Skip to main content

Advertisement

Log in

The Emerging Role of Curcumin in Inducing Neuronal Trans-differentiation of Mesenchymal Stem Cells: a Review

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Purpose

This review focused on the effectiveness of utilising natural compounds like curcumin to induce the trans-differentiation of mesenchymal stem cells into cells resembling neurons.

Methods

The literature works published in the last 10 years on the role of curcumin in inducing neuronal trans-differentiation of mesenchymal stem cells was studied using databases like PubMed, ScienceDirect, and Google Scholar. Various experiments regarding mesenchymal stem cell (MSCs) trans-differentiation, neuroprotective property of curcumin was investigated, and the data obtained from the experiments relating curcumin’s efficiency in targeting Wnt signalling pathway which plays a major role in the trans-differentiation of mesenchymal stem cells into neuronal like cells have been concised into a review article to provide a clear and better understanding of the associated mechanism. A workflow depicting the review process is mentioned in Fig. 1.

Results

The results of many experimental studies have concluded that curcumin aids in neuronal trans-differentiation through its role as a GSK-3β inhibitor to activate Wnt/β-catenin signalling pathway and the neuronal like cells obtained through this process could act as a therapeutic tool in treating neurodegenerative disorders involving the damage of neurons.

Conclusion

Curcumin’s numerous beneficial properties have been used in the treatment of diseases, particularly it has given rise to a possibility of treating neurodegenerative disorders. Curcumin’s role in the induction of neuronal trans-differentiation has gained popularity in the scientific world although there are drawbacks involving the efficiency of trans-differentiation. Future studies need to focus on the molecular biology level of the trans-differentiated neuronal like cells and the precise role of curcumin in the process to emerge as a potential therapeutic agent.

Lay Summary

Curcumin, obtained from Curcuma longa, has vast therapeutic qualities that could be used to treat various disorders. Mesenchymal stem cell’s advantage over embryonic stem cells in ethical restraints, combined with immunosuppressive nature, has made them the preferred cellular transplantation mode for neurodegenerative illnesses. There are several works where neuronal trans-differentiation of MSCs triggered by curcumin and resveratrol has been shown to be efficient. In this review, the neuronal trans-differentiating potential of mesenchymal stem cells and curcumin’s role in modulating the associated signalling pathways have been discussed based on the reported literatures available till date. It also highlights the therapeutical efficacy of curcumin in neurodegenerative disease management.

Description of Future Works

Recent advances have proved curcumin’s importance in the neuronal trans-differentiation process. However, further research on the efficiency of trans-differentiation and molecular characterisation studies on the neuronal resemblance of the transdifferentiated cells in order to develop into fully functioning neurons is required to strengthen its role as a novel therapy for neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsuiji H, Yamanaka K. Animal models for neurodegenerative disorders. Anim Biotechnol Model Discov Transl. 2013:39–56. https://doi.org/10.1016/B978-0-12-416002-6.00003-1.

  2. Rager JE. The role of apoptosis-associated pathways as responders to contaminants and in disease progression. Syst Biol Toxicol Environ Heal. Elsevier Inc. 2015:187–205. https://doi.org/10.1016/B978-0-12-801564-3.00008-0.

  3. Akiyama T. Wnt/β-catenin signaling. Cytokine Growth Factor Rev. 2000;11:273–82. https://doi.org/10.1016/s1359-6101(00)00011-3.

    Article  CAS  Google Scholar 

  4. Dantuma E, Merchant S, Sugaya K. Stem cells for the treatment of neurodegenerative diseases. Stem Cell Res Ther. 2010;1:1–7. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/scrt37.

    Article  Google Scholar 

  5. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells — current trends and future prospective. Biosci Rep. 2015;35(2):e00191. https://doi.org/10.1042/BSR20150025.

    Article  CAS  Google Scholar 

  6. Nguyen HT, Theerakittayakorn K, Somredngan S, Ngernsoungnern A, Ngernsoungnern P, Sritangos P, et al. Signaling pathways impact on induction of corneal epithelial-like cells derived from human Wharton’s jelly mesenchymal stem cells. Int J Mol Sci. 2022;23:3078. Available from: https://doi.org/10.3390/ijms23063078.

  7. Huang YZ, Gou M, Da LC, Zhang WQ, Xie HQ. Mesenchymal stem cells for chronic wound healing: current status of preclinical and clinical studies. Tissue Eng Part B Rev. 2020;26(6):555–70. https://doi.org/10.1089/ten.TEB.2019.0351.

    Article  CAS  Google Scholar 

  8. Yianni V, Sharpe PT. Perivascular-derived mesenchymal stem cells. J Dent Res. 2019;98(10):1066–72. https://doi.org/10.1177/0022034519862258.

    Article  CAS  Google Scholar 

  9. Feng J, Mantesso A, De Bari C, Nishiyama A, Sharp PT. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A. 2011;108:6503–8. Available from: https://www.pnas.org/doi/abs/10.1073/pnas.1015449108.

    Article  CAS  Google Scholar 

  10. Di Carlo SE, Peduto L. The perivascular origin of pathological fibroblasts. J Clin Invest. 2018;28(1):54–63. https://doi.org/10.1172/JCI9355.

    Article  Google Scholar 

  11. Staff NP, Jones DT, Singer W. Mesenchymal stromal cell therapies for neurodegenerative diseases. Mayo Clin Proc. 2019;94(5):892–905. https://doi.org/10.1016/j.mayocp.2019.01.001.

    Article  Google Scholar 

  12. Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis. 2020;12:1–14. Available from: https://pubmed.ncbi.nlm.nih.gov/32393744/.

    Google Scholar 

  13. Petrou P, Kassis I, Levin N, Paul F, Backner Y, Benoliel T, et al. Beneficial effects of autologous mesenchymal stem cell transplantation in active progressive multiple sclerosis. Brain. 2020;143:3574–88. Available from: https://pubmed.ncbi.nlm.nih.gov/33253391/.

    Article  Google Scholar 

  14. Banerjee A, Bizzaro D, Burra P, Di Liddo R, Pathak S, Arcidiacono D, et al. Umbilical cord mesenchymal stem cells modulate dextran sulfate sodium induced acute colitis in immunodeficient mice. Stem Cell Res Ther. 2015;6:1–14. Available from: https://pmc/articles/PMC4455709/.

  15. Cortés-Medina LV, Pasantes-Morales H, Aguilera-Castrejon A, Picones A, Lara-Figueroa CO, Luis E, et al. Neuronal trans differentiation potential of human mesenchymal stem cells from neonatal and adult sources by a small molecule cocktail. Stem Cells Int. 2019; 7627148. Available from: https://pubmed.ncbi.nlm.nih.gov/31065279/.

  16. Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update. Cell Transplant. 2016;25:829–48. Available from: https://pubmed.ncbi.nlm.nih.gov/26423725/.

    Article  Google Scholar 

  17. Hu S, Maiti P, Ma Q, Zuo X, Jones MR, Cole GM, et al. Clinical development of curcumin in neurodegenerative disease. Expert Rev Neurother. 2015;15:629–37.

    Article  CAS  Google Scholar 

  18. Maiti P, Dunbar GL. Use of curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int J Mol Sci. 2018;19:1637. Available from: http://pmc/articles/PMC6032333/.

  19. Rasouli S, Montazeri M, Mashayekhi S, Sadeghi-Soureh S, Dadashpour M, Mousazadeh H, Nobakht A, Zarghami N, Pilehvar-Soltanahmadi Y. Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of curcumin and chrysin: possible application in prevention of breast cancer local recurrence. J Drug Delivery Sc Tech. 2020;55:101402.

    Article  CAS  Google Scholar 

  20. Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR, Preuss HG. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: a review. Molecules. 2020;25:1397. Available from: http://pmc/articles/PMC7144558/.

  21. Najar M, Raicevic G, Fayyad-Kazan H, Bron D, Toungouz M, Lagneaux L. Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy. 2016;18:160–71. https://doi.org/10.1016/j.jcyt.2015.10.011.

    Article  CAS  Google Scholar 

  22. de Vasconcellos MC, da Silva Telles PD, Nascimento ILO. Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter. 2013;35:62–7. Available from: https://pubmed.ncbi.nlm.nih.gov/23580887/.

    Article  Google Scholar 

  23. Jothimani G, Pathak S, Dutta S, Duttaroy AK, Banerjee A. A comprehensive cancer-associated microRNA expression profiling and proteomic analysis of human umbilical cord mesenchymal stem cell-derived exosomes. Tissue Eng Regen Med. 2022;19(5):1013–31. https://doi.org/10.1007/s13770-022-00450-8.

    Article  CAS  Google Scholar 

  24. Sandonà M, Di Pietro L, Esposito F, Ventura A, Silini AR, Parolini O, et al. Mesenchymal stromal cells and their secretome: new therapeutic perspectives for skeletal muscle regeneration. Front Bioeng Biotechnol. 2021;9:652970. Available from: https://pubmed.ncbi.nlm.nih.gov/34095095/

  25. Baez-Jurado E, Hidalgo-Lanussa O, Barrera-Bailón B, Sahebkar A, Ashraf GM, Echeverria V, et al. Secretome of mesenchymal stem cells and its potential protective effects on brain pathologies. Mol Neurobiol. 2019;56:6902–27. Available from: https://europepmc.org/article/med/30941733.

    Article  CAS  Google Scholar 

  26. Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H, Shafiei-Irannejad V, Zarghami N. Nanoencapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells. Artif Cells Nanomed Biotechnol. 2018;46(5):917–25. https://doi.org/10.1080/21691401.2017.1347879.

    Article  CAS  Google Scholar 

  27. Sriramulu S, Banerjee A, Jothimani G, Pathak S. Conditioned medium from the human umbilical cord-mesenchymal stem cells stimulate the proliferation of human keratinocytes. J Basic Clin Physiol Pharmacol. 2021;32:51–6. Available from: https://www.degruyter.com/document/doi/10.1515/jbcpp-2019-0283/html.

    Article  CAS  Google Scholar 

  28. Berebichez-Fridman R, Montero-Olvera PR, et al. Sultan Qaboos Univ Med J. 2018;18(3):e264–77. https://doi.org/10.18295/squmj.2018.18.03.002.

    Article  Google Scholar 

  29. Saeedi P, Halabian R, Fooladi AAI. A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Investig. 2019;25(6):34. https://doi.org/10.21037/sci.2019.08.11.

    Article  CAS  Google Scholar 

  30. Barzilay R, Melamed E, Offen D. Introducing transcription factors to multipotent mesenchymal stem cells: making transdifferentiation possible. Stem Cells. 2009;27:2509–15. Available from: https://pubmed.ncbi.nlm.nih.gov/19591229/

  31. Basak S, Mallick R, Banerjee A, Pathak S, Duttaroy AK. Maternal supply of both arachidonic and docosahexaenoic acids is required for optimal neurodevelopment. Nutrients. 2021;13(6):2061. https://doi.org/10.3390/nu13062061.

    Article  CAS  Google Scholar 

  32. Choudhary P, Gupta A, Singh S. Therapeutic advancement in neuronal transdifferentiation of mesenchymal stromal cells for neurological disorders. J Mol Neurosci. 2021;71:889–901.

    Article  CAS  Google Scholar 

  33. Khezri K, Maleki Dizaj S, Rahbar Saadat Y, Sharifi S, Shahi S, Ahmadian E, et al. Osteogenic differentiation of mesenchymal stem cells via curcumin-containing nanoscaffolds. Stem Cells Int. 2021:1520052. https://doi.org/10.1155/2021/1520052.

  34. Xiao Z, Lei T, Liu Y, Yang Y, Bi W, Du H. The potential therapy with dental tissue-derived mesenchymal stem cells in Parkinson’s disease. Stem Cell Res Ther 2020 121. 2021;12:1–11. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-020-01957-4.

  35. Lotfi-Attari J, Pilehvar-Soltanahmadi Y, Dadashpour M, Alipour S, Farajzadeh R, Javidfar S, Zarghami N. Co-delivery of curcumin and chrysin by polymeric nanoparticles inhibit synergistically growth and hTERT gene expression in human colorectal cancer cells. Nutr Cancer. 2017;69(8):1290–9.

    Article  CAS  Google Scholar 

  36. Moon S-W, Lee H-J, Lee W-J, Ock S-A, Lee and S-L. Trans-differentiation induction of human-mesenchymal stem cells derived from different tissue origin and evaluation of their potential for differentiation into corneal epithelial-like cells. J Embryo Transf. 2018;33:85–97. Available from: https://www.e-jarb.org/journal/view.html?doi=https://doi.org/10.12750/JET.2018.33.2.85.

  37. Deng J, Luo K, Xu P, Jiang Q, Wang Y, Yao Y, et al. High-efficiency c-Myc-mediated induction of functional hepatoblasts from the human umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 2021;12:1–16. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-021-02419-1.

    Article  Google Scholar 

  38. Ullah I, Lee R, Oh KB, Hwang S, Kim Y, Hur TY, et al. Transdifferentiation of α-1,3-galactosyltransferase knockout pig bone marrow derived mesenchymal stem cells into pancreatic β-like cells by microenvironment modulation. Asian-Australasian J Anim Sci. 2020;33:1837–47. Available from: https://pubmed.ncbi.nlm.nih.gov/32106662/

  39. Satheesan L, Soundian E, Kumanan V, Kathaperumal K. Potential of ovine Wharton jelly derived mesenchymal stem cells to transdifferentiate into neuronal phenotype for application in neuroregenerative therapy. Int J Neurosci. 2020;130:1101–8. Available from: https://pubmed.ncbi.nlm.nih.gov/32031459/

  40. Xie X, Fu Y, Liu J. Chemical reprogramming and transdifferentiation. Curr Opin Genet Dev. 2017;46:104–13. Available from: https://pubmed.ncbi.nlm.nih.gov/28755566/

  41. Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation. 2016;92:41–51. Available from: https://pubmed.ncbi.nlm.nih.gov/27012163/

  42. Sreejit P, Verma RS. Natural ECM as biomaterial for scaffold based cardiac regeneration using adult bone marrow derived stem cells. Stem Cell Rev Reports. 2013;9(2):158–71. Available from:https://link.springer.com/article/10.1007/s12015-013-9427-6.

    Article  CAS  Google Scholar 

  43. Ji W, Álvarez Z, Edelbrock AN, Sato K, Stupp SI. Bioactive nanofibers induce neural transdifferentiation of human bone marrow mesenchymal stem cells. ACS Appl Mater Interfaces. 2018;10(48):41046–55. https://doi.org/10.1021/acsami.8b13653.

    Article  CAS  Google Scholar 

  44. Mili B, Das K, Kumar A, Saxena AC, Singh P, Ghosh S, et al. Preparation of NGF encapsulated chitosan nanoparticles and its evaluation on neuronal differentiation potentiality of canine mesenchymal stem cells. J Mater Sci Mater Med. 2017;29:1–13. Available from: https://link.springer.com/article/10.1007/s10856-017-6008-2.

    Google Scholar 

  45. Thompson R, Casali C, Chan C. Forskolin and IBMX induce neural transdifferentiation of MSCs through downregulation of the NRSF. Sci Rep. Nature Publishing Group; 2019;9:2969. Available from: https://doi.org/10.1038/s41598-019-39544-0.

  46. Mathot F, Shin AY, Van Wijnen AJ. Targeted stimulation of MSCs in peripheral nerve repair. Gene. 2019;710:17–23.

    Article  CAS  Google Scholar 

  47. Elgamal A, Althani A, Abd-Elmaksoud A, Kassab M, Farag A, Lashen S, et al. Xeno-free trans-differentiation of adipose tissue-derived mesenchymal stem cells into glial and neuronal cells. Am J Stem Cells. 2019;8:38. Available from: http://pmc/articles/PMC6737383/.

  48. Liu Y, Deng J, Liu Y, Li W, Nie X. FGF, Mechanism of action, role in Parkinson’s disease, and therapeutics. Front Pharmacol. 2021;12:1572.

    Google Scholar 

  49. Hasan MH, Botros KG, El-Shahat MA, Abdallah HA, Sobh MA. In vitro differentiation of human umbilical cord blood mesenchymal stem cells into functioning hepatocytes. Alexandria J Med. 2017;53:167–73. https://www.tandfonline.com/doi/abs/10.1016/j.ajme.2016.05.002.

    Article  Google Scholar 

  50. Halim A, Ariyanti AD, Luo Q, Song G. Recent progress in engineering mesenchymal stem cell differentiation. Stem Cell Rev Reports. 2020;16:661–74.

    Article  Google Scholar 

  51. Nettore IC, Rocca C, Mancino G, Albano L, Amelio D, Grande F, et al. Quercetin and its derivative Q2 modulate chromatin dynamics in adipogenesis and Q2 prevents obesity and metabolic disorders in rats. J Nutr Biochem. 2019;69:151–62. Available from: https://europepmc.org/article/med/31096072.

    Article  CAS  Google Scholar 

  52. Alipour M, Nabavi SM, Arab L, Vosough M, Pakdaman H, Ehsani E, et al. Stem cell therapy in Alzheimer’s disease: possible benefits and limiting drawbacks. Mol Biol Rep. 2019;46:1425–46.

    Article  CAS  Google Scholar 

  53. Sallam A, Sudha T, Darwish NHE, Eghotny S, E- Dief A, Hassaan PS, et al. In vitro differentiation of human bone marrow stromal cells into neural precursor cells using small molecules. J Neurosci Methods. 2021:363.

  54. Serati-Nouri H, Rasoulpoor S, Pourpirali R, Sadeghi-Soureh S, Esmaeilizadeh N, Dadashpour M, Roshangar L, Zarghami N. In vitro expansion of human adipose-derived stem cells with delayed senescence through dual stage release of curcumin from mesoporous silica nanoparticles/electrospun nanofibers. Life Sc. 2021;15(285):119947.

    Article  Google Scholar 

  55. Venkatesh K, Ghosh SK, Mullick M, Manivasagam G, Sen D. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res. 2019;377:125–51. Available from: https://pubmed.ncbi.nlm.nih.gov/31065801/.

    Article  Google Scholar 

  56. Yousefi F, Arab FL, Jaafari MR, Rastin M, Tabasi N, Hatamipour M, et al. Immunoregulatory, proliferative and anti-oxidant effects of nanocurcuminoids on adipose-derived mesenchymal stem cells. EXCLI J. 2019;18:405. Available from: http://pmc/articles/PMC6635727/.

  57. Beevers CS, Huang S. Pharmacological and clinical properties of curcumin. Botanics Targets Ther. 2011;1:5–18. Available from: https://www.dovepress.com/pharmacological-and-clinical-properties-of-curcumin-peer-reviewed-fulltext-article-BTAT.

    Google Scholar 

  58. Boroumand N, Samarghandian S, Hashemy SI. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. J Herbmed Pharmacol. 2018;7:211–9. Available from: http://herbmedpharmacol.com/Article/jhp-1257.

    Article  CAS  Google Scholar 

  59. Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I. Curcumin induces glutathione biosynthesis and inhibits NF-κB activation and interleukin-8 release in alveolar epithelial cells: Mechanism of free radical scavenging activity. Antioxidants Redox Signal. 2005;7:32–41.

    Article  CAS  Google Scholar 

  60. Gupta SC, Prasad S, Kim JH, Patchva S, Webb LJ, Priyadarsini IK, et al. Multitargeting by curcumin as revealed by molecular interaction studies. Nat Prod Rep. 2011;28:1937–55. Available from: https://pubmed.ncbi.nlm.nih.gov/21979811/.

    Article  CAS  Google Scholar 

  61. Dong S, Zeng Q, Mitchell ES, Xiu J, Duan Y, Li C, et al. Curcumin enhances neurogenesis and cognition in aged rats: implications for transcriptional interactions related to growth and synaptic plasticity. PLoS One. 2012;7:e31211. Available from:https://pubmed.ncbi.nlm.nih.gov/22359574/.

    Article  CAS  Google Scholar 

  62. Reddy PH, Manczak M, Yin X, Grady MC, Mitchell A, Tonk S, et al. Protective effects of Indian spice curcumin against amyloid beta in Alzheimer’s disease. J Alzheimers Dis. 2018;61:843. Available from: https://www.pmc/articles/PMC5796761/.

  63. Shabbir U, Rubab M, Tyagi A, Oh DH. Curcumin and its derivatives as theranostic agents in Alzheimer’s disease: the implication of nanotechnology. Int J Mol Sci. 2021;22:196. Available from: https://www.mdpi.com/1422-0067/22/1/196/htm.

    Article  CAS  Google Scholar 

  64. Eghbaliferiz S, Farhadi F, Barreto GE, Majeed M, Sahebkar A. Effects of curcumin on neurological diseases: focus on astrocytes. Pharmacol Rep. 2020;72:769–82. Available from: https://pubmed.ncbi.nlm.nih.gov/32458309/.

    Article  CAS  Google Scholar 

  65. El Nebrisi E. Neuroprotective activities of curcumin in Parkinson’s disease: a review of the literature. Int J Mol Sci. 2021;22:11248. Available from: https://pubmed.ncbi.nlm.nih.gov/34681908/.

    Article  CAS  Google Scholar 

  66. Chongtham A, Agrawal N. Curcumin modulates cell death and is protective in Huntington’s disease model. Sci Reports. 2016;6:1–10. Available from: https://www.nature.com/articles/srep18736.

    Google Scholar 

  67. Hosseini V, Maroufi NF, Saghati S, Asadi N, Darabi M, Ahmad SNS, et al. Current progress in hepatic tissue regeneration by tissue engineering. J Transl Med. 2019;17:1–24. Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-019-02137-6.

    Article  Google Scholar 

  68. Rezaie J, Heidarzadeh M, Hassanpour M, Amini H, Shokrollahi E, Ahmadi M, et al. The angiogenic paracrine potential of mesenchymal stem cells. Updat Mesenchymal Induc Pluripotent Stem Cells. IntechOpen. 2019; https://doi.org/10.5772/intechopen.84433.

  69. Shudo Y, Cohen JE, Goldstone AB, MacArthur JW, Patel J, Edwards BB, et al. Isolation and trans-differentiation of mesenchymal stromal cells into smooth muscle cells: utility and applicability for cell-sheet engineering. Cytotherapy. 2016;18:510. Available from: /pmc/articles/PMC5964977/.

    Article  CAS  Google Scholar 

  70. Wang YL, Ju B, Zhang YZ, Yin HL, Liu YJ, Wang SS, et al. Protective effect of curcumin against oxidative stress-induced injury in rats with Parkinson’s disease through the Wnt/β-catenin signaling pathway. Cell Physiol Biochem. 2017;43:2226–41. Available from: https://pubmed.ncbi.nlm.nih.gov/29069652/.

    Article  CAS  Google Scholar 

  71. Falo-Sanjuan J, Bray SJ. Decoding the Notch signal. Dev Growth Differ. 2020;62:4–14. Available from: https://onlinelibrary.wiley.com/doi/full/10.1111/dgd.12644.

    Article  Google Scholar 

  72. Luo L, Hu DH, Yin JQ, Xu RX. Molecular mechanisms of transdifferentiation of adipose-derived stem cells into neural cells: current status and perspectives. Stem Cells Int. 2018;2018:5630802. https://doi.org/10.1155/2018/5630802.

    Article  CAS  Google Scholar 

  73. Gagliardi S, Morasso C, Stivaktakis P, Pandini C, Tinelli V, Tsatsakis A, et al. Curcumin formulations and trials: what’s new in neurological diseases. Molecules. 2020;25:5389. Available from: https://pubmed.ncbi.nlm.nih.gov/33217959/.

    Article  CAS  Google Scholar 

  74. Wang YL, Liu XS, Wang SS, Xue P, Zeng ZL, Yang XP, et al. Curcumin-activated mesenchymal stem cells derived from human umbilical cord and their effects on MPTP-mouse model of Parkinson’s disease: a new biological therapy for Parkinson’s disease. Stem Cells. 2020;2020:4636397. Available from: https://pubmed.ncbi.nlm.nih.gov/32148518/.

    Google Scholar 

  75. Gao X, Han Z, Huang C, Lei H, Li G, Chen L, et al. An anti-inflammatory and neuroprotective biomimetic nanoplatform for repairing spinal cord injury. Bioact Mater. 2022;18:569–82.

    Google Scholar 

  76. Li Y, Tang Y, Yang GY. Therapeutic application of exosomes in ischaemic stroke. Stroke Vasc Neurol. 2021;6:483–95. Available from: https://pubmed.ncbi.nlm.nih.gov/33431513/.

    Article  Google Scholar 

  77. Kocher A, Hagl S, Schiborr C, Eckert GP, Frank J. Concentrations of total curcuminoids in plasma, but not liver and kidney, are higher in 18- than in 3-months old mice. NFSJ. 2015;1:3–8.

    Article  Google Scholar 

  78. Yanagisawa D, Taguchi H, Morikawa S, Kato T, Hirao K, Shirai N, et al. Novel curcumin derivatives as potent inhibitors of amyloid β aggregation. Biochem Biophys Reports. 2015;4:357–68.

    Article  Google Scholar 

  79. Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Reprogramming energetic metabolism in Alzheimer’s disease. Life Sci. 2018;193:141–52. Available from: https://pubmed.ncbi.nlm.nih.gov/29079469/.

    Article  Google Scholar 

  80. Banerjee A, Jothimani G, Prasad SV, Marotta F, Pathak S. Targeting Wnt signaling through small molecules in governing stem cell fate and diseases. Endocrine, Metab Immune Disord - Drug Targets. 2019;19:233–46.

    Article  CAS  Google Scholar 

  81. Sferrazza G, Corti M, Brusotti G, Pierimarchi P, Temporini C, Serafino A, et al. Nature-derived compounds modulating Wnt/β-catenin pathway: a preventive and therapeutic opportunity in neoplastic diseases. Acta Pharm Sin B. 2020;10:1814. Available from: /pmc/articles/PMC7606110/.

    Article  CAS  Google Scholar 

  82. Bustanji Y, Taha MO, Almasri IM, Al-Ghussein MAS, Mohammad MK, Alkhatib HS. Inhibition of glycogen synthase kinase by curcumin:investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J Enzyme Inhib Med Chem. 2009;24:771–8. Available from: https://pubmed.ncbi.nlm.nih.gov/18720192/.

    Article  CAS  Google Scholar 

  83. Libro R, Bramanti P, Mazzon E. The role of the Wnt canonical signaling in neurodegenerative diseases. Life Sci. 2016;158:78–88. Available from: https://pubmed.ncbi.nlm.nih.gov/27370940/.

    Article  CAS  Google Scholar 

  84. Sayas CL, Ávila J. GSK-3 and Tau: a key duet in Alzheimer’s disease. Cells. 2021;10:721. Available from: https://pubmed.ncbi.nlm.nih.gov/33804962/.

    Article  CAS  Google Scholar 

  85. McCubrey JA, Lertpiriyapong K, Steelman LS, Abrams SL, Cocco L, Ratti S, et al. Regulation of GSK-3 activity by curcumin, berberine and resveratrol: potential effects on multiple diseases. Adv Biol Regul. 2017;65:77–88. Available from: https://pubmed.ncbi.nlm.nih.gov/28579298/.

    Article  Google Scholar 

  86. Serafino A, Giovannini D, Rossi S, Cozzolino M. Targeting the Wnt/β-catenin pathway in neurodegenerative diseases: recent approaches and current challenges. Expert Opin Drug Discov. 2020;15:803–22. Available from: https://pubmed.ncbi.nlm.nih.gov/32281421/.

    Article  CAS  Google Scholar 

  87. Javan N, Khadem Ansari MH, Dadashpour M, Khojastehfard M, Bastami M, Rahmati-Yamchi M, Zarghami N. Synergistic antiproliferative effects of co-nanoencapsulated curcumin and chrysin on mda-mb-231 breast cancer cells through upregulating mir-132 and mir-502c. Nutr Cancer. 2019;71(7):1201–13.

    Article  CAS  Google Scholar 

  88. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, et al. Curcumin-loaded nanoparticles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer’s disease model via canonical Wnt/β-catenin pathway. ACS Nano. 2013;8:76–103. Available from: https://europepmc.org/article/med/24467380.

  89. Jia L, Piña-Crespo J, Li Y. Restoring Wnt/β-catenin signaling is a promising therapeutic strategy for Alzheimer’s disease. Mol Brain. 2019;12:1–11. Available from: https://molecularbrain.biomedcentral.com/articles/10.1186/s13041-019-0525-5.

    Article  Google Scholar 

  90. Tyagi A, Sharma AK, Damodaran C. A review on Notch signaling and colorectal cancer. Cells. 2020;9:1549. Available from: https://www.mdpi.com/2073-4409/9/6/1549/htm.

    Article  CAS  Google Scholar 

  91. Takam Kamga P, Bazzoni R, Dal Collo G, Cassaro A, Tanasi I, Russignan A, et al. The role of Notch and Wnt signaling in MSC communication in normal and leukemic bone marrow niche. Front Cell Dev Biol. 2021;8:1653.

    Article  Google Scholar 

  92. Cai Z, Zhao B, Deng Y, Shangguan S, Zhou F, Zhou W, et al. Notch signaling in cerebrovascular diseases (Review). Mol Med Rep. 2016;14:2883. Available from: http://pmc/articles/PMC5042775/.

  93. Li J, Han Y, Li M, Nie C. Curcumin promotes proliferation of adult neural stem cells and the birth of neurons in Alzheimer’s disease mice via Notch signaling pathway. Cell Reprogram. 2019;21:152–61. Available from: https://pubmed.ncbi.nlm.nih.gov/31145652/.

    Article  CAS  Google Scholar 

  94. Venkatesh K, Reddy LVK, Abbas S, Mullick M, Moghal ETB, Balakrishna JP, et al. NOTCH signaling is essential for maturation, selfrenewal, and tri-differentiation of in vitro derived human neural stem cells. Cell Reprogram. 2017;19:372–83. Available from: https://research.vit.ac.in/publication/notch-signaling-is-essential-for-maturation.

    Article  CAS  Google Scholar 

  95. Tandon A, Singh SJ, Gupta M, Singh N, Shankar J, Arjaria N, et al. Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis. J Hazard Mater. 2020;392:122052. Available from: https://pubmed.ncbi.nlm.nih.gov/32151947/.

    Article  CAS  Google Scholar 

  96. Yazdanparast R, Aghazadeh S. Curcumin protects SK-N-MC cells from H2O2-induced cell death by modulation of Notch signaling. Cellbio. 2014;3:72–86. Available from: https://doi.org/10.4236/cellbio.2014.32008.

  97. Banerjee A, Rowlo P, Jothimani G, Duttaroy AK, Pathak S. Wnt signalling inhibitors potently drive trans-differentiation potential of mesenchymal stem cells towards neuronal lineage. J Med Biol Eng. 2022;42:630–46. Available from: https://link.springer.com/article/10.1007/s40846-022-00730-7.

    Article  Google Scholar 

  98. Rahimi-Sherbaf F, Nadri S, Nadri S, Rahmani A, Oskoei AD. Placenta mesenchymal stem cells differentiation toward neuronal-like cells on nanofibrous scaffold. Bioimpacts. 2020;10:117. Available from: https://www.pmc/articles/PMC7186541/22.

  99. Farhoodi R, Lansdell BJ, Kording KP. Quantifying how staining methods bias measurements of neuron morphologies. Front Neuroinform. 2019;13:36. https://doi.org/https://doi.org/10.3389/fninf.2019.00036.

  100. Dilger N, Neehus AL, Grieger K, Hoffmann A, Menssen M, Ngezahayo A. Gap junction dependent cell communication is modulated during transdifferentiation of mesenchymal stem/stromal cells towards neuron-like cells. Front Cell. Dev Biol. 2020;8:869. Available from: http://pmc/articles/PMC7487424/.

  101. Simunkova M, Alwasel SH, Alhazza IM, Jomova K, Kollar V, Rusko M, et al. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch Toxicol. 2019;93:2491–513. Available from: https://link.springer.com/article/10.1007/s00204-019-02538-y.

    Article  CAS  Google Scholar 

  102. Radbakhsh S, Barreto GE, Bland AR, Sahebkar A. Curcumin: a small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors. 2021;47:570–86. Available from: https://pubmed.ncbi.nlm.nih.gov/33893674/.

    Article  CAS  Google Scholar 

  103. Kimura A, Hata S, Suzuki T. Alternative selection of β-site APP-cleaving enzyme 1 (BACE1) cleavage sites in amyloid β-protein precursor (APP) harboring protective and pathogenic mutations within the Aβ sequence. J Biol Chem. 2016;291:24041–53. Available from: https://pubmed.ncbi.nlm.nih.gov/27687728/.

  104. Kotani R, Urano Y, Sugimoto H, Noguchi N. Decrease of amyloid-β levels by curcumin derivative via modulation of amyloid-β protein precursor trafficking. J Alzheimer’s Dis. 2017;56:529–42.

    Article  CAS  Google Scholar 

  105. Bhat A, Mahalakshmi AM, Ray B, Tuladhar S, Hediyal TA, Manthiannem E, et al. Benefits of curcumin in brain disorders. Biofactors. 2019;45:666–89. Available from: https://pubmed.ncbi.nlm.nih.gov/31185140/.

    Article  CAS  Google Scholar 

  106. Chen M, Du ZY, Zheng X, Li DL, Zhou RP, Zhang K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res. 2018;13:742–52. Available from: https://pubmed.ncbi.nlm.nih.gov/29722330/.

    Article  CAS  Google Scholar 

  107. Hamaguchi T, Ono K, Yamada M. REVIEW: Curcumin and Alzheimer’s disease. CNS Neurosci Ther. 2010;16:285. Available from: http://pmc/articles/PMC6493893/.

  108. Farkhondeh T, Samarghandian S, Pourbagher-Shahri AM, Sedaghat M. The impact of curcumin and its modified formulations on Alzheimer’s disease. J Cell Physiol. 2019;234:16953–65. Available from: https://europepmc.org/article/med/30847942.

    Article  CAS  Google Scholar 

  109. Abrahams S, Miller HC, Lombard C, van der Westhuizen FH, Bardien S. Curcumin pre-treatment may protect against mitochondrial damage in LRRK2-mutant Parkinson’s disease and healthy control fibroblasts. Biochem Biophys Reports. 2021;27:101035. Available from: http://pmc/articles/PMC8219994/.

  110. Khazdair MR, Kianmehr M, Anaeigoudari A. Effects of medicinal plants and flavonoids on Parkinson’s disease: a review on basic and clinical evidences. Adv. Pharm Bull. 2021;11:224. Available from: http://pmc/articles/PMC8046395/.

  111. El Nebrisi E. Neuroprotective activities of curcumin in Parkinson’s disease: a review of the literature. Int J Mol Sci. 2021;22:11248. Available from: https://www.mdpi.com/1422-0067/22/20/11248/htm.

    Article  CAS  Google Scholar 

  112. Donadio V, Incensi A, Rizzo G, Fileccia E, Ventruto F, Riva A, et al. The effect of curcumin on idiopathic Parkinson disease: a clinical and skin biopsy study. J Neuropathol Exp Neurol. 2022;81:545–52. Available from: https://pubmed.ncbi.nlm.nih.gov/35556131/.

    Article  CAS  Google Scholar 

  113. Qureshi M, Al-Suhaimi EA, Wahid F, Shehzad O, Shehzad A. Therapeutic potential of curcumin for multiple sclerosis. Neurol Sci. 2018;39:207–14. Available from: https://pubmed.ncbi.nlm.nih.gov/29079885/.

    Article  Google Scholar 

  114. Ghanaatian N, Lashgari NA, Abdolghaffari AH, Rajaee SM, Panahi Y, Barreto GE, et al. Curcumin as a therapeutic candidate for multiple sclerosis: molecular mechanisms and targets. J Cell Physiol. 2019;234:12237–48. Available from: https://pubmed.ncbi.nlm.nih.gov/30536381/.

    Article  CAS  Google Scholar 

  115. Milovanovic J, Arsenijevic A, Stojanovic B, Kanjevac T, Arsenijevic D, Radosavljevic G, et al. Interleukin-17 in chronic inflammatorneurological diseases. Front Immunol. 2020;11:947. Available from: https://pubmed.ncbi.nlm.nih.gov/32582147/.

    Article  CAS  Google Scholar 

  116. Gholamzad M, Ebtekar M, Ardestani MS, Azimi M, Mahmodi Z, Mousavi MJ, et al. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm Res. 2019;68:25–38. Available from: https://pubmed.ncbi.nlm.nih.gov/30178100/.

    Article  CAS  Google Scholar 

  117. Larochelle C, Wasser B, Jamann H, Löffel JT, Cui QL, Tastet O, et al. Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proc Natl Acad Sci U S A. 2021;118:2025813118. Available from:https://europepmc.org/articles/PMC8403833.

  118. Dolati S, Babaloo Z, Ayromlou H, Ahmadi M, Rikhtegar R, Rostamzadeh D, et al. Nanocurcumin improves regulatory T-cell frequency and function in patients with multiple sclerosis. J Neuroimmunol. 2019;327:15–21.

    Article  CAS  Google Scholar 

  119. Labanca F, Ullah H, Khan H, Milella L, Xiao J, Dajic-Stevanovic Z, et al. Therapeutic and mechanistic effects of curcumin in Huntington’s disease. Curr Neuropharmacol. 2020;19:1007–18.

    Article  Google Scholar 

  120. Elifani F, Crispi S, Filosa S, Castaldo S, Capocci L, Madonna M, et al. L9 Curcumin: a natural compound to counteract the pathology of huntington’s disease? J Neurol Neurosurg Psychiatry. 2016;87:A93–3. Available from: https://jnnp.bmj.com/content/87/Suppl_1/A93.1.

    Article  Google Scholar 

  121. Sandhir R, Yadav A, Mehrotra A, Sunkaria A, Singh A, Sharma S. Curcumin nanoparticles attenuate neurochemical and neurobehavioral deficits in experimental model of Huntington’s disease. Neuromolecular Med. 2014;16:106–18. Available from: https://pubmed.ncbi.nlm.nih.gov/24008671/.

    Article  CAS  Google Scholar 

  122. Yavarpour-Bali H, Pirzadeh M, Ghasemi-Kasman M. Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomedicine. 2019;14:4449. Available from: http://pmc/articles/PMC6592058/.

  123. Pepe G, Calce E, Verdoliva V, Saviano M, Maglione V, Di Pardo A, et al. Curcumin-loaded nanoparticles based on amphiphilic hyaluronan-conjugate explored as targeting delivery system for neurodegenerative disorders. Int J Mol Sci. 2020;21:E8846–6. Available from: https://europepmc.org/articles/PMC7700413.

    Article  Google Scholar 

  124. Khin PP, Lee JH, Jun HS. A brief review of the mechanisms of β-cell dedifferentiation in type 2 diabetes. Nutrients. 2021:13. Available from: http://pmc/articles/PMC8151793/.

  125. Luo L, Zhang W, Chen W, Fu X, Wang X, Xu R, et al. Based on a self-feeder layer, a novel 3D culture model of human ADSCs facilitates trans-differentiation of the spheroid cells into neural progenitor-like cells using siEID3 with a laminin/poly-d-lysine matrix. Cells. 2021;10:1–17. Available from: http://pmc/articles/PMC7996540/.

  126. Chabrat A, Lacassagne E, Billiras R, Landron S, Pontisso-Mahout A, Darville H, et al. Pharmacological transdifferentiation of human nasal olfactory stem cells into dopaminergic neurons. Stem Cells Int. 2019;2019:2945435. https://doi.org/10.1155/2019/2945435.

    Article  CAS  Google Scholar 

  127. Michalik M, Gładyś A, Czekaj P. Differentiation of cells isolated from afterbirth tissues into hepatocyte-like cells and their potential clinical application in liver regeneration. Stem Cell Rev Reports. 2020;17:581–603. Available from: https://link.springer.com/article/10.1007/s12015-020-10045-2.

    Article  Google Scholar 

  128. Wang J, Cen P, Chen J, Fan L, Li J, Cao H, et al. Role of mesenchymal stem cells, their derived factors, and extracellular vesicles in liver failure. Stem Cell Res Ther. 2017;8:137. https://doi.org/10.1186/s13287-017-0576-4.

    Article  CAS  Google Scholar 

  129. Müller P, Lemcke H, David R. Stem cell therapy in heart diseases — cell types, mechanisms and improvement strategies. Cell Physiol Biochem. 2018;48:2607–55. Available from: https://pubmed.ncbi.nlm.nih.gov/30121644/.

    Article  Google Scholar 

  130. Arslan YE, Galata YF, Sezgin Arslan T, Derkus B. Trans-differentiation of human adipose-derived mesenchymal stem cells into cardiomyocyte-like cells on decellularized bovine myocardial extracellular matrix-based films. J Mater Sci Mater Med. 2018;29:1–3. Available from: https://pubmed.ncbi.nlm.nih.gov/30056552/.

  131. Mannino G, Russo C, Longo A, Anfuso CD, Lupo G, Furno D Lo, et al. Potential therapeutic applications of mesenchymal stem cells for the treatment of eye diseases. World J Stem Cells. 2021;13:632–644. Available from: https://pubmed.ncbi.nlm.nih.gov/34249232/.

  132. Harrell CR, Fellabaum C, Arsenijevic A, Markovic BS, Djonov V, Volarevic V. Therapeutic potential of mesenchymal stem cells and their secretome in the treatment of glaucoma. Stem Cells Int. 2019:7869130. https://doi.org/10.1155/2019/7869130.

  133. Mastrolia I, Foppiani EM, Murgia A, Candini O, Samarelli AV, Grisendi G, et al. Challenges in clinical development of mesenchymal stromal/stem cells: concise review. Stem Cells Transl Med. 2019;8:1135–48. Available from: https://pubmed.ncbi.nlm.nih.gov/31313507/.

    Article  Google Scholar 

  134. Van Nguyen TT, Vu NB, Van Pham P. Mesenchymal stem cell transplantation for ischemic diseases: mechanisms and challenges. Tissue Eng Regen Med. 2021;18:587–611. Available from: https://pubmed.ncbi.nlm.nih.gov/33884577/.

    Article  Google Scholar 

  135. Fričová D, Korchak JA, Zubair AC. Challenges and translational considerations of mesenchymal stem/stromal cell therapy for Parkinson’s disease. NPJ Regen Med. 2020;5:1–10. Available from: https://www.nature.com/articles/s41536-020-00106-y.

    Article  Google Scholar 

  136. Ayala-Cuellar AP, Kang JH, Jeung EB, Choi KC. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol Ther. 2019;27:25–33. Available from: https://pubmed.ncbi.nlm.nih.gov/29902862/.

    Article  CAS  Google Scholar 

  137. Hamann A, Nguyen A, Pannier AK. Nucleic acid delivery to mesenchymal stem cells: a review of nonviral methods and applications. J Biol Eng. 2019;13:1–16. Available from: https://jbioleng.biomedcentral.com/articles/10.1186/s13036-019-0140-0.

    Article  Google Scholar 

  138. Varkouhi AK, Monteiro APT, Tsoporis JN, Mei SHJ, Stewart DJ, dos Santos CC. Genetically modified mesenchymal stromal/stem cells: application in critical illness. Stem Cell Rev Reports. 2020;16:812–27. Available from: https://link.springer.com/article/10.1007/s12015-020-10000-1.

    Article  Google Scholar 

  139. Matta A, Nader V, Lebrin M, Gross F, Prats AC, Cussac D, et al. Pre-conditioning methods and novel approaches with mesenchymal stem cells therapy in cardiovascular disease. Cells. 2022;11:1620. Available from: https://www.pmc/articles/PMC9140025/.

  140. Millán-Rivero JE, Martínez CM, Romecín PA, Aznar-Cervantes SD, Carpes-Ruiz M, Cenis JL, et al. Silk fibroin scaffolds seeded with Wharton’s jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Res Ther. 2019;10:1–14. Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-019-1229-6.

    Article  Google Scholar 

  141. Uz M, Hondred JA, Donta M, Jung J, Kozik E, Green J, et al. Determination of electrical stimuli parameters to transdifferentiate genetically engineered mesenchymal stem cells into neuronal or glial lineages. Regen Eng Transl Med. 2020;6:18–28. Available from: https://link.springer.com/article/10.1007/s40883-019-00126-1.

    Article  Google Scholar 

  142. Waghule T, Gorantla S, Rapalli VK, Shah P, Dubey SK, Saha RN, et al. Emerging trends in topical delivery of curcumin through lipid nanocarriers: effectiveness in skin disorders. AAPS PharmSciTech. 2020;21:1–2. Available from: https://pubmed.ncbi.nlm.nih.gov/33058071/.

    Article  Google Scholar 

  143. Xu XY, Meng X, Li S, Gan RY, Li Y, Bin LH. Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients. 2018;10:1553. Available from: https://pubmed.ncbi.nlm.nih.gov/30347782/.

    Article  Google Scholar 

  144. Ege D. Action mechanisms of curcumin in Alzheimer’s disease and its brain targeted delivery. Mater (Basel, Switzerland). 2021;14:3332. Available from: https://pubmed.ncbi.nlm.nih.gov/34208692/.

    Article  CAS  Google Scholar 

  145. Olotu F, Agoni C, Soremekun O, Soliman MES. An update on the pharmacological usage of curcumin: has it failed in the drug discovery pipeline? Cell Biochem Biophys. 2020;78:267–89. https://doi.org/10.1007/s12013-020-00922-5.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Chettinad Academy of Research and Education (CARE) for providing the infrastructural support to complete this piece of work.

Funding

This work was supported by the departmental grants sanctioned to Dr. Antara Banerjee (PI) from Chettinad Academy of Research and Education and Tamil Nadu State Council for Science and Technology for providing partial funding for the completion of work.

Author information

Authors and Affiliations

Authors

Contributions

AB was involved in the conception of the study and designed the study protocol. AB and CC performed all the experiments and data analysis. AB, CC, and SMJ wrote the manuscript and involved in designing the images and critically revised the manuscript. SP and SP wrote parts of the manuscript and critically reviewed the manuscript. All authors read, reviewed, and approved the final manuscript.

Corresponding author

Correspondence to Antara Banerjee.

Ethics declarations

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

C, C., Jain, S.M., Paul, S. et al. The Emerging Role of Curcumin in Inducing Neuronal Trans-differentiation of Mesenchymal Stem Cells: a Review. Regen. Eng. Transl. Med. 9, 458–477 (2023). https://doi.org/10.1007/s40883-023-00300-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-023-00300-6

Keywords

Navigation