Skip to main content
Log in

Microstructure, Intermetallic Phases, and Fractography of the Cast Al-5.8Zn-2.2Mg-2.5Cu Alloy by Controlled Diffusion Solidification

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The cast specimens for this study were prepared with a final composition of Al-5.8Zn-2.2Mg-2.5Cu alloy by using a relatively new casting process that is also known as controlled diffusion solidification (CDS). In an earlier publication, evaluation of the uniaxial tensile properties of these castings was reported and discussed. In the present study, the effect of the CDS process was examined on the formation of secondary and intermetallic phases (IMPs) evolving during solidification. A quantitative image analysis was carried out using the light optical microscopy (LOM) and scanning electron microscopy (SEM) techniques. The quantitative metallography showed that the total phase fraction of the eutectic phases is greater than that predicted by the thermodynamic calculations, assuming the Scheil–Gulliver (S–G) (nonequilibrium) paradigm, which strongly suggests a significant shift from conventional wisdom regarding solute redistribution during solidification. Furthermore, the fractography results confirmed an intergranular ductile fracture mode in the castings under tension load. The microcracks/voids were initiated from shrinkage cavities or fractured IMPs such as Mg2Si and Cu2FeAl7; these phases solidified at the grain boundary (GB) areas, alongside the eutectic phases, such as sigma-Mg(Zn,Cu,Al)2 and S-(CuMgAl2), during the final stage of solidification. It was shown that the GB eutectic phases would further provide an easy pathway for the growth and propagation of initial microcracks/voids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. * Eberbach Corporation (Ann Arbor, MI) equipped with image processing software: NIS BR 3.10 image acquisition system.

  2. ** JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

  3. ImageJ, Image Processing and Analysis in Java, 1.42q Java 1.6.0 (32 bit).

  4. * The AA-7050 wrought samples were originally purchased from the manufacturer, Reynolds Inc. (or Alabama Specialty Products, Inc.). The original AA-7050 wrought samples were received in the form of hot-rolled 0.25-in. × 6-in. plates and T7561 heat-treatment condition according to the ASM-4201B-T7651 standard.

References

  1. L. Cheah, J. Heywood, and R. Kirchain: Sustainable Systems and Technology (ISSST), IEEE Int. Symp., IEEE, Piscataway, NJ, 2010.

  2. L.W. Cheah: Cars on a Diet: The Material and Energy Impacts of Passenger Vehicle Weight Reduction in the U.S. MIT Press, Cambridge, MA, 2010.

    Google Scholar 

  3. “Proposed Rulemaking to Establish Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards,” U.S. Environmental Protection Agency Draft Regulatory Impact Analysis, EPA-420-D-09-003, Assessment and Standards Division, Office of Transportation and Air Quality, Washington, DC, 2009.

  4. I.J. Polmear: Light Alloys from Traditional Alloys to Nano-Crystals, 4th ed., Butterworth-Heinemann, Oxford, United Kingdom, 2006.

    Google Scholar 

  5. J.E. Hatch: Aluminum: Properties and Physical Metallurgy, ASM International, Metals Park, OH, 1984.

    Google Scholar 

  6. S.R. Ghiaasiaan, B. ShalchiAmirkhiz, and S. Shankar: J. Mater. Eng. Perform., 2019, 28, 4630–46.

    CAS  Google Scholar 

  7. R. Ghiaasiaan, X. Zeng, and S. Shanka: Int. J. Metalcast., 2019, vol. 13 (2), pp. 300–10

    CAS  Google Scholar 

  8. R. Ghiaasiaan, X. Zeng, and S. Shankar: Mater. Sci. Eng. A, 2014, vol. 594, pp. 260–77.

    CAS  Google Scholar 

  9. R. Ghiaasiaan, S. Shankar, and D. Apelian: TMS Conf., San Diego, CA, 2014, TMS, Warrendale, PA, 2014.

  10. R. Ghiaasiaan, B. Shalchi-amirkhiz, and S. Shankar: Mater. Sci. Eng. A, 2017, vol. 698, pp. 206–17.

    CAS  Google Scholar 

  11. R. Ghiaasiaan and S. Shankar: Mater. Sci. Eng. A, 2018, 733, 235–45.

    CAS  Google Scholar 

  12. A.A. Khalaf and S. Shankar: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2456–65

    Google Scholar 

  13. A.A. Khalaf, P. Ashtari, and S. Shankar: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 843–49.

    CAS  Google Scholar 

  14. Deepak Saha, Sumanth Shankar, Diran Apelian, and Makhlouf M. Makhlouf: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2174–80.

    CAS  Google Scholar 

  15. A.A. Khalaf and S. Shankar: J. Mater. Sci., 2012, vol. 47, pp. 8153–66.

    CAS  Google Scholar 

  16. A.A. Khalaf: Acta Mater., 2016, vol. 103, pp. 301–10

    CAS  Google Scholar 

  17. A.A Khalaf and S. Shankar: JOM, 2020.

  18. D. Saha: Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, 2005, pp. 8–16 and 48.

  19. K. Symeonidis: Ph.D. Thesis, Worcester Polytechnic Institute, MA, 2009, pp. 20, 67, and 83.

  20. ASM Handbook Committee: Metallographic, Structure and Phase Diagram, Metals Handbook, 8th ed., ASM, Metals Park, OH, 1973.

    Google Scholar 

  21. M.J. Starink and S.C. Wang: Acta Mater., 2003, vol. 51, pp. 5131–50.

    CAS  Google Scholar 

  22. L.F. Mondolfo: Metall. Rev., 1971, 95, 94–124.

    Google Scholar 

  23. H. Loffler, I. Kovacs, and J. Lendvai: J. Mater. Sci., 1983, vol. 18, pp. 2215–40.

    Google Scholar 

  24. J.K. Park and A.J. Ardell: Metall. Trans. A, 1984, vol. 15A, pp. 1531–43.

    CAS  Google Scholar 

  25. J.D. Embury and R.B. Nicholson: Acta Metall., 1965, vol. 13, pp. 403–17.

    CAS  Google Scholar 

  26. R.B. Nicholson, G. Thomas, and J. Nutting: Acta Metall., 1960, vol. 8 (3), pp. 172–76.

    CAS  Google Scholar 

  27. T. Engdahl, V. Hansen, P.J. Warren, and K. Stiller: Mater. Sci. Eng. A, 2002, vol. 327, pp. 59–64.

    Google Scholar 

  28. M.D. David, R.D. Foley, J.A. Griffin, and C.A. Monroe: Int. J. Metalcast., 2016, vol. 10 (1), pp. 2–20.

    CAS  Google Scholar 

  29. J.D. Robson: Mater. Sci. Eng. A, 2004, vol. 382, pp. 112–21.

    Google Scholar 

  30. F. Xie, X. Yan, L. Ding, F. Zhang, S. Chen, M.C. Chu, and Y.A. Chang: Mater. Sci. Eng. A, 2003, vol. 355, pp. 144–53.

    Google Scholar 

  31. J.Q. Su, T.W. Nelson, R. Mishra, and M. Mahoney: Acta Mater., 2003, vol. 51, pp. 713–29.

    CAS  Google Scholar 

  32. X.Z. Li, V. Hansen, J. Gjønnes, and L.B. Wallenberg: Acta Mater., 1999, vol. 47, pp. 2651–59.

    CAS  Google Scholar 

  33. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg: Acta Mater., 2001, vol. 49, pp. 3443–51.

    CAS  Google Scholar 

  34. Y.P. Xiao, Q.L. Pan, W.B. Li, X.Y. Liu, and Y.B. He: Mater. Des., 2011, vol. 32 (4), pp. 2149–56.

    CAS  Google Scholar 

  35. J.D. Robson and P.B. Prangnell: Acta Mater., 2001, vol. 49, pp. 599–613.

    CAS  Google Scholar 

  36. J. Gjønnes and C. Simensen: Acta Metall., 1970, vol. 18, pp. 881–90.

    Google Scholar 

  37. J.T. Staley: “Microstructure and Toughness of High-Strength Aluminum Alloys, Properties Related to Fracture Toughness,” ASTM STP 605, ASTM, West Conshohocken, PA, 1976, pp. 71–103.

    Google Scholar 

  38. T.H. Sanders and J.T. Staley, Jr.: Fatigue and Microstructure, ASM International, Metals Park, OH, 1979.

    Google Scholar 

  39. G.T. Hahn and A.R. Rosenfield: Metall. Trans. A, 1975, vol. 6A, pp. 653–68.

    CAS  Google Scholar 

  40. G.S. Peng, K.H. Chen, S.Y. Chen, and H.C. Fang: Trans. Nonferr. Met. Soc. China, 2012, vol. 22 (4), pp. 803–09.

    CAS  Google Scholar 

  41. M.F. Ibrahim, G.H. Garza-Elizondo, A.M. Samuel, and F.H. Samuel: Int. J. Metalcast., 2016, vol. 10, pp. 264–75.

    CAS  Google Scholar 

  42. J.T. Jiang, W.Q. Xiao, L. Yang, W.Z. Shao, S.J. Yuan, and L. Zhen: Mater. Sci. Eng., 2012, vol. A605, pp. 167–75.

    Google Scholar 

  43. X.M. Li and M.J. Starink: J. Mater. Eng. Perform., 2012, vol. 21 (6), pp. 977–84.

    CAS  Google Scholar 

  44. D. Dumont, A. Deschamps, Y. Brechet, C. Sigli, and J.C. Ehrstrom: Mater. Sci. Technol., 2004, vol. 20, pp. 567–76.

    CAS  Google Scholar 

  45. M. Chemingui, M. Khitouni, K. Jozwiak, G. Mesmacquec, and A. Kolsi: Mater. Des., 2010, vol. 31 (6), pp. 3134–39.

    CAS  Google Scholar 

  46. N.E. Mazibuko and U.A. Curle: Mater. Sci. Forum, 2011, vol. 690, pp. 343–46.

    CAS  Google Scholar 

  47. E. Druschitz, R.D. Foley, and J.A. Griffin: Trans. Am. Foundry Soc., 117th Annual Metalcasting Congr., 2013, pp. 231–41.

  48. K.S. Ghosh and N. Gao: Trans. Nonferr. Met. Soc. China, 2011, vol. 21, pp. 1199–1200.

    CAS  Google Scholar 

  49. J.T. Jiang, Q.J. Tang, L. Yang, K. Zhang, S.J. Yuan, and L. Zhen: J. Mater. Process. Technol., 2016, vol. 227, pp. 110–16.

    CAS  Google Scholar 

  50. G.E. Dieter: Mechanical Metallurgy, McGraw Hill, New York, 1988.

    Google Scholar 

  51. A. Haghparast, M. Nourimotlagh, and M. Alipour: Mater. Charact., 2012, vol. 71, pp. 6–18.

    CAS  Google Scholar 

  52. ASM Handbook, vol. 12, Fractography, ASM International, Metals Park, OH, 1987.

  53. D. Hull: Fractography, Cambridge University Press, Cambridge, United Kingdom, 1999.

    Google Scholar 

  54. D.H. Kirkwood: Mater. Des., 2000, vol. 21, pp. 387–94.

    Google Scholar 

  55. H.R. Shercliff and M.F. Ashby: Acta Metall. Mater., 1990, vol. 38 (10), pp. 1789–1802.

    CAS  Google Scholar 

  56. H.R. Shercliff and M.F. Ashby: Acta Metall. Mater., 1990, vol. 38 (10), pp. 1803–12.

    CAS  Google Scholar 

  57. M.C. Flemings: Metall. Mater. Trans. B, 1991, vol. 22B, pp. 269–93.

    CAS  Google Scholar 

  58. M. Lalpoora, D.G. Eskina, and L. Katgerman: Mater. Sci. Eng. A, 2008, vol. 497A, pp. 186–94.

    Google Scholar 

  59. S. Lin, C. Sliravci, and M.O. Pekguleryuz: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1056–68.

    CAS  Google Scholar 

  60. D.G. Eskin and L. Katgerman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1511–19.

    CAS  Google Scholar 

  61. M. Rappaz, J.-M. Drezet, V. Mathier, and S. Vernède: Materials Science Forum, Trans Tech Publications, Aedermannsdorf, Switzerland, 2016, vols. 519–521, pp. 1665–74.

    Google Scholar 

Download references

Acknowledgments

The authors express their gratitude toward the Natural Sciences and Engineering Research Council (NSERC) of Canada for its financial support through both the Discovery Grant program and the Automotive Partnership of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghiaasiaan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted December 15, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiaasiaan, R., Shankar, S. Microstructure, Intermetallic Phases, and Fractography of the Cast Al-5.8Zn-2.2Mg-2.5Cu Alloy by Controlled Diffusion Solidification. Metall Mater Trans A 51, 4711–4726 (2020). https://doi.org/10.1007/s11661-020-05885-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05885-z

Navigation