lohedan HA, Appaturi JN (2017) Synthesis and bio-physical characterization of silver nanoparticle and ag-mesoporous MnO2 nanocomposite for anti-microbial and anti-cancer activity. J Mol Liq 243:348–357

    Google Scholar 

  250. Heidari Z, Salehzadeh A, Shandiz SAS, Tajdoost S (2018) Anti-cancer and anti-oxidant properties of ethanolic leaf extract of Thymus vulgaris and its bio-functionalized silver nanoparticles. 3 Biotech 8 (3):177

  251. Unal IS, Demirbas A, Onal I, Ildiz N, Ocsoy I (2020) One step preparation of stable gold nanoparticle using red cabbage extracts under UV light and its catalytic activity. J Photochem Photobiol B Biol:111800

  252. Gopinath V, Priyadarshini S, MubarakAli D, Loke MF, Thajuddin N, Alharbi NS, Yadavalli T, Alagiri M, Vadivelu J (2019) Anti-Helicobacter pylori, cytotoxicity and catalytic activity of biosynthesized gold nanoparticles: multifaceted application. Arab J Chem 12(1):33–40

    CAS  Google Scholar 

  253. Onitsuka S, Hamada T, Okamura H (2019) Preparation of antimicrobial gold and silver nanoparticles from tea leaf extracts. Colloids Surf B: Biointerfaces 173:242–248

    CAS  PubMed  Google Scholar 

  254. Chahardoli A, Karimi N, Sadeghi F, Fattahi A (2018) Green approach for synthesis of gold nanoparticles from Nigella arvensis leaf extract and evaluation of their antibacterial, antioxidant, cytotoxicity and catalytic activities. Artif Cells Nanomed Biotechnol 46(3):579–588

    CAS  PubMed  Google Scholar 

  255. Sunderam V, Thiyagarajan D, Lawrence AV, Mohammed SSS, Selvaraj A (2019) In-vitro antimicrobial and anticancer properties of green synthesized gold nanoparticles using Anacardium occidentale leaves extract. Saudi J Biol Sci 26(3):455–459

    CAS  PubMed  Google Scholar 

  256. Nagalingam M, Kalpana V, Panneerselvam A (2018) Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. Biotechnol Rep 19:e00268

    Google Scholar 

  257. Ahmad A, Wei Y, Ullah S, Shah SI, Nasir F, Shah A, Iqbal Z, Tahir K, Khan UA, Yuan Q (2017) Synthesis of phytochemicals-stabilized gold nanoparticles and their biological activities against bacteria and Leishmania. Microb Pathog 110:304–312

    CAS  PubMed  Google Scholar 

  258. Rajan A, Rajan AR, Philip D (2017) Elettaria cardamomum seed mediated rapid synthesis of gold nanoparticles and its biological activities. OpenNano 2:1–8

    Google Scholar 

  259. Lotha R, Shamprasad BR, Sundaramoorthy NS, Nagarajan S, Sivasubramanian A (2019) Biogenic phytochemicals (cassinopin and isoquercetin) capped copper nanoparticles (ISQ/CAS@ CuNPs) inhibits MRSA biofilms. Microb Pathog 132:178–187

    CAS  PubMed  Google Scholar 

  260. Khani R, Roostaei B, Bagherzade G, Moudi M (2018) Green synthesis of copper nanoparticles by fruit extract of Ziziphus spina-christi (L.) Willd.: application for adsorption of triphenylmethane dye and antibacterial assay. J Mol Liq 255:541–549

    CAS  Google Scholar 

  261. Rajesh K, Ajitha B, Reddy YAK, Suneetha Y, Reddy PS (2018) Assisted green synthesis of copper nanoparticles using Syzygium aromaticum bud extract: physical, optical and antimicrobial properties. Optik 154:593–600

    CAS  Google Scholar 

  262. Lin Z, Weng X, Owens G, Chen Z (2020) Simultaneous removal of Pb (II) and rifampicin from wastewater by iron nanoparticles synthesized by a tea extract. J Clean Prod 242:118476

    CAS  Google Scholar 

  263. Katata-Seru L, Moremedi T, Aremu OS, Bahadur I (2018) Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: removal of nitrate from water and antibacterial activity against Escherichia coli. J Mol Liq 256:296–304

  264. Radini IA, Hasan N, Malik MA, Khan Z (2018) Biosynthesis of iron nanoparticles using Trigonella foenum-graecum seed extract for photocatalytic methyl orange dye degradation and antibacterial applications. J Photochem Photobiol B Biol 183:154–163

    CAS  Google Scholar 

  265. Liang T, Qiu X, Ye X, Liu Y, Li Z, Tian B, Yan D (2020) Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech 10(1):23

    PubMed  Google Scholar 

  266. Yazhiniprabha M, Vaseeharan B (2019) In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater Sci Eng C 103:109763

    Google Scholar 

  267. Menon S, KS SD, Agarwal H, Shanmugam VK (2019) Efficacy of biogenic selenium nanoparticles from an extract of ginger towards evaluation on anti-microbial and anti-oxidant activities. Colloid Interface Sci Commun 29:1–8

  268. Kumar PV, Kala SMJ, Prakash K (2019) Green synthesis derived Pt-nanoparticles using Xanthium strumarium leaf extract and their biological studies. J Environ Chem Eng 7(3):103146

    CAS  Google Scholar 

  269. Tahir K, Nazir S, Ahmad A, Li B, Khan AU, Khan ZUH, Khan FU, Khan QU, Khan A, Rahman AU (2017) Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. J Photochem Photobiol B Biol 166:246–251

    CAS  Google Scholar 

  270. Gnanasekar S, Murugaraj J, Dhivyabharathi B, Krishnamoorthy V, Jha PK, Seetharaman P, Vilwanathan R, Sivaperumal S (2018) Antibacterial and cytotoxicity effects of biogenic palladium nanoparticles synthesized using fruit extract of Couroupita guianensis Aubl. J Appl Biomed 16(1):59–65

    Google Scholar 

  271. Sharmila G, Fathima MF, Haries S, Geetha S, Kumar NM, Muthukumaran C (2017) Green synthesis, characterization and antibacterial efficacy of palladium nanoparticles synthesized using Filicium decipiens leaf extract. J Mol Struct 1138:35–40

    CAS  Google Scholar 

  272. Din MI, Nabi AG, Rani A, Aihetasham A, Mukhtar M (2018) Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: catalytic and antimicrobial potentials. Environ Nanotechnol Monit Manag 9:29–36

    Google Scholar 

  273. Kamran U, Bhatti HN, Iqbal M, Jamil S, Zahid M (2019) Biogenic synthesis, characterization and investigation of photocatalytic and antimicrobial activity of manganese nanoparticles synthesized from Cinnamomum verum bark extract. J Mol Struct 1179:532–539

    CAS  Google Scholar 

  274. Vinayagam R, Selvaraj R, Arivalagan P, Varadavenkatesan T (2020) Synthesis, characterization and photocatalytic dye degradation capability of Calliandra haematocephala-mediated zinc oxide nanoflowers. J Photochem Photobiol B Biol 203:111760

    CAS  Google Scholar 

  275. Fahimmunisha BA, Ishwarya R, AlSalhi MS, Devanesan S, Govindarajan M, Vaseeharan B (2020) Green fabrication, characterization and antibacterial potential of zinc oxide nanoparticles using Aloe socotrina leaf extract: a novel drug delivery approach. J Drug Deliv Sci Technol 55:101465

    CAS  Google Scholar 

  276. Ogunyemi SO, Abdallah Y, Zhang M, Fouad H, Hong X, Ibrahim E, Masum MMI, Hossain A, Mo J, Li B (2019) Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artif Cells Nanomed Biotechnol 47(1):341–352

    CAS  PubMed  Google Scholar 

  277. Sharmila G, Thirumarimurugan M, Muthukumaran C (2019) Green synthesis of ZnO nanoparticles using Tecoma castanifolia leaf extract: characterization and evaluation of its antioxidant, bactericidal and anticancer activities. Microchem J 145:578–587

    CAS  Google Scholar 

  278. Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ahmad R, Ashraf M (2019) Plant-extract mediated green approach for the synthesis of ZnONPs: characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. J Mol Struct 1189:315–327

    CAS  Google Scholar 

  279. Anitha R, Ramesh K, Ravishankar T, Sudheer Kumar K, Ramakrishnappa T (2018) Cytotoxicity, antibacterial and antifungal activities of ZnO nanoparticles prepared by the Artocarpus gomezianus fruit mediated facile green combustion method

  280. Santhoshkumar J, Kumar SV, Rajeshkumar S (2017) Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resour-Effic Technol 3(4):459–465

    Google Scholar 

  281. Rueda D, Arias V, Zhang Y, Cabot A, Agudelo AC, Cadavid D (2020) Low-cost tangerine peel waste mediated production of titanium dioxide nanocrystals: synthesis and characterization. Environ Nanotechnol Monit Manag:100285

  282. Bavanilatha M, Yoshitha L, Nivedhitha S, Sahithya S (2019) Bioactive studies of TiO2 nanoparticles synthesized using Glycyrrhiza glabra. Biocatal Agric Biotechnol 19:101131

    Google Scholar 

  283. Subhapriya S, Gomathipriya P (2018) Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog 116:215–220

    CAS  PubMed  Google Scholar 

  284. Alavi M, Karimi N (2018) Characterization, antibacterial, total antioxidant, scavenging, reducing power and ion chelating activities of green synthesized silver, copper and titanium dioxide nanoparticles using Artemisia haussknechtii leaf extract. Artif Cells Nanomed Biotechnol 46(8):2066–2081

    CAS  PubMed  Google Scholar 

  285. Cherian T, Ali K, Saquib Q, Faisal M, Wahab R, Musarrat J (2020) Cymbopogon citratus functionalized green synthesis of CuO-nanoparticles: novel prospects as antibacterial and antibiofilm agents. Biomolecules 10(2):169

    CAS  PubMed Central  Google Scholar 

  286. Prakash S, Elavarasan N, Venkatesan A, Subashini K, Sowndharya M, Sujatha V (2018) Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Adv Powder Technol 29(12):3315–3326

    CAS  Google Scholar 

  287. Ramalingam V, Dhinesh P, Sundaramahalingam S, Rajaram R (2019) Green fabrication of iron oxide nanoparticles using grey mangrove Avicennia marina for antibiofilm activity and in vitro toxicity. Surf Interfaces 15:70–77

    CAS  Google Scholar 

  288. Alam T, Khan RAA, Ali A, Sher H, Ullah Z, Ali M (2019) Biogenic synthesis of iron oxide nanoparticles via Skimmia laureola and their antibacterial efficacy against bacterial wilt pathogen Ralstonia solanacearum. Mater Sci Eng C 98:101–108

    CAS  Google Scholar 

  289. Foudaa A, Saad E, Elgamala MS, Mohmedb AA, Salema SS (2017) Optimal factors for biosynthesis of silver nanoparticles by Aspergillus sp. Azhar Bull Sci 9:161–172

    Google Scholar 

  290. Gurunathan S, Han J, Park JH, Kim J-H (2014) A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett 9(1):248

    PubMed  PubMed Central  Google Scholar 

  291. Verma A, Mehata MS (2016) Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. J Radiat Res Appl Sci 9(1):109–115

    CAS  Google Scholar 

  292. Liu L, Wang H, Yi Z, Deng Q, Lin Z, Zhang X (2018) In situ investigation of bismuth nanoparticles formation by transmission electron microscope. Micron 105:30–34. https://doi.org/10.1016/j.micron.2017.11.008

    Article  CAS  PubMed  Google Scholar 

  293. Londono-Calderon A, Nayak S, Mosher CL, Mallapragada SK, Prozorov T (2019) New approach to electron microscopy imaging of gel nanocomposites in situ. Micron 120:104–112. https://doi.org/10.1016/j.micron.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  294. Jungjohann KL, Wheeler DR, Polsky R, Brozik SM, Brozik JA, Rudolph AR (2019) Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies. Micron 119:54–63. https://doi.org/10.1016/j.micron.2018.11.004

    Article  CAS  PubMed  Google Scholar 

  295. Raj S, Chand Mali S, Trivedi R (2018) Green synthesis and characterization of silver nanoparticles using Enicostemma axillare (Lam.) leaf extract. Biochem Biophys Res Commun 503(4):2814–2819. https://doi.org/10.1016/j.bbrc.2018.08.045

    Article  CAS  PubMed  Google Scholar 

  296. Titus D, James Jebaseelan Samuel E, Roopan SM (2019) Chapter 12 - nanoparticle characterization techniques. In: Shukla AK, Iravani S (eds) Green synthesis, characterization and applications of nanoparticles. Elsevier, Amsterdam, pp 303–319. https://doi.org/10.1016/B978-0-08-102579-6.00012-5

    Chapter  Google Scholar 

  297. Barzegar F, Zaefizadeh M, Yari R, Salehzadeh A (2019) Synthesis of nano-paramagnetic oleuropein to induce KRAS over-expression: a new mechanism to inhibit AGS cancer cells. Medicina 55(7):388

    PubMed Central  Google Scholar 

  298. Mourdikoudis S, Pallares RM, Thanh NT (2018) Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27):12871–12934

    CAS  PubMed  Google Scholar 

  299. Thakur BK, Kumar A, Kumar D (2019) Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity. S Afr J Bot 124:223–227. https://doi.org/10.1016/j.sajb.2019.05.024

    Article  CAS  Google Scholar 

  300. Marquis G, Ramasamy B, Banwarilal S, Munusamy AP (2016) Evaluation of antibacterial activity of plant mediated CaO nanoparticles using Cissus quadrangularis extract. J Photochem Photobiol B Biol 155:28–33. https://doi.org/10.1016/j.jphotobiol.2015.12.013

    Article  CAS  Google Scholar 

  301. Mohamad Sukri SNA, Shameli K, Mei-Theng Wong M, Teow S-Y, Chew J, Ismail NA (2019) Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J Mol Struct 1189:57–65. https://doi.org/10.1016/j.molstruc.2019.04.026

    Article  CAS  Google Scholar 

  302. Castillo IF, De Matteis L, Marquina C, Guillén EG, Martínez de la Fuente J, Mitchell SG (2019) Protection of 18th century paper using antimicrobial nano-magnesium oxide. Int Biodeterior Biodegradation 141:79–86. https://doi.org/10.1016/j.ibiod.2018.04.004

    Article  CAS  Google Scholar 

  303. Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5(1):19

    CAS  Google Scholar 

  304. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984

    PubMed  PubMed Central  Google Scholar 

  305. Golinska P, Rathod D, Wypij M, Gupta I, Składanowski M, Paralikar P, Dahm H, Rai M (2017) Mycoendophytes as efficient synthesizers of bionanoparticles: nanoantimicrobials, mechanism, and cytotoxicity. Crit Rev Biotechnol 37(6):765–778

    CAS  PubMed  Google Scholar 

  306. Manjunath Hullikere M, Joshi CG, Raju N (2014) Biogenic synthesis of silver nano particles using endophytic fungi Penicillium nodositatum and its antibacterial activity. J Chem Pharm Res 6(8):112–117

    Google Scholar 

  307. Arora S, Jain J, Rajwade J, Paknikar K (2008) Cellular responses induced by silver nanoparticles: in vitro studies. Toxicol Lett 179(2):93–100

    CAS  PubMed  Google Scholar 

  308. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15(1):65

    Google Scholar 

  309. Madigan M, Martinko J, Bender K, Buckley D, Stahl D (2014) Brock biology of microorganisms plus mastering microbiology with Etext. Benjamin-Cummings Pub Co

  310. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9(5):2673–2702

    CAS  PubMed  PubMed Central  Google Scholar 

  311. Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, Sharghi H (2015) The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. J Nanomater 16(1):53

    Google Scholar 

  312. Abalkhil TA, Alharbi SA, Salmen SH, Wainwright M (2017) Bactericidal activity of biosynthesized silver nanoparticles against human pathogenic bacteria. Biotechnol Biotechnol Equip 31(2):411–417

    CAS  Google Scholar 

  313. Ravichandran A, Subramanian P, Manoharan V, Muthu T, Periyannan R, Thangapandi M, Ponnuchamy K, Pandi B, Marimuthu PN (2018) Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. J Photochem Photobiol B Biol 185:117–125

    CAS  Google Scholar 

  314. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Feng QL, Wu J, Chen G, Cui F, Kim T, Kim J (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    CAS  PubMed  Google Scholar 

  316. Tourinho PS, Van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692

    CAS  PubMed  Google Scholar 

  317. Riva A, Algaba IM, Pepió M (2006) Action of a finishing product in the improvement of the ultraviolet protection provided by cotton fabrics. Modelisation of the effect. Cellulose 13(6):697–704

    CAS  Google Scholar 

  318. Yadav A, Prasad V, Kathe A, Raj S, Yadav D, Sundaramoorthy C, Vigneshwaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29(6):641–645

    CAS  Google Scholar 

  319. Shaheen TI, Salem SS, Zaghloul S (2019) A new facile strategy for multifunctional textiles development through in situ deposition of SiO2/TiO2 nanosols hybrid. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.9b04655

  320. Shukla K (2012) Nanotechnology and emerging trends in dairy foods: the inside story to food additives and ingredients. Int J Nanosci Nanotechnol 1(1):41–58

    Google Scholar 

  321. Espitia PJP, Soares NFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Medeiros EAA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5(5):1447–1464

    CAS  Google Scholar 

  322. Rajamanickam U, Mylsamy P, Viswanathan S, Muthusamy P Biosynthesis of zinc nanoparticles using actinomycetes for antibacterial food packaging. In: International conference on nutrition and food sciences Singapore, 2012

  323. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    CAS  Google Scholar 

  324. Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44(17):6330–6374

    CAS  PubMed  Google Scholar 

  325. Beeler E, Singh OV (2016) Extremophiles as sources of inorganic bio-nanoparticles. World J Microbiol Biotechnol 32(9):156

    PubMed  Google Scholar 

  326. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    CAS  PubMed  Google Scholar 

  327. Ingle A, Rai M (2011) Genetic diversity among Indian phytopathogenic isolates of Fusarium semitectum Berkeley and Ravenel. Adv Biosci Biotechnol 2(03):142

    CAS  Google Scholar 

  328. Naderi M, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229

    Google Scholar 

  329. Guo H, White JC, Wang Z, Xing B (2018) Nano-enabled fertilizers to control the release and use efficiency of nutrients. Curr Opin Environ Sci Health 6:77–83. https://doi.org/10.1016/j.coesh.2018.07.009

    Article  Google Scholar 

  330. Subbarao CV, Kartheek G, Sirisha D (2013) Slow release of potash fertilizer through polymer coating. Int J Appl Sci Eng 11(1):25–30

    Google Scholar 

  331. Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23. https://doi.org/10.1016/j.btre.2017.03.002

    Article  Google Scholar 

  332. Bisinoti MC, Moreira AB, Melo CA, Fregolente LG, Bento LR, Vitor dos Santos J, Ferreira OP (2019) Chapter 8 - application of carbon-based nanomaterials as fertilizers in soils. In: Nascimento RFd, Ferreira OP, De Paula AJ, Sousa Neto VdO (eds) Nanomaterials applications for environmental matrices. Elsevier, pp 305–333. https://doi.org/10.1016/B978-0-12-814829-7.00008-2

  333. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257

    CAS  Google Scholar 

  334. Athanassiou C, Kavallieratos N, Benelli G, Losic D, Rani PU, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91(1):1–15

    Google Scholar 

  335. Rawtani D, Khatri N, Tyagi S, Pandey G (2018) Nanotechnology-based recent approaches for sensing and remediation of pesticides. J Environ Manag 206:749–762. https://doi.org/10.1016/j.jenvman.2017.11.037

    Article  CAS  Google Scholar 

  336. Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J Colloid Interface Sci 314(1):230–235

    CAS  PubMed  Google Scholar 

  337. Salem SS, Fouda MMG, Fouda A, Awad MA, Al-Olayan EM, Allam AA, Shaheen TI (2020) Antibacterial, cytotoxicity and larvicidal activity of green synthesized selenium nanoparticles using penicillium corylophilum. Journal of Cluster Science. https://doi.org/10.1007/s10876-020-01794-8

  338. Sharma K, Singh G, Kumar M, Bhalla V (2015) Silver nanoparticles: facile synthesis and their catalytic application for the degradation of dyes. RSC Adv 5(33):25781–25788

    CAS  Google Scholar 

  339. Zhao J, Wu T, Wu K, Oikawa K, Hidaka H, Serpone N (1998) Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation: evidence for the need of substrate adsorption on TiO2 particles. Environ Sci Technol 32(16):2394–2400

    CAS  Google Scholar 

  340. Kharissova OV, Dias HR, Kharisov BI, Pérez BO, Pérez VMJ (2013) The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240–248

    CAS  PubMed  Google Scholar 

  341. Suvith V, Philip D (2014) Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 118:526–532

    CAS  PubMed  Google Scholar 

  342. Panáček A, Prucek R, Hrbáč J, Tj N, Šteffková J, Zbořil R, Kvitek L (2014) Polyacrylate-assisted size control of silver nanoparticles and their catalytic activity. Chem Mater 26(3):1332–1339

    Google Scholar 

  343. Bastús NG, Merkoçi F, Piella J, Puntes V (2014) Synthesis of highly monodisperse citrate-stabilized silver nanoparticles of up to 200 nm: kinetic control and catalytic properties. Chem Mater 26(9):2836–2846

    Google Scholar 

  344. Bhargava A, Jain N, Khan MA, Pareek V, Dilip RV, Panwar J (2016) Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. J Environ Manag 183:22–32

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Fouda.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, S.S., Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview. Biol Trace Elem Res 199, 344–370 (2021). https://doi.org/10.1007/s12011-020-02138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02138-3

Keywords

Navigation