Skip to main content
Log in

Controlled Diffusion Solidification Pathway of an AA 7xxx Series Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The solidification path of a controlled diffusion solidification (CDS) mixture based on the determination of a common cooling curve cannot be easily studied. This is due to the interference caused by convectional flows through temperature distribution and loss of the liquidus temperature. In this work, the lost stage of the CDS pathway for an AA 7xxx series aluminum alloy has been defined both experimentally and by the use of a Scheil solidification curve for high thermal-mass alloy. The solidification path (Tfs curve) of the alloy shifts to higher temperatures as a result of CDS processing which indicates an alternative form of higher-kinetics nucleation and growth. As a result of the increase in the nucleation temperature, the solidification interval can be larger than that of the conventional alloy. In comparison with the conventional solidification, CDS promotes the coherency fraction solid, while it has no effect on the coherency temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. US 7201210B2: 2003.

  2. R. Ghiaasiaan, X. Zeng, and S. Shankar: Mater. Sci. Eng. A, 2014, vol. 594, pp. 260–77.

    Article  CAS  Google Scholar 

  3. A. Khalaf, P. Ashtari, and S. Shankar: Metall. Mater. Trans. B, 2009, vol. 40, pp. 843–9.

    Article  CAS  Google Scholar 

  4. S.A. Kahtani, H.W. Doty, F.H. Samuel: Int. J. Cast Met. Res., 2014, 27, 38–48.

    Article  CAS  Google Scholar 

  5. A.M. Samuel, G.H. Garza-Elizondo, H.W. Doty, and F.H. Samuel: Mater. Des., 2015, vol. 80, pp. 99–108.

    Article  CAS  Google Scholar 

  6. K. Symeonidis: Ph.D. Thesis, Worcester Polytechnic Institute, Massachusett, USA, 2009.

  7. R. Ghiaasiaan, S. Shankar, and D. Apelian: in Shape Casting: 5th International Symposium 2014, Wiley, Hoboken, NJ, USA, 2014, pp. 89–97.

  8. M. Pourgharibshahi, M. Divandari, H. Larijani, P. Ashtari: J. Mater. Process. Technol., 2017, 250, 203–19.

    Article  CAS  Google Scholar 

  9. J.A. Dantzig, M. Rappaz: Solidification, EPFL Press, Lausanne, 2009.

    Book  Google Scholar 

  10. D.H. StJohn, A. Prasad, M.A. Easton, M. Qian: Metall. Mater. Trans. A 2015, 46, 4868–85.

    Article  Google Scholar 

  11. R. Ghiaasiaan, S. Shankar, and D. Apelian: in Shape Casting: 5th International Symposium, 2014, pp. 89–97.

  12. L. Backerud, E. Krol, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, Vol. 1: Wrought Alloys, Skan Aluminium, Oslo, Norway, 1986.

  13. Y.A. Zholkov: Meas. Tech., 1961, vol. 4, pp. 983–5.

    Article  Google Scholar 

  14. B. Cini, E. Vinet, and P.J. Desre: Philos. Mag. A, 2000, vol. 80, pp. 955–66.

    Article  CAS  Google Scholar 

  15. P.J. Desré, E. Cini, and B. Vinet: J. Non. Cryst. Solids, 2001, vol. 288, pp. 210–7.

    Article  Google Scholar 

  16. B. Kun, H. Rui, L. Jinshan, and Z. Lian: Rare Met. Mater. Eng., 2014, vol. 43, pp. 1–5.

    Google Scholar 

  17. J. Dong, J.Z. Cui, Q.C. Le, and G.M. Lu: Mater. Sci. Eng. A, 2003, vol. 345, pp. 234–42.

    Article  Google Scholar 

  18. K. Xia and G. Tausig: Mater. Sci. Eng. A, 1998, vol. 246, pp. 1–10.

    Article  Google Scholar 

  19. P. Popel, U. Dahlborg, and M. Calvo-Dahlborg: in IOP Conference Series: Materials Science and Engineering, vol. 192, 2017.

  20. V. V. Astaf, A.R. Kurochkin, T.I. Yablonskikh, I.G. Brodova, P.S. Popel: Met. Sci. Heat Treat., 2017, 59, 491–7.

    Article  Google Scholar 

  21. R. Ghiaasiaan: Ph.D. Thesis, McMaster University, Ontario, Canada, 2015.

  22. M.B. Djurdjevic, Z. Odanovic, and N. Talijan: Jom, 2011, vol. 63, pp. 51–7.

    Article  CAS  Google Scholar 

  23. L. Backerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys. Vol. 2. Foundry Alloys, American Foundrymen’s Society, Inc., 1990.

    Google Scholar 

  24. J. Rakhmonov, G. Timelli, and F. Bonollo: Mater. Charact., 2017, vol. 128, pp. 100–8.

    Article  CAS  Google Scholar 

  25. J. Rakhmonov, G. Timelli, and F. Bonollo: Metall. Mater. Trans. A, 2016, vol. 47, pp. 5510–21.

    Article  Google Scholar 

  26. H. Cruz, C. Gonzalez, A. Juárez, M. Herrera, and J. Juarez: J. Mater. Process. Technol., 2006, vol. 178, pp. 128–34.

    Article  CAS  Google Scholar 

  27. D. Emady, L.V. Whiting, M.. Djurdjevic, W.T. Kierkus, and J.. Sokolowski: Metal. J. Metall., 2004, vol. 10, pp. 91–106.

    Article  Google Scholar 

  28. S.H. Avner: Introduction to Physical Metallurgy, 2nd edn., McGraw Hill, New York, 1974.

    Google Scholar 

  29. P. Richet: The Physical Basis of Thermodynamics With Applications to Chemistry, Springer Science, New York, 2001.

    Book  Google Scholar 

  30. B. Cantor: Philos. Trans. R. 2003, 361, 409–17.

    Article  CAS  Google Scholar 

  31. Z. Fan: Metall. Mater. Trans. A 2013, 44, 1409–18.

    Article  Google Scholar 

  32. L. Coudurier, N. Eustathopoulos, and P. Desre: Fluid Phase Equilib., 1980, vol. 4, pp. 71–88.

    Article  CAS  Google Scholar 

  33. S.R. Lampman: Weld Integr. Perform., 1997, vol. 6, pp. 3–22.

    Google Scholar 

  34. D. Saha: Ph.D. Thesis, Worcester Polytechnic Institute, Massachusett, USA, 2005.

  35. K. Symeonidis, D. Apelian, and M.M. Makhlouf: Metall. Sci. Technol. A, 2008, vol. 26, pp. 30–40.

    CAS  Google Scholar 

  36. A. Khalaf: Ph.D. Thesis, McMaster University, Ontario, Canada, 2010.

  37. A. Khalaf: Acta Mater., 2016, vol. 103, pp. 301–10.

    Article  CAS  Google Scholar 

  38. A.D. Pelton, G. Eriksson, and C.W. Bale: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3113–29.

    Article  Google Scholar 

  39. W. Kurz and D. Fisher: Fundamentals of solidification. Trans Tech Publ., Aedermannsdorf, 1986, p. 287.

    Google Scholar 

  40. D.H. StJohn, M. Qian, M.A. Easton, and P. Cao: Acta Mater., 2011, vol. 59, pp. 4907–21.

    Article  CAS  Google Scholar 

  41. M.A. Easton, M. Qian, A. Prasad, and D.H. StJohn: Curr. Opin. Solid State Mater. Sci., 2016, vol. 20, pp. 13–24.

    Article  CAS  Google Scholar 

  42. J.L. Murray: Bull. Alloy Phase Diagrams, 1983, vol. 4, pp. 55–73.

    Article  Google Scholar 

  43. B. Predel, ed.: in Landolt-Börnstein - Group IV Physical Chemistry, Springer-Verlag, Berlin/Heidelberg, 2010.

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Alberto Fabrizi from the Department of Management and Engineering at the University of Padova for assistance with the FEG-SEM studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Saghafian.

Additional information

Manuscript submitted July 18, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourgharibshahi, M., Saghafian, H., Divandari, M. et al. Controlled Diffusion Solidification Pathway of an AA 7xxx Series Aluminum Alloy. Metall Mater Trans A 50, 326–335 (2019). https://doi.org/10.1007/s11661-018-5000-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5000-x

Navigation