Skip to main content
Log in

Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present work a high temperature oscillating cup viscometer has been used to measure the viscosities of liquid binary Al–Cu alloys. The dependence of viscosity on temperature is well described by the Arrhenius law. For constant temperature, the viscosity as a function of copper concentration exhibits a maximum at a mole fraction x Cu = 0.7. This might be due to a pronounced chemical short range order in the liquid phase at this composition. As the comparison of existing phenomenological models describing viscosity as a function of composition to the experimental data is unsatisfactory, a new model for the viscosity has been developed within this work based only on a few assumptions and using the enthalpy of mixing as input parameter which is easily accessible. The agreement between model calculation and experimental data is excellent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brillo J, Brooks R, Egry I, Quested P (2008) High Temp High Press 37:371

    CAS  Google Scholar 

  2. Egry I (1991) J Mater Sci 26:2997. doi:10.1007/BF01124834

    Article  CAS  Google Scholar 

  3. Schneider S, Egry I, Seyhan I (2002) Int J Thermophys 23:1241

    Article  CAS  Google Scholar 

  4. Schmitz J, Brillo J, Egry I, Schmid-Fetzer R (2009) Int J Mater Res 100:1529

    Article  CAS  Google Scholar 

  5. Brillo J, Plevachuk Yu, Egry I (2010) J Mater Sci 45:5150. doi:10.1007/s10853-010-4512-6

    Article  CAS  Google Scholar 

  6. Brillo J, Egry I, Westphal J (2008) Int J Mater Res 99:162

    Article  CAS  Google Scholar 

  7. Brillo J, Egry I (2003) Int J Thermophys 24:1155

    Article  CAS  Google Scholar 

  8. Jones WRD, Bartlett WL (1952–1953) J Inst Met 81:145

  9. Gebhardt E, Becker M, Dorner S (1953) Z Metallkd 44:510

    CAS  Google Scholar 

  10. Lihl F, Nachtigall E, Schwaiger A (1968) Z Metallkd 59:213

    CAS  Google Scholar 

  11. Roscoe R (1958) Proc Phys Soc 72:576

    Article  CAS  Google Scholar 

  12. Friedrichs HA, Ronkow LW, Zhou Y (1997) Steel Res 68:209

    CAS  Google Scholar 

  13. Plevachuk Y, Sklyarchuk V, Yakymovych A, Eckert S, Willers B, Eigenfeld K (2008) Met Mater Trans A 39:3040

    Article  Google Scholar 

  14. Konstantinova NY, Popel PS (2008) J Phys: Conf Ser 98:062022

    Article  Google Scholar 

  15. Kehr M, Hoyer W, Egry I (2007) Int J Thermophys 28:1017

    Article  CAS  Google Scholar 

  16. Dinsdale A, Quested PN (2004) J Mater Sci 39:7221. doi:10.1023/B:JMSC.0000048735.50256.96

    Article  CAS  Google Scholar 

  17. Brillo J, Brooks R, Egry I, Quested PN (2007) Int J Mater Res 98:457

    CAS  Google Scholar 

  18. Moelwyn-Hughes EA (1961) Physical chemistry. Pergamon Press, Oxford

    Google Scholar 

  19. Kozlov LYa, Romanov LM, Petrov NN (1983) Izv vysch uch zav Chernaya Metallurgiya 3:7

    Google Scholar 

  20. Seetharaman S, Sichen D (1994) Met Mater Trans B 25:589

    Article  Google Scholar 

  21. Kaptay G (2003) In: Proceedings of microCAD 2003 Conference, Section Metallurgy, University of Miscolc 23

  22. Hirai M (1993) ISIJ Int 33:251

    Article  CAS  Google Scholar 

  23. Ferris D, Quested PN (2002) NPL Report CMMT(A):306

  24. Iida T, Guthrie R (1993) The physical properties of liquid metals. Clarendon Press, Oxford

    Google Scholar 

  25. Assael MJ, Kakosimos K, Banish RM, Brillo J, Egry I, Brooks R, Quested PN, Mills KC, Nagashima A, Sato Y, Wakeham WA (2006) J Phys Chem Ref Data 52:285

    Article  Google Scholar 

  26. Brillo J, Chathoth SM, Koza MM, Meyer A (2008) Appl Phys Lett 93:121905

    Article  Google Scholar 

  27. Witusiewicz VT, Hecht U, Fries SG, Rex S (2004) J Alloys Compd 385:133

    CAS  Google Scholar 

  28. Kehr M, Schick M, Hoyer W, Egry I (2008) High Temp High Press 37:361

    CAS  Google Scholar 

  29. Walsdorfer H, Arpshofen I, Predel B (1988) Z Metallkd 79:503

    CAS  Google Scholar 

  30. Brillo J, Bytchkov A, Egry I, Hennet L, Mathiak G, Pozdnyakova I, Price DL, Thiaudiere D, Zanghi D (2006) J Non-Cryst Solids 352:4008

    Article  CAS  Google Scholar 

  31. Maret M, Pomme T, Pasturel A (1990) Phys Rev B 42:1598

    Article  CAS  Google Scholar 

  32. Das SK, Horbach J, Koza MM, Mavilla Chatoth S, Meyer A (2005) Appl Phys Lett 86:011918

    Article  Google Scholar 

  33. Budai I, Benkö MZ, Kaptay G (2005) Mater Sci Forum 473–474:309

    Article  Google Scholar 

  34. Dinsdale AT (1991) CALPHAD 15:317

    Article  CAS  Google Scholar 

  35. Saunders N (1998) In: Ansara I, Dinsdale AT, Rands MH (eds) COST-507 Thermochemical database for light metal alloys. European Communities, Luxemburg, p 28

  36. Redlich O, Kister AT (1948) Ind Eng Chem 40:345

    Article  Google Scholar 

  37. Hillert M, Staffansson LI (1970) Acta Chem Scand 24:3618

    Article  CAS  Google Scholar 

  38. Sundman B, Ågren J (1981) J Phys Chem Solids 42:297

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support of this work by Deutsche Forschungsgemeinschaft (DFG) under Contract No. EG 93/8-1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Brillo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schick, M., Brillo, J., Egry, I. et al. Viscosity of Al–Cu liquid alloys: measurement and thermodynamic description. J Mater Sci 47, 8145–8152 (2012). https://doi.org/10.1007/s10853-012-6710-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-012-6710-x

Keywords

Navigation