Skip to main content
Log in

Studying of Non-Dendritic Microstructure Forming in Controlled Diffusion Solidification

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

A non-dendritic microstructure normally forming the products made by the controlled diffusion solidification process (CDS) has been studied. Samples from Al-4.7 wt%Cu, Al-8 wt%Cu, and Al-4.7 wt%Zn were made via the CDS process by mixing pure aluminum into Al-Cu and Al-Zn binary alloys at a different mass ratio. ANSYS software was employed to predict the distribution of the mixed alloys during the mixing step. The simulation results show that the mixed alloys breakdown to different size pockets. The higher mass pockets fall into the bottom sample after the mixing step resulting in effect the microstructure forming in the entire sample. The experimental results indicate that globular mixed with rosette and dendritic morphologies form the entire microstructure, although all the morphologies were exposed to the same thermal environment during growth. The results show that the globular morphologies form in the undercooled alloy that have a higher liquidus temperature, while the dendritic morphologies form from the alloy that has a lower liquidus temperature, which is heated during the mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. National Instruments, SCX 1100, USA.

  2. Ansys 15, Ansys Inc.

  3. Factsage (TM) 6.1, thermfact and gtt, technologist-1976-2009.

References

  1. A.A. Khalaf, Acta Mater. 103, 301 (2016)

    Article  CAS  Google Scholar 

  2. A.A. Khalaf, S. Shankar, JOM 72, 3733–3743 (2020)

    Article  CAS  Google Scholar 

  3. M. Pourgharibshahi, H. Saghafian, M. Divandari, G. Timelli, Metall. Mater. Trans. A 50, 326 (2019)

    Article  CAS  Google Scholar 

  4. R. Ghiaasiaan, X. Zeng, S. Shankar, Mater. Sci. Eng. A 594, 260 (2014)

    Article  CAS  Google Scholar 

  5. M. Pourgharibshahi, M. Divandari, H. Saghafian Larijani, P. Ashtari, J. Mater. Process. Technol. 250, 203 (2017)

    Article  CAS  Google Scholar 

  6. D. Saha, S. Shankar, D. Apelian, M.M. Makhlouf, Metall. Mater. Trans. A 35, 2174 (2004)

    Article  Google Scholar 

  7. D. Apelian, M. M. Makhlouf, D. Saha, in Mater. Sci. Forum (2006), pp. 1771–1776.

  8. K. Symeonidis, The controlled diffusion solidification process: fundamentals and principles. Ph.D Thesis, Worcester Polytechnic Institute (WPI), 2009.

  9. A.A. Khalaf, P. Ashtari, S. Shankar, Metall. Mater. Trans. B 40, 843 (2009)

    Article  Google Scholar 

  10. A. A. Khalaf, Controlled diffusion solidification: Process Mechanism and Parameter Study. Ph.D Thesis, McMaster University, 2010.

  11. A.A. Khalaf, S. Shankar, Metall. Mater. Trans. A 42, 2456 (2011)

    Article  CAS  Google Scholar 

  12. A.A. Khalaf, S. Shankar, J. Mater. Sci. 47, 8153 (2012)

    Article  CAS  Google Scholar 

  13. Y. Li, X. Zhang, Y. Ma, D. Apelian, H. Zhou, X. Liu, China Foundry Res. Dev. 12, 173 (2015)

    Google Scholar 

  14. A.A. Khalaf, K.J. Takrouri, S.N. Appl, Sci. 2, 1337 (2020)

    CAS  Google Scholar 

  15. M. Wu, A. Ludwig, Acta Mater. 57, 5632 (2009)

    Article  CAS  Google Scholar 

  16. W. Kurz, D.J. Fisher, Fundamentals of Solidification, 2nd edn. (Trans Tech Publications, Aedermannsdorf, 1984).

    Google Scholar 

  17. I. Egry, M.S. Ju, B. Hallstedt, J. Mater. Sci. 47, 8145 (2012)

    Article  Google Scholar 

  18. R. Ghiaasiaan, S. Shankar, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 51, 4711 (2020)

    Article  CAS  Google Scholar 

  19. W. Kurz, D.J.J. Fisher, Acta Metall. 29, 11 (1981)

    Article  CAS  Google Scholar 

  20. E. Cini, B. Vinet, P.J. Desre, Philos. Mag. A 80, 955 (2000)

    Article  CAS  Google Scholar 

  21. G. Müller, J. Metois, P. Rudolph, Crystal Growth -from Fundamentals to Technology (Elsevier, New York, NY, 2004).

    Google Scholar 

  22. R. Trivedi, J. Cryst. Growth 48, 93 (1980)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Mr. Doug Culley, Mr. Xiaogang Li, and Xiaochun Zheng for helping to use the Factsage software and optical microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas A. Khalaf.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalaf, A.A. Studying of Non-Dendritic Microstructure Forming in Controlled Diffusion Solidification. Inter Metalcast 16, 223–233 (2022). https://doi.org/10.1007/s40962-021-00590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00590-y

Keywords

Navigation