Skip to main content

Advertisement

Log in

An Update on the Pharmacological Usage of Curcumin: Has it Failed in the Drug Discovery Pipeline?

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The pharmacological propensities of curcumin have been reported in a plethora of pre-clinical and clinical studies. However, innate attributes account for extremely low oral bioavailability which impedes its development as a therapeutic agent. Regardless, these drawbacks have not deterred researchers from optimizing its potentials. This review discussed the pharmacokinetic properties of curcumin relative to its outlook as a lead compound in drug discovery. Also, we highlighted therapeutic strategies that have expedited improvements in curcumin oral bioavailability and delivery to target sites over the years. Recent implementations of these strategies were also covered. More research efforts should be directed towards investigating the pharmacokinetic impacts of these novel curcumin formulations in human clinical studies since inter-species disparities could limit the accuracies of animal studies. We envisaged that integrative-clinical research would help determine ‘actual’ improvements in curcumin pharmacokinetics coupled with suitable administrative routes, optimal dosing, and drug–enzyme or drug–drug interactions. In addition, this could help determine formulations for achieving higher systemic exposure of parent curcumin thereby providing a strong impetus towards the development of curcumin as a drug candidate in disease treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li, F., Wang, Y., Li, D., Chen, Y., & Dou, Q. P. (2019). Are we seeing a resurgence in the use of natural products for new drug discovery? Expert Opinion on Drug Discovery. https://doi.org/10.1080/17460441.2019.1582639.

  2. Ajazuddin, A. A., Qureshi, A., Kumari, L., Vaishnav, P., Sharma, M., et al. (2014). Role of herbal bioactives as a potential bioavailability enhancer for Active Pharmaceutical Ingredients. Fitoterapia. https://doi.org/10.1016/j.fitote.2014.05.005.

  3. Prasad, S., Gupta, S. C., Tyagi, A. K., & Aggarwal, B. B. (2014). Curcumin, a component of golden spice: from bedside to bench and back. Biotechnology Advances, 32, 1053–1064. https://doi.org/10.1016/j.biotechadv.2014.04.004.

    Article  CAS  PubMed  Google Scholar 

  4. Kocaadam, B., & Şanlier, N. (2017). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2015.1077195.

  5. Kunnumakkara, A. B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N. K., Prasad, S., et al. (2017). Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. British Journal of Pharmacology. https://doi.org/10.1111/bph.13621.

  6. Huminiecki, L., Horbańczuk, J., & Atanasov, A. G. (2017). The functional genomic studies of curcumin. Seminars in Cancer Biology. https://doi.org/10.1016/j.semcancer.2017.04.002.

  7. Stohs, S. J., Ji, J., Bucci, L. R., & Preuss, H. G. A. (2018). Comparative pharmacokinetic assessment of a novel highly bioavailable curcumin formulation with 95% curcumin: a randomized, double-blind, crossover study. Journal of the American College of Nutrition. https://doi.org/10.1080/07315724.2017.1358118.

  8. Li, S. (2011). Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharmceuticals Crops. https://doi.org/10.2174/2210290601102010028.

    Article  Google Scholar 

  9. Hewlings, S., & Kalman, D. (2017). Curcumin: a review of its’ effects on human health. Foods, 6, 92 https://doi.org/10.3390/foods6100092.

    Article  CAS  PubMed Central  Google Scholar 

  10. Patchva, S., & Aggarwal, B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS Journal, 15, 195–218.

    Article  Google Scholar 

  11. Lestari, M., & Indrayanto, G. (2014). Curcumin. Profiles of Drug Substances Excipients, and Related Methodology, 39, 113–204.

    Article  CAS  Google Scholar 

  12. Toden, S., & Goel, A. (2017). The holy grail of curcumin and its efficacy in various diseases: is bioavailability truly a big concern? Journal of Restorative Medicine, 6, 27–36. https://doi.org/10.14200/jrm.2017.6.0101.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The essential medicinal chemistry of curcumin. Journal of Medicinal Chemistry. https://doi.org/10.1021/acs.jmedchem.6b00975.

  14. Patel, S. S., Acharya, A., Ray, R. S., Agrawal, R., Raghuwanshi, R., & Jain, P. (2019). Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2018.1552244.

  15. Arablou, T., & Kolahdouz-Mohammadi, R. (2018). Curcumin and endometriosis: review on potential roles and molecular mechanisms. Biomedicine and Pharmacotherapy. https://doi.org/10.1016/j.biopha.2017.10.119.

  16. Wu, A., Noble, E. E., Tyagi, E., Ying, Z., Zhuang, Y., & Gomez-Pinilla, F. (2015). Curcumin boosts DHA in the brain: Implications for the prevention of anxiety disorders. BBA - Molecular Basis of Disease. https://doi.org/10.1016/j.bbadis.2014.12.005.

  17. Farzaei, M. H., Zobeiri, M., Parvizi, F., El-senduny, F. F., Marmouzi, I., Coy-barrera, E. et al. (2018). Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients, 10, 855. https://doi.org/10.3390/nu10070855.

    Article  CAS  PubMed Central  Google Scholar 

  18. Liu, W., Zhai, Y., Heng, X., Che, F., Chen, W., & Zhai, G. (2016). Oral bioavailability of curcumin: problems and advancements. Journal of Drug Targeting. https://doi.org/10.3109/1061186X.2016.1157883.

  19. Ak, T., & Gülçin, I. (2008). Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions. https://doi.org/10.1016/j.cbi.2008.05.003.

  20. Wiggers, H. J., Zaioncz, S., Cheleski, J., Mainardes, R. M., & Khalil, N. M. (2017). Curcumin, a multitarget phytochemical: challenges and perspectives. Studies in Natural Products Chemistry. https://doi.org/10.1016/B978-0-444-63930-1.00007-7.

  21. Prasad, S., Tyagi, A. K., & Aggarwal, B. B. (2014). Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Research and Treatment. https://doi.org/10.4143/crt.2014.46.1.2.

  22. Kotecha, R., Takami, A., & Espinoza, J. L. (2016). Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget. https://doi.org/10.18632/oncotarget.9593.

  23. Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review. Journal of Traditional and Complementary Medicine. https://doi.org/10.1016/j.jtcme.2016.05.005.

  24. Pulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C., & Ramirez-Tortosa, M. C. (2016). Curcumin and health. Molecules. https://doi.org/10.3390/molecules21030264.

  25. Siviero, A., Gallo, E., Maggini, V., Gori, L., Mugelli, A., Firenzuoli, F., et al. (2015). Curcumin, a golden spice with a low bioavailability. Journal Herbal Medicine, 5, 57–70.

    Article  Google Scholar 

  26. Jamwal, R. (2018). Bioavailable curcumin formulations: a review of pharmacokinetic studies in healthy volunteers. Journal of Integrative Medicine, 16, 367–374. https://doi.org/10.1016/j.joim.2018.07.001.

    Article  PubMed  Google Scholar 

  27. Douglass, B. J., & Clouatre, D. L. (2015). Beyond yellow curry: assessing commercial curcumin absorption technologies. Journal of the American College of Nutrition. https://doi.org/10.1080/07315724.2014.950392.

  28. Adiwidjaja, J., Mclachlan, A. J., & Boddy, A. V. (2017). Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions. Expert Opinion on Drug Metabolism & Toxicology, 13, 953–972. https://doi.org/10.1080/17425255.2017.1360279.

    Article  CAS  Google Scholar 

  29. Kumar, A., Ahuja, A., Ali, J., & Baboota, S. (2012). Conundrum and therapeutic potential of curcumin in drug delivery. Critical Reviews™ in Therapeutic Drug Carrier Systems. https://doi.org/10.1615/critrevtherdrugcarriersyst.v27.i4.10.

  30. Heger, M., van Golen, R. F., Broekgaarden, M., & Michel, M. C. (2013). The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacological Reviews. https://doi.org/10.1124/pr.110.004044.

  31. Schneider, C., Gordon, O. N., Edwards, R. L., & Luis, P. B. (2015). Degradation of curcumin: from mechanism to biological implications. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/acs.jafc.5b00244.

  32. Esatbeyoglu, T., Ulbrich, K., Rehberg, C., Rohn, S., & Rimbach, G. (2015). Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food and Function. https://doi.org/10.1039/c4fo00790e.

  33. Payton, F., Sandusky, P., & Alworth, W. L. (2007). NMR study of the solution structure of curcumin. Journal of Natural Products. https://doi.org/10.1021/np060263s.

  34. Jagannathan, R., Abraham, P. M., & Poddar, P. (2012). Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: a mechanistic study of its solubility and stability. The Journal of Physical ChemistryB, 2012. https://doi.org/10.1021/jp3050516.

  35. Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19, 20091–20112. https://doi.org/10.3390/molecules191220091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Priyadarsini, K. I. (2009). Photophysics, photochemistry and photobiology of curcumin: Studies from organic solutions, bio-mimetics and living cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews. https://doi.org/10.1016/j.jphotochemrev.2009.05.001.

  37. Wang, Y. J., Pan, M. H., Cheng, A. L., Lin, L. I., Ho, Y. S., Hsieh, C. Y., et al. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis. https://doi.org/10.1016/S0731-7085(96)02024-9.

  38. Jankun, J., Wyganowska-Swiatkowska, M., Dettlaff, K., JelinSka, A., Surdacka, A., Watróbska-Swietlikowska, D., et al. (2016). Determining whether curcumin degradation/condensation is actually bioactivation (Review). International Journal of Molecular Medicine. https://doi.org/10.3892/ijmm.2016.2524.

  39. Gera, M., Sharma, N., Ghosh, M., Huynh, D. L., & Jin, S. (2017). Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget, 8, 66680–66698.

    Article  Google Scholar 

  40. Min, T., Kwon, T., Jeong, D. K., Huynh, D. L., Sharma, N., Ghosh, M., et al. (2017). Nanoformulations of curcumin: an emerging paradigm for improved remedial application. Oncotarget. https://doi.org/10.18632/oncotarget.19164.

  41. Robinson, T. P., Hubbard, IV R. B., Ehlers, T. J., Arbiser, J. L., Goldsmith, D. J., & Bowen, J. P. (2005). Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorganic & Medicinal Chemistry. https://doi.org/10.1016/j.bmc.2005.03.054.

  42. Liang, G., Shao, L., Wang, Y., Zhao, C., Chu, Y., Xiao, J., et al. (2009). Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorganic & Medicinal Chemistry. https://doi.org/10.1016/j.bmc.2008.10.044.

  43. Aggarwal, B. B., Harikumar, K. B., Amolins, M. W., Peterson, L. B., Blagg, B. S. J., Anand, P., et al. (2015). Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorganic & Medicinal Chemistry Letters. https://doi.org/10.1021/ol035339f.

  44. Irwin, J. J., Duan, D., Torosyan, H., Doak, A. K., Ziebart, K. T., Sterling, T., et al. (2015). An aggregation advisor for ligand discovery. Journal of Medicinal Chemistry. https://doi.org/10.1021/acs.jmedchem.5b01105.

  45. Duan, D., Doak, A. K., Nedyalkova, L., & Shoichet, B. K. (2015). Colloidal aggregation and the in vitro activity of traditional Chinese medicines. ACS Chemical Biology. https://doi.org/10.1021/cb5009487.

  46. Garcea, G., Jones, D., Singh, R., Dennison, A., Farmer, P., Sharma, R., et al. (2004). Detection of curcumin and its metabolites in hepatic tissue and portal blood of patients following oral administration. The British Journal of Cancer, 90, 1011–1015.

    Article  CAS  Google Scholar 

  47. Carroll, R. E., Benya, R. V., Turgeon, D. K., Vareed, S., Neuman, M., Rodriguez, L., et al. (2011). Phase IIa clinical trial of curcumin for the prevention of colorectal neoplasia. Cancer Prevention Research. https://doi.org/10.1158/1940-6207.CAPR-10-0098.

  48. Hsu, C. H., & Cheng, A. L. (2007). Clinical studies with curcumin. Advances in Experimental Medicine and Biology. https://doi.org/10.1007/978-0-387-46401-5_21.

  49. Lao, C. D., Ruffin, IV M. T., Normolle, D., Heath, D. D., Murray, S. I., Bailey, J. M., et al. (2006). Dose escalation of a curcuminoid formulation. BMC Complementary Medicine and Therapies. https://doi.org/10.1186/1472-6882-6-10.

  50. Kurita, T., & Makino, Y. (2013). Novel curcumin oral delivery systems. Anticancer Research. https://doi.org/10.2307/1506602.

  51. Dempe, J. S., Scheerle, R. K., Pfeiffer, E., & Metzler, M. (2013). Metabolism and permeability of curcumin in cultured Caco-2 cells. Molecular Nutrition & Food Research. https://doi.org/10.1002/mnfr.201200113.

  52. Artursson, P., & Karlsson, J. (1991). Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/0006-291X(91)91647-U.

  53. Wahlang, B., Pawar, Y. B., & Bansal, A. K. (2011). Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. European Journal of Pharmaceutics and Biopharmaceutics. https://doi.org/10.1016/j.ejpb.2010.12.006.

  54. Wortelboer, H. M., Usta, M., Van Der Velde, A. E., Boersma, M. G., Spenkelink, B., Van Zanden, J. J., et al. (2003). Interplay between MRP inhibition and metabolism of MRP inhibitors: the Case of Curcumin. Chemical Research in Toxicology. https://doi.org/10.1021/tx034101x.

  55. Vareed, S. K., Kakarala, M., Ruffin, M. T., Crowell, J. A., Normolle, D. P., Djuric, Z., et al. (2008). Pharmacokinetics of curcumin conjugate metabolites in healthy human subjects. Cancer Epidemiology, Biomarkers & Prevention. https://doi.org/10.1158/1055-9965.EPI-07-2693.

  56. Chen, A. L., Hsu, C. H., Lin, J. K., Hsu, M. M., Ho, Y. F., She, T. S., et al. (2001). Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Research. https://doi.org/PMID: 11712783.

  57. Ringman, J. M., Frautschy, S. A., Teng, E., Begum, A. N., Bardens, J., Beigi, M., et al. (2012). Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimer's Research & Therapy. https://doi.org/10.1186/alzrt146.

  58. Majeed, M., Natarajan, S., Pandey, A., Bani, S., & Mundkur, L. (2019). Subchronic and reproductive/developmental toxicity studies of tetrahydrocurcumin in rats. Toxicology Reseach. https://doi.org/10.5487/tr.2019.35.1.065.

  59. Hassaninasab, A., Hashimoto, Y., Tomita-Yokotani, K., & Kobayashi, M. (2011). Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proceedings of National Academy of Science. https://doi.org/10.1073/pnas.1016217108.

  60. Vijaya Saradhi, U. V. R., Ling, Y., Wang, J., Chiu, M., Schwartz, E. B., Fuchs, J. R., et al. (2010). A liquid chromatography-tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Science. https://doi.org/10.1016/j.jchromb.2010.08.039.

  61. Orlando, G., Lin, Z., Zhang, Z., Luo, D., Xie, J., Xian, Y., et al. (2018). Curcumin’ s metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF- κ. B Pathway, 9, 1–12. https://doi.org/10.3389/fphar.2018.01181.

    Article  CAS  Google Scholar 

  62. Aggarwal, B. B., Deb, L., & Prasad, S. (2015). Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules. https://doi.org/10.3390/molecules20010185.

    Article  Google Scholar 

  63. Dileep, K. V., Tintu, I., & Sadasivan, C. (2011). Molecular docking studies of curcumin analogs with phospholipase A2. Interdisciplinary Sciences-Computational Life Sciences, 3, 189. https://doi.org/10.1007/s12539-011-0090-9.

    Article  CAS  Google Scholar 

  64. Pari, L., & Murugan, P. (2005). Effect of tetrahydrocurcumin on blood glucose, plasma insulin and hepatic key enzymes in streptozotocin induced diabetic rats. Journal of Basic Clinical Physiology and Pharmacology, 16, 257–274. https://doi.org/10.1515/JBCPP.2005.16.4.257.

    Article  CAS  Google Scholar 

  65. Nakmareong, S., Kukongviriyapan, U., Pakdeechote, P., Kukongviriyapan, V., Kongyingyoes, B., Donpunha, W., et al. (2011). Tetrahydrocurcumin alleviates hypertension, aortic stiffening and oxidative stress in rats with nitric oxide deficiency. Hypertension Research, 35, 418–425. https://doi.org/10.1038/hr.2011.180.

    Article  CAS  PubMed  Google Scholar 

  66. Yoysungnoen, P., Wirachwong, P., Changtam, C., Suksamrarn, A., & Patumraj, S. (2009). Anti-cancer and anti-angiogenic effects of curcumin and tetrahydrocurcumin on implanted hepatocellular carcinoma in nude mice. World Journal of Gastroenterology, 14, 2003–2009. https://www.wjgnet.com/1007-9327/full/v14/i13/2003.htm.

    Article  Google Scholar 

  67. Yoysungnoen, P., Wirachwong, P., Suksamrarn, A., & Patumraj, S. (2011). Downregulation of p-ERK1 / 2 and p-AKT expression by curcumin and tetrahydrocurcumin in hepatocellular carcinoma-induced tumors in nude mice. Asian Biomedicine, 5, 345–352. https://doi.org/10.5372/1905-7415.0503.045.

    Article  CAS  Google Scholar 

  68. Zodda, D., Giammona, R., & Schifilliti, S. (2018). Treatment strategy for dyslipidemia in cardiovascular disease prevention: focus on old and new drugs. Pharmacy. https://doi.org/10.3390/pharmacy6010010.

  69. Murugan, P., & Pari, L. (2007). Influence of tetrahydrocurcumin on hepatic and renal functional markers and protein levels in experimental type 2 diabetic rats. Basic & Clinical Pharmacology & Toxicology, 101, 241–245. https://doi.org/10.1111/j.1742-7843.2007.00109.x.

    Article  CAS  Google Scholar 

  70. Uzuki, M. S., Akamura, T. N., Yoki, S. I., Ujiwara, A. F., Atanabe, Y. W., Ohri, K. M., et al. (2005). Elucidation of anti-allergic activities of curcumin-related compounds with a special reference to their anti-oxidative. Activities, 28, 1438–1443.

    Google Scholar 

  71. Khopde, S. M., Priyadarsini, K. I., Guha, S. N., Satav, J. G., Venkatesan, P., & Rao, M. N. (2000). Inhibition of radiation-induced lipid peroxidation by tetrahydrocurcumin: possible mechanisms by pulse radiolysis. Bioscience, Biotechnology, and Biochemistry, 64, 503–509.

    Article  CAS  Google Scholar 

  72. Okada, K., Wangpoengtrakul, C., Tanaka, T., Toyokuni, S., Uchida, K., & Osawa, T. (2001). Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. Journal of Nutrition. https://doi.org/10.1093/jn/131.8.2090.

  73. Naito, M., Wu, X., Nomura, H., Kodama, M., Kato, Y., Kato, Y., et al. (2011). The protective effects of tetrahydrocurcumin on oxidative stress in cholesterol-fed rabbits. Journal of Atherosclerosis and Thrombosis. https://doi.org/10.5551/jat.9.243.

  74. Mondal, N. K., Behera, J., Kelly, K. E., George, A. K., Tyagi, P. K., & Tyagi, N. (2019). Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochemistry International. https://doi.org/10.1016/j.neuint.2018.11.015.

  75. Chen, B. L., Chen, Y. Q., Ma, B. H., Yu, S. F., Li, L. Y., Zeng, Q. X., et al. (2018). Tetrahydrocurcumin, a major metabolite of curcumin, ameliorates allergic airway inflammation by attenuating Th2 response and suppressing the IL-4Rα-Jak1-STAT6 and Jagged1/Jagged2 -Notch1/Notch2 pathways in asthmatic mice. Clinical & Experimental Allergy. https://doi.org/10.1111/cea.13258.

  76. Zhang, Z. B., Luo, D. D., Xie, J. H., Xian, Y. F., Lai, Z. Q., Liu, Y. H., et al. (2018). Curcumin’s metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κB pathway. Frontiers in Pharmacology. https://doi.org/10.3389/fphar.2018.01181.

  77. Kakkar, V., Kaur, I. P., Kaur, A. P., Saini, K., & Singh, K. K. (2018). Topical delivery of tetrahydrocurcumin lipid nanoparticles effectively inhibits skin inflammation: in vitro and in vivo study. Drug Development and Industrial Pharmacy. https://doi.org/10.1080/03639045.2018.1492607.

  78. Wahlström, B., & Blennow, G. (1978). A study on the fate of curcumin in the rat. Acta Pharmacol Toxicol (Copenh). https://doi.org/10.1111/j.1600-0773.1978.tb02240.x.

  79. Javeri, I., & Chand, N. (2016). Curcumin. Nutraceuticals - Efficacy, Safety and Toxicity. https://doi.org/10.1016/B978-0-12-802147-7.00031-0.

  80. Jäger, R., Lowery, R. P., Calvanese, A. V., Joy, J. M., Purpura, M., & Wilson, J. M. (2014). Comparative absorption of curcumin formulations. Nutrition Journal, 13, 11. https://doi.org/10.1186/1475-2891-13-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bansal, S. S., Goel, M., Aqil, F., Vadhanam, M. V., & Gupta, R. C. (2011). Advanced drug delivery systems of curcumin for cancer chemoprevention. Cancer Prevention Research. https://doi.org/10.1158/1940-6207.CAPR-10-0006.

  82. Anand, P., Kunnumakkara, A., Newman, R., & Aggarwal, B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmceuticals, 4, 807–818.

    Article  CAS  Google Scholar 

  83. Hoehle, S. I., Pfeiffer, E., & Metzler, M. (2007). Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Molecular Nutrition & Food Research. https://doi.org/10.1002/mnfr.200600283.

  84. Awasthi, S., Pandya, U., Singhal, S. S., Lin, J. T., Thiviyanathan, V., Seifert, W. E., et al. (2000). Curcumin-glutathione interactions and the role of human glutathione S-transferase P1-1. Chemico-Biological Interactions. https://doi.org/10.1016/S0009-2797(00)00185-X.

  85. Usta, M., Wortelboer, H. M., Vervoort, J., Boersma, M. G., Rietjens, I. M. C. M., Van Bladeren, P. J., et al. (2007). Human glutathione S-transferase-mediated glutathione conjugation of curcumin and efflux of these conjugates in caco-2 cells. Chemical Research in Toxicology. https://doi.org/10.1021/tx7002245.

  86. Ireson, C. R., Jones, D. J. L., Boocock, D. J., Farmer, P. B., Gescher, A. J., Orr, S., et al. (2002). Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiology, Biomarkers & Prevention. https://doi.org/10.3171/jns.1976.44.4.0429.

  87. Hoehle, S. I., Pfeiffer, E., Sólyom, A. M., & Metzler, M. (2006). Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf058146a.

  88. Pal, A., Sung, B., Bhanu Prasad, B. A., Schuber, P. T., Prasad, S., Aggarwal, B. B., et al. (2014). Curcumin glucuronides: assessing the proliferative activity against human cell lines. Bioorganic & Medicinal Chemistry. https://doi.org/10.1016/j.bmc.2013.11.006.

  89. Choudhury, A., Raja, S., Mahapatra, S., Nagabhushanam, K., & Majeed, M. (2015). Synthesis and evaluation of the anti-oxidant capacity of curcumin glucuronides, the major curcumin metabolites. Antioxidants. https://doi.org/10.3390/antiox4040750.

  90. Sandur, S. K., Pandey, M. K., Sung, B., Ahn, K. S., Murakami, A., Sethi, G., et al. (2007). Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. https://doi.org/10.1093/carcin/bgm123.

  91. Pfeiffer, E., Hoehle, S. I., Walch, S. G., Riess, A., Sólyom, A. M., & Metzler, M. (2007). Curcuminoids form reactive glucuronides in vitro. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf0623283.

  92. Pari, L., & Murugan, P. (2006). Tetrahydrocurcumin: Effect on chloroquine-mediated oxidative damage in rat kidney. Basic & Clinical Pharmacology & Toxicology. https://doi.org/10.1111/j.1742-7843.2006.pto_503.x.

  93. Ryu E. K., Choe Y. S., Lee K. H., Choi Y., & Kim B. T. (2006). Curcumin and dehydrozingerone derivatives: Synthesis, radiolabeling, and evaluation for β-amyloid plaque imaging. Journal of Medicinal Chemistry. https://doi.org/10.1021/jm0607193.

  94. Wang, Y., Yin, H., Li J., Zhang, Y., Han, B., Zeng, Z., et al. (2013). Amelioration of β-amyloid-induced cognitive dysfunction and hippocampal axon degeneration by curcumin is associated with suppression of CRMP-2 hyperphosphorylation. Neuroscience Letter. https://doi.org/10.1016/j.neulet.2013.10.024.

  95. Monroy, A., Lithgow, G. J., & Alavez, S. (2013). Curcumin and neurodegenerative diseases. BioFactors. https://doi.org/10.1002/biof.1063.

  96. Lee, W.-H., Loo, C.-Y., Bebawy, M., Luk, F., Mason, R., & Rohanizadeh, R. (2013). Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Current Neuropharmacology. https://doi.org/10.2174/1570159X11311040002.

  97. Schramm, A., Jähne, E. A., Baburin, I., Hering, S., & Hamburger, M. (2014). Natural products as potential human ether-a-Go-Go-related gene channel inhibitors - Outcomes from a screening of widely used herbal medicines and edible plants. Planta Medicine. https://doi.org/10.1055/s-0034-1382907.

  98. Hu, C. W., Sheng, Y., Zhang, Q., Liu, H. B., Xie, X., Ma, W. C., et al. (2012). Curcumin inhibits hERG potassium channels in vitro. Toxicology Letters. https://doi.org/10.1016/j.toxlet.2011.11.005.

  99. Commandeur, J. N. M., Samhoedi, R., & Vermeukn, N. P. E. (1996). Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat. Liver, 51, 39–45.

    Google Scholar 

  100. Chin, D., Huebbe, P., Frank, J., Rimbach, G., & Pallauf, K. (2014). Redox Biology Curcumin may impair iron status when fed to mice for six months. Redox Biology, 2, 563–569. https://doi.org/10.1016/j.redox.2014.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Glaser, J., & Holzgrabe, U. (2016). Focus on PAINS: False friends in the quest for selective anti-protozoal lead structures from Nature? Medchemcomm. https://doi.org/10.1039/c5md00481k.

  102. Helson, L. (2013). Curcumin (diferuloylmethane) delivery methods: a review. Biofactors, 39, 21–26.

    Article  CAS  Google Scholar 

  103. Perkins, S., Verschoyle, R. D., Hill, K., Sharma, R. A., Williams, M. L., Steward, W. P., et al. (2002). Chemopreventive efficacy and pharmacokinetics of curcumin in the min/+ mouse, a model of familial adenomatous polyposis. Cancer Epidemiology and Biomarkers Prevention. https://doi.org/10.1158/1055-9965.epi-07-2693.

    Article  Google Scholar 

  104. Sharma, R. A., Euden, S. A., Platton, S. L., Cooke, D. N., Shafayat, A., Hewitt, H. R., et al. (2004). Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clinical Cancer Research. https://doi.org/10.1158/1078-0432.CCR-04-0744.

  105. Maiti, K., Mukherjee, K., Gantait, A., Saha, B. P., & Mukherjee, P. K. (2007). Curcumin-phospholipid complex: preparation, therapeutic evaluation and pharmacokinetic study in rats. International Journal of Pharmacy. https://doi.org/10.1016/j.ijpharm.2006.09.025.

  106. Yang, K. Y., Lin, L. C., Tseng, T. Y., Wang, S. C., & Tsai, T. H. (2007). Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences. https://doi.org/10.1016/j.jchromb.2007.03.010.

  107. Shahani, K., Swaminathan, S. K., Freeman, D., Blum, A., Ma, L., & Panyam, J. (2010). Injectable sustained release microparticles of curcumin: a new concept for cancer chemoprevention. Cancer Research. https://doi.org/10.1158/0008-5472.CAN-09-4362.

  108. Shahani, K., & Panyam, J. (2011). Highly loaded, sustained-release microparticles of curcumin for chemoprevention. Journal of Pharmaceutical Sciences. https://doi.org/10.1002/jps.22475.

  109. Chowdhury, R., Nimmanapalli, R., Graham, T., & Reddy, G. (2013). Curcumin attenuation of lipopolysaccharide induced cardiac hypertrophy in rodents. ISRN Inflammation. https://doi.org/10.1155/2013/539305.

  110. Tu, S. P., Jin, H., Shi, J. D., Zhu, L. M., Suo, Y., Lu, G., et al. (2012). Curcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growth. Cancer Prevention Research. https://doi.org/10.1158/1940-6207.CAPR-11-0247.

  111. Oh, S. W., Cha, J. Y., Jung, J. E., Chang, B. C., Kwon, H. J., Lee, B. R., et al. (2011). Curcumin attenuates allergic airway inflammation and hyper-responsiveness in mice through NF-κB inhibition. Journal of Ethnopharmacology. https://doi.org/10.1016/j.jep.2010.07.026.

  112. Kim, T. H., Jiang, H. H., Youn, Y. S., Park, C. W., Tak, K. K., Lee, S., et al. (2011). Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity. International Journal of Pharmaceutics. https://doi.org/10.1016/j.ijpharm.2010.10.041.

  113. Gou, M., Men, K., Shi, H., Xiang, M., Zhang, J., Song, J., et al. (2011). Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nanoscale. https://doi.org/10.1039/c0nr00758g.

  114. López-Jornet, P., Camacho-Alonso, F., Jiménez-Torres, M. J., Orduña-Domingo, A., & Gómez-García, F. (2011). Topical curcumin for the healing of carbon dioxide laser skin wounds in mice. Photomedicine and Laser Surgery. https://doi.org/10.1089/pho.2011.3004.

  115. Dovigo, L. N., Carmello, J. C., De Souza Costa, C. A., Vergani, C. E., Brunetti, I. L., Bagnato, V. S., et al. (2013). Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Medical Mycology. https://doi.org/10.3109/13693786.2012.714081.

  116. Wang, S., Chen, P., Zhang, L., Yang, C., & Zhai, G. (2012). Formulation and evaluation of microemulsion-based in situ ion-sensitive gelling systems for intranasal administration of curcumin. Journal of Drug Targeting. https://doi.org/10.3109/1061186X.2012.719230.

  117. Subhashini, Chauhan, P. S., Kumari, S., Kumar, J. P., Chawla, R., Dash, D., et al. (2013). Intranasal curcumin and its evaluation in murine model of asthma. International Immunopharmacology. https://doi.org/10.1016/j.intimp.2013.08.008.

  118. Purpura, M., Lowery, R. P., Wilson, J. M., Mannan, H., Münch, G., & Razmovski-Naumovski, V. (2018). Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. European Journal of Nutrition. https://doi.org/10.1007/s00394-016-1376-9.

  119. Jude, S., Amalraj, A., Kunnumakkara, A. B., Divya, C., Löffler, B. M., & Gopi, S. (2018). Development of validated methods and quantification of curcuminoids and curcumin metabolites and their pharmacokinetic study of oral administration of complete natural turmeric formulation (CureitTM) in human plasma via UPLC/ESI-Q-TOF-MS spectrometry. Molecules. https://doi.org/10.3390/molecules23102415.

  120. Cao, Y., Xu, R. X., & Liu, Z. (2014).A high-throughput quantification method of curcuminoids and curcumin metabolites in human plasma via high-performance liquid chromatography/tandem mass spectrometry. Journal of Chromatography. B, Analaytical Technologies in the Biomedical and Life Sciences. https://doi.org/10.1016/j.jchromb.2013.12.039.

  121. Schiborr, C., Kocher, A., Behnam, D., Jandasek, J., Toelstede, S., & Frank, J.(2014). The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Molecular Nutrition & Food Research. https://doi.org/10.1002/mnfr.201300724.

  122. Gota, V. S., Maru, G. B., Soni, T. G., Gandhi, T. R., N. Kochar, & Agarwal, M. G. (2010). Safety and pharmacokinetics of a solid lipid curcumin particle formulation in osteosarcoma patients and healthy volunteers. Journal of Agricultural and Food Chemistry. https://doi.org/10.1021/jf9024807.

  123. Benny, M., & Antony, B. (2006). Bioavailability of biocurcumax (BCM - 095). Spice India.

  124. Antony, B., Merina, B., Iyer, V., Judy, N., Lennertz, K., & Joyal, S. (2008). A pilot cross-over study to evaluate human oral bioavailability of BCM-95® CG (BiocurcumaxTM), a novel bioenhanced preparation of curcumin. Indian Journal of Pharmaceutical Sciences. https://doi.org/10.4103/0250-474X.44591.

  125. Marczylo, T. H., Verschoyle, R. D., Cooke, D. N., Morazzoni, P., Steward, W. P., & Gescher, A. J. (2007). Comparison of systemic availability of curcumin with that of curcumin formulated with phosphatidylcholine. Cancer Chemotherapy and Pharmacology. https://doi.org/10.1007/s00280-006-0355-x.

  126. Cuomo, J., Appendino, G., Dern, A. S., Schneider, E., Mckinnon, T. P., Brown, M. J. et al. (2011). Comparative absorption of a standardized curcuminoid mixture and its lecithin formulation. Journal of Natural Products, 74, 664–669. https://doi.org/10.1021/np1007262.

    Article  CAS  PubMed  Google Scholar 

  127. Singh, R., Tønnesen, H. H., Vogensen, S. B., Loftsson, T., & Másson, M. (2010).Studies of curcumin and curcuminoids. XXXVI. The stoichiometry and complexation constants of cyclodextrin complexes as determined by the phase-solubility method and UV-Vis titration. Journal of Inclusion Phenomena and Macrocyclic Chemistry. https://doi.org/10.1007/s10847-009-9651-5.

  128. Yallapu, M. M., Jaggi, M., & Chauhan, S. C. (2010). β-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surfaces B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2010.03.039.

  129. Kanai, M., Imaizumi, A., Otsuka, Y., Sasaki, H., Hashiguchi, M., Tsujiko, K., et al. (2012). Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemotherapy and Pharmacology. https://doi.org/10.1007/s00280-011-1673-1.

  130. Sasaki, H., Sunagawa, Y., Takahashi, K., Imaizumi, A., Fukuda, H., Hashimoto, T., et al. (2011). Innovative preparation of curcumin for improved oral bioavailability. Biological and Pharmaceutical Bulletin. https://doi.org/10.1248/bpb.34.660.

  131. Kulkarni, S. K., Akula, K. K., & Deshpande, J. (2012). Evaluation of antidepressant-like activity of novel water-soluble curcumin formulations and St. John’s wort in behavioral paradigms of despair. Pharmacology. https://doi.org/10.1159/000335660.

  132. Han, Y., Chin, Tan, T. M., & Lim, L.-Y. (2008). In vitro and in vivo evaluation of the effects of piperine on P-gp function and expression. Toxicology and Applied Pharmacology, 230:283–289. https://doi.org/10.1016/j.taap.2008.02.026.

  133. Cruz-Correa, M., Shoskes, D. A., Sanchez, P., Zhao, R., Hylind, L. M., Wexner, S. D., et al. (2006). Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clinical Gastroenterology and Hepatology. https://doi.org/10.1016/j.cgh.2006.03.020.

  134. Verma, S. P., Salamone, E., & Goldin, B. (1997). Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides. Biochemical and Biophysical Research Communications. https://doi.org/10.1006/bbrc.1997.6527.

  135. Fang, J.-Y., Hung, C.-F., Chiu, H.-C., Wang, J.-J., & Chan, T.-F. (2003). Efficacy and irritancy of enhancers on the in-vitro and in-vivo percutaneous absorption of curcumin. Journal of Pharmacy and Pharmacology. https://doi.org/10.1211/002235703765344496.

  136. Grill, A. E., Koniar, B., & Panyam, J. (2014). Co-delivery of natural metabolic inhibitors in a self-microemulsifying drug delivery system for improved oral bioavailability of curcumin. Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-014-0199-6.

  137. Yang, C., & Fu, Z.-X. (2014). Liposomal delivery and polyethylene glycol-liposomal oxaliplatin for the treatment of colorectal cancer (Review). Biomed Reports. https://doi.org/10.3892/br.2014.249.

  138. Volak, L. P., Hanley, M. J., Masse, G., Hazarika, S., Harmatz, J. S., Badmaev, V., et al. (2013).Effect of a herbal extract containing curcumin and piperine on midazolam, flurbiprofen and paracetamol (acetaminophen) pharmacokinetics in healthy volunteers. British Journal of Clinical Pharmacology. https://doi.org/10.1111/j.1365-2125.2012.04364.x.

  139. Suresh, D., & Srinivasan, K. (2010). Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian Journal of Medicine Research. https://doi.org/10.1016/S0006-3495(03)74469-5.

  140. Shoba, G., Joy, D., Joseph, T., Majeed, M., Rajendran, R., & Srinivas, P. (1998). Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Medica, 64, 353–356.

    Article  CAS  Google Scholar 

  141. Ireson, C., Orr, S., Jones, D. J. L., Verschoyle, R., Lim, C. K., Luo, J. L., et al. (2001). Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2production. Cancer Research. https://doi.org/10.1371/journal.pone.0122537.

  142. Moorthi, C., Krishnan, K., Manavalan, R., & Kathiresan, K. (2012). Preparation and characterization of curcumin-piperine dual drug loaded nanoparticles. Asian Pacific Journal of Tropical Biomedicine. https://doi.org/10.1016/S2221-1691(12)60241-X.

  143. Marslin, G., Sarmento, B. F. C. C., Franklin, G., Martins, J. A. R., Silva, C. J. R., Gomes, A. F. C., et al. (2017). Curcumin encapsulated into methoxy poly(ethylene glycol) poly(ε-caprolactone) nanoparticles increases cellular uptake and neuroprotective effect in glioma cells. Planta Medica. https://doi.org/10.1055/s-0042-112030.

  144. Khalil, N. M., Nascimento, T. C. F. do, Casa, D. M., Dalmolin, L. F., Mattos, A. C. de, Hoss, I., et al. (2013). Pharmacokinetics of curcumin-loaded PLGA and PLGA-PEG blend nanoparticles after oral administration in rats. Colloids Surfaces B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2012.06.024.

  145. Sadeghzadeh, H., Pilehvar-Soltanahmadi, Y., Akbarzadeh, A., Dariushnejad, H., Sanjarian, F., & Zarghami, N. (2017). The effects of nanoencapsulated curcumin-Fe3O4 on proliferation and hTERT gene expression in lung cancer cells. Anti-Cancer Agents in Medicinal Chemistry. https://doi.org/10.2174/1871520617666170213115756.

  146. Mangalathillam, S., Rejinold, N. S., Nair, A., Lakshmanan, V. K., Nair, S. V., & Jayakumar, R. (2012). Curcumin loaded chitin nanogels for skin cancer treatment via the transdermal route. Nanoscale. https://doi.org/10.1039/c1nr11271f.

  147. Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A. et al. (2007). Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. Journal of Nanobiotechnology, 5, 3. https://doi.org/10.1186/1477-3155-5-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Jourghanian, P., Ghaffari, S., Ardjmand, M., Haghighat, S., & Mohammadnejad, M. (2016). Sustained release curcumin loaded solid lipid nanoparticles. Advanced Pharmaceutical Bulletin, 6, 17–21. https://doi.org/10.15171/apb.2016.04.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Song, Z., Lu, Y., Zhang, X., Wang, H., Han, J., & Dong, C. (2016). Novel curcumin-loaded human serum albumin nanoparticles surface functionalized with folate: characterization and in vitro/vivo evaluation. Drug Design, Development and Therapy, 10, 2643–2649. https://doi.org/10.2147/DDDT.S112039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sugawara, J., Akazawa, N., Miyaki, A., Choi, Y., Tanabe, Y., Imai, T. et al. (2012). Effect of endurance exercise training and curcumin intake on central arterial hemodynamics in postmenopausal women: pilot study. American Journal of Hypertension, 25, 651–656. https://doi.org/10.1038/ajh.2012.24.

    Article  CAS  PubMed  Google Scholar 

  151. Kundu, P., Mohanty, C., & Sahoo, S. K. (2012). Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy. Acta Biomater, 8, 2670–2687. https://doi.org/10.1016/j.actbio.2012.03.048.

    Article  CAS  PubMed  Google Scholar 

  152. Shaikh, J., Ankola, D., & Beniwal, V. (2009). Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. European Journal of Pharmaceutical Science, 37, 223–230.

    Article  CAS  Google Scholar 

  153. Xie, J., Yang, Z., Zhou, C., Zhu, J., Lee, R. J., & Teng, L. (2016). Nanotechnology for the delivery of phytochemicals in cancer therapy. Biotechnology Advances, 34, 343–353. https://doi.org/10.1016/j.biotechadv.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  154. Bawarski, W. E., Chidlowsky, E., Bharali, D. J., & Mousa, S. A. (2008). Emerging nanopharmaceuticals. Nanomedicine: Nanotechnology, Biology and Medicine, 4, 273–282. https://doi.org/10.1016/j.nano.2008.06.002.

    Article  CAS  Google Scholar 

  155. Sou, K., Inenaga, S., Takeoka, S., & Tsuchida, E. (2008). Loading of curcumin into macrophages using lipid-based nanoparticles. International Journal of Pharmaceutics, 352, 287–293. https://doi.org/10.1016/j.ijpharm.2007.10.033.

    Article  CAS  PubMed  Google Scholar 

  156. Ji, H., Tang, J., & Li, M. (2014). Curcumin-loaded solid lipid nanoparticles with Brij78 and TPGS improved in vivo oral bioavailability and in situ intestinal absorption of curcumin. Drug Delivery, 1–12.

  157. Blasi, P., Giovagnoli, S., Schoubben, A., Ricci, M., & Rossi, C. (2007). Solid lipid nanoparticles for targeted brain drug delivery. Advanced Drug Delivery Reviews, 59, 454–477. https://doi.org/10.1016/j.addr.2007.04.011.

    Article  CAS  PubMed  Google Scholar 

  158. Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS Journal. https://doi.org/10.1208/s12248-012-9432-8.

  159. Nastiti, C. M. R. R., Ponto, T., Abd, E., Grice, J. E., Benson, H. A. E., & Roberts, M. S. (2017). Topical nano and microemulsions for skin delivery. Pharmaceutics, 9, 37. https://doi.org/10.3390/pharmaceutics9040037.

    Article  CAS  PubMed Central  Google Scholar 

  160. Jadia, R., Kydd, J., Piel, B., & Rai, P. (2018). Liposomes aid curcumin’s combat with cancer in a breast tumor model. Oncomedicine, 3, 94-109. https://doi.org/10.7150/oncm.27938.

  161. Feng, T., Wei, Y., Lee, R. J., & Zhao, L. (2017). Liposomal curcumin and its application in cancer. International Journal of Nanomedicine, 2, 6027–6044. https://doi.org/10.2147/IJN.S132434.

  162. Chen, H., Wu, J., Sun, M., Guo, C., Yu, A., Cao, F. et al. (2012). N-trimethyl chitosan chloride-coated liposomes for the oral delivery of curcumin. Journal of Liposome Research, 22, 100–109. https://doi.org/10.3109/08982104.2011.621127.

    Article  CAS  PubMed  Google Scholar 

  163. Ramalingam, P., & Ko, Y. T. (2015). Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: pharmacokinetic and brain distribution evaluations. Pharmaceuticals Research, 32, 389–402. https://doi.org/10.1007/s11095-014-1469-1.

    Article  CAS  Google Scholar 

  164. Cheng, C., Peng, S., Li, Z., Zou, L., Liu, W., & Liu, C. (2017). Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 7, 25978–25986. https://doi.org/10.1039/c7ra02861j.

    Article  CAS  Google Scholar 

  165. Gopi, S., Amalraj, A., Jacob, J., Kalarikkal, N., Thomas, S., & Guo, Q. (2018). Preparation, characterization and in vitro study of liposomal curcumin powder by cost effective nanofiber weaving technology. New Journal of Chemistry, 42, 5117–5127. https://doi.org/10.1039/c7nj05029a.

    Article  CAS  Google Scholar 

  166. Xu, H., Gong, Z., Zhou, S., Yang, S., Wang, D., Chen, X. et al. (2018). Liposomal curcumin targeting endometrial cancer through the NF-κB pathway. Cellular Physiology and Biochemistry, 48, 569–582. https://doi.org/10.1159/000491886.

    Article  CAS  PubMed  Google Scholar 

  167. Karewicz, A., Bielska, D., Loboda, A., Gzyl-Malcher, B., Bednar, J., Jozkowicz, A. et al. (2013). Curcumin-containing liposomes stabilized by thin layers of chitosan derivatives. Colloids Surfaces B Biointerfaces, 109, 307–316. https://doi.org/10.1016/j.colsurfb.2013.03.059.

    Article  CAS  PubMed  Google Scholar 

  168. Reddy, B., Yadav, H., & Nagesha, D. (2015). Polymeric micelles as novel carriers for poorly soluble drugs-review. Journal of Nanoscience and Nanotechnology, 15, 4009–4018.

    Article  Google Scholar 

  169. Lu, Y., & Park, K. (2013). Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. International Journal of Pharmacy, 453, 198–214.

    Article  CAS  Google Scholar 

  170. Gaucher, G., Satturwar, P., & Jones, M. (2010). Polymeric micelles for oral drug delivery. European Journal of Pharmceuticals and Biopharmceuticals, 76, 147–158.

    Article  CAS  Google Scholar 

  171. Ma, Z., Shayeganpour, A., Brocks, D., Lavasanifar, A., & Samuel, J. (2007). High-performance liquid chromatography analysis of curcumin in rat plasma: application to pharmacokinetics of polymeric micellar formulation of curcumin. Biomed Chromatography, 21, 546–552.

    Article  CAS  Google Scholar 

  172. Letchford, K., Liggins, R., & Burt, H. (2008). Solubilization of hydrophobic drugs by methoxy poly(ethylene glycol)-block-polycaprolactone diblock copolymer micelles: theoretical and experimental data and correlations. Journal of Pharmaceutical Science, 97, 1179–1190. https://doi.org/10.1002/jps.21037.

    Article  CAS  Google Scholar 

  173. Frank, J., Schiborr, C., Kocher, A., Meins, J., Behnam, D., Schubert-zsilavecz, M., et al. (2017). Transepithelial transport of curcumin in caco-2 cells is significantly enhanced by micellar solubilisation. Plant Foods for Human Nutrition, 72, 48–53. https://doi.org/10.1007/s11130-016-0587-9.

    Article  CAS  PubMed  Google Scholar 

  174. Dützmann, S., Schiborr, C., Kocher, A., Pilatus, U., Weissenberger, J., Geßler, F., et al. (2016). Intratumoral concentrations and effects of orally administered micellar curcuminoids in glioblastoma patients. Nutrition Cancer, 68, 943–948. https://doi.org/10.1080/01635581.2016.1187281.

    Article  CAS  PubMed  Google Scholar 

  175. Hagl, S., Kocher, A., Schiborr, C., Kolesova, N., Frank, J., & Eckert, G. P. (2015). Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice – Impact on bioavailability. Neurochemistry International, 89, 234–242. https://doi.org/10.1016/J.NEUINT.2015.07.026.

    Article  CAS  PubMed  Google Scholar 

  176. Lu, M., Qiu, Q., Luo, X., Liu, X., Sun, J., Wang, C. et al. (2018). Phyto-phospholipid complexes (phytosomes): a novel strategy to improve the bioavailability of active constituents. Asian Journal of Pharmceutical Science, 14, 265–274. https://doi.org/10.1016/j.ajps.2018.05.011.

    Article  Google Scholar 

  177. Kidd, P. (1996). Phosphatidylcholine, a superior protectant against liver damage. Alternative Medicine Review, 1, 258–274.

    Google Scholar 

  178. Marcel, B., Dana, L. R., M, S., & Y., A. (2018). Curcumin phospholipid complex formulaton induces neurogenesis and prevents anoikis-induced cell death in an in vitro gut-brain axis mode. American Journal of Phytomedicine Clinical Therapeutics, 6, 1–8. https://doi.org/10.21767/2321-2748.100346.

    Article  CAS  Google Scholar 

  179. Jianan, W., Lulu, W., Ju, L., Zhang, D., He, J., & Weiguang, L. (2018). Studies on the curcumin phospholipid complex solidified. The. Jornal of Pharmarcy and Pharmacology, 70, 242–249. https://doi.org/10.1111/jphp.12857.

    Article  CAS  Google Scholar 

  180. Her, C., Venier-Julienne, M., & Roger, E. (2018). Medicinal & aromatic plants improvement of curcumin bioavailability for medical applications. Medicinal and Aromatic Plants, 7. https://doi.org/10.4172/2167-0412.1000326.

  181. Shen, L., & Ji, H. (2007). Theoretical study on physicochemical properties of curcumin. Spectrochimica Acta A, 67, 619–623.

    Article  Google Scholar 

  182. Ding, L., Ma, S., Lou, H., Sun, L., & Ji, M. (2015). Synthesis and biological evaluation of curcumin derivatives with water-soluble groups as potential antitumor agents: an in vitro investigation using tumor cell lines. Molecules, 20, 21501–21514. https://doi.org/10.3390/molecules201219772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Girija, C. R., Karunakar, P., Poojari, C. S., Begum, N. S., & Syed, A. A. (2010). Molecular docking studies of curcumin derivatives with multiple protein targets for procarcinogen activating enzyme inhibition. Journal of Proteomics & Bioinformatics, 3, 200–203. https://doi.org/10.4172/jpb.1000140.

    Article  CAS  Google Scholar 

  184. Dar, O. A., Malik, M. A., Shahid-ul-Islam, Gull, P., & Hashmi, A. A. (2017). Curcumin and Its Derivatives – Isolation, Synthesis, and Applications. Plant-Based Natural Products: Directives and Applications, 240. https://doi.org/10.1002/9781119423898.ch8.

  185. Ishida, J., Ohtsu, H., Tachibana, Y., Nakanishi, Y., Bastow, K., Nagai, M., et al. (2002). Antitumor agents. Part 214: synthesis and evaluation of curcumin analogues as cytotoxic agents. Bioorganic and Medicinal Chemistry, 10, 3481–3487.

    Article  CAS  Google Scholar 

  186. Dinkova-Kostova, A., & Talalay, P. (1999). Relation of structure of curcumin analogs to their potencies as inducers of Phase 2 detoxification enzymes. Carcinogenesis, 20, 911–914.

    Article  CAS  Google Scholar 

  187. Basile, V., Ferrari, E., Lazzari, S., Belluti, S., Pignedoli, F., & Imbriano, C. (2009). Curcumin derivatives: Molecular basis of their anti-cancer activity. Biochemical Pharmacology, 78, 1305–1315. https://doi.org/10.1016/j.bcp.2009.06.105.

    Article  CAS  PubMed  Google Scholar 

  188. Ferrari, E., Pignedoli, F., Imbriano, C., Marverti, G., Basile, V., Venturi, E. et al. (2011). Newly synthesized curcumin derivatives: crosstalk between chemico-physical properties and biological activity. Journal of Medicinal Chemistry, 54, 8066–8077. https://doi.org/10.1021/jm200872q.

    Article  CAS  PubMed  Google Scholar 

  189. Mapoung, S., Pitchakarn, P., Yodkeeree, S., Ovatlarnporn, C., Sakorn, N., & Limtrakul, P. (2016). Chemosensitizing effects of synthetic curcumin analogs on human multi-drug resistance leukemic cells. Chemico-Biological Interactions, 244, 140–148. https://doi.org/10.1016/j.cbi.2015.12.001.

    Article  CAS  PubMed  Google Scholar 

  190. Padhye, S., Yang, H., Jamadar, A., Cui, Q. C., Chavan, D., Dominiak, K. et al. (2009). New difluoro knoevenagel condensates of curcumin, their schiff bases and copper complexes as proteasome inhibitors and apoptosis inducers in cancer cells. Pharmaceutical Research, 26, 1874–1880. https://doi.org/10.1007/s11095-009-9900-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Bao, B., Ali, S., Banerjee, S., Wang, Z., Logna, F., Azmi, A. S. et al. (2012). Curcumin analogue CDF inhibits pancreatic tumor growth by switching on suppressor microRNAs and attenuating EZH2 expression. Cancer Research, 72, 335–345. https://doi.org/10.1158/0008-5472.CAN-11-2182.

    Article  CAS  PubMed  Google Scholar 

  192. Roy, S., Yu, Y., Padhye, S. B., Sarkar, F. H., & Majumdar, A. P. N. (2013). Difluorinated-Curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21. PLoS ONE, 8, e68543. https://doi.org/10.1371/journal.pone.0068543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Mosley, C. A., Liotta, D., & Snyder, J. (2007). Highly active anticancer curcumin analogues. Advances in Experimental Medicine and Biology, 595, 77–103.

    Article  Google Scholar 

  194. Aggarwal, B. B., Bhatt, I. D., Ichikawa, H., Ahn, K. S., Sethi, G., & Sandur, S. K. (2006). Curcumin—Biological and medicinal properties, I. P. Ravindran, K. N. Babu, & K. Sivaraman (Eds), Tumeric: The genus curcuma (Medicinal and aromatic plants: Industrial profiles).

  195. Preetha, A., Banerjee, R., & Huilgol, N. (2007). Tensiometric profiles and their modulation by cholesterol: implications in cervical cancer. Cancer Investigation, 25, 172–181.

    Article  CAS  Google Scholar 

  196. Ohori, H., Yamakoshi, H., & Tomizawa, M. (2006). Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Molecular Cancer Ther, 5, 2563–2571.

    Article  CAS  Google Scholar 

  197. John, V. D., Kuttan, G., & Krishnankutty, K. (2002). Anti-tumour studies of metal chelates of synthetic curcuminoids. Journal of Experimental & Clinical Cancer Research, 21, 219–224.

    CAS  Google Scholar 

  198. Eybl, V., Kotyzová, D., Lešetický, L., Bludovská, M., & Koutenský, J. (2006). The influence of curcumin and manganese complex of curcumin on cadmium-induced oxidative damage and trace elements status in tissues of mice. Journal of Applied Toxicology, 26, 207–212. https://doi.org/10.1002/jat.1124.

    Article  CAS  PubMed  Google Scholar 

  199. Kumar, A., Garcia, G., Ghosh, R., Rajnarayanan, R., Alworth, W., & Slaga, T. (2003). 4-Hydroxy-3-methoxybenzoic acid methyl ester: a curcumin derivative targets Akt/NF kappa B cell survival signaling pathway: potential for prostate cancer management. Neoplasia, 5, 255–266.

    Article  CAS  Google Scholar 

  200. Dayton, A., Selvendiran, K., Kuppusamy, M. L., Rivera, B. K., Meduru, S., Kálai, T. et al. (2010). Cellular uptake, retention and bioabsorption of HO-3867, a fluorinated curcumin analog with potential antitumor properties. Cancer Biology & Therapy, 10, 1027–1032. https://doi.org/10.1002/jat.1124.

    Article  CAS  Google Scholar 

  201. Gagliardi, S., Ghirmai, S., Abel, K. J., Lanier, M., Gardai, S. J., Lee, C. et al. (2012). Evaluation in vitro of synthetic curcumins as agents promoting monocytic gene expression related to β-Amyloid clearance. Chemical Research in Toxicology, 25, 101–112. https://doi.org/10.1021/tx200246t.

    Article  CAS  PubMed  Google Scholar 

  202. Razali, N. A., Nazarudin, N. A., Lai, K. S., Abas, F., & Ahmad, S. (2018). Curcumin derivative, 2,6-bis(2-fluorobenzylidene)cyclohexanone (MS65) inhibits interleukin-6 production through suppression of NF-ΚB and MAPK pathways in histamine-induced human keratinocytes cell (HaCaT). BMC Complementary Medicine and Therapies, 18, 217. https://doi.org/10.1186/s12906-018-2223-8.

    Article  CAS  Google Scholar 

  203. Yanagisawa, D., Taguchi, H., Morikawa, S., Kato, T., Hirao, K., Shirai, N. et al. (2015). Novel curcumin derivatives as potent inhibitors of amyloid β aggregation. Biochem Biophys Reports, 4, 357–368. https://doi.org/10.1016/j.bbrep.2015.10.009.

    Article  Google Scholar 

  204. Goldberg, J., Currais, A., Prior, M., Fischer, W., Chiruta, C., Ratliff, E. et al. (2018). The mitochondrial ATP synthase is a shared drug target for aging and dementia. Aging Cell, 17, e12715. https://doi.org/10.1111/acel.12715.

    Article  CAS  PubMed Central  Google Scholar 

  205. Daugherty, D. J., Marquez, A., Calcutt, N. A., & Schubert, D. (2017). A novel curcumin derivative for the treatment of diabetic neuropathy. Neuropharmacology, 129, 26–35. https://doi.org/10.1016/j.neuropharm.2017.11.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Haleblian, J., & McCrone, W. (1969). Pharmaceutical applications of polymorphism. Journal of Pharmaceuticals Science, 58, 911–929.

    Article  CAS  Google Scholar 

  207. Davey, R. J. (2002). Polymorphism in molecular crystals Joel Bernstein. Cryst Growth Des, 2002;2:675–6. New York, NY: Oxford University Press. https://doi.org/10.1021/cg020039a.

  208. Nangia, A. (2008). Conformational polymorphism in organic crystals. Accounts of Chemical Research, 41, 595–604. https://doi.org/10.1021/ar700203k.

    Article  CAS  PubMed  Google Scholar 

  209. Tønnesen, H., Karlsen, J., & Mostad, A. (1982). Structural studies of curcuminoids. I. The crystal structure of curcumin. Acta Chemica Scandanavica, B65, 475–479.

    Article  Google Scholar 

  210. Sanphui, P., Goud, N., Khandavilli, U., & Nangia, A. (2011). Fast dissolving curcumin cocrystals. Crystal Growth and Design, 11, 4135–4145.

    Article  CAS  Google Scholar 

  211. Ishigami, Y., Goto, M., Masuda, T., Takizawa, Y., & Suzuki, S. (1999). The crystal structure and the fluorescent properties of curcumin. Journal of the Japan Society of Colour Material, 72, 71–77. https://doi.org/10.4011/shikizai1937.72.71.

    Article  CAS  Google Scholar 

  212. Parimita, S. P., Ramshankar, Y. V., Suresh, S., & Guru Row, T. N. (2007). Redetermination of curcumin: (1E,4Z,6E)-5-hydr-oxy-1,7-bis-(4-hydr-oxy-3-methoxy-phen-yl)hepta-1,4,6-trien-3-one. Acta Crystallographica Section E, 63, o860–2. https://doi.org/10.1107/S160053680700222X.

    Article  CAS  Google Scholar 

  213. Suresh, K., & Nangia, A. (2018). Curcumin: Pharmaceutical solids as a platform to improve solubility and bioavailability. CrystEngComm, 20, 3277–3296. https://doi.org/10.1039/c8ce00469b.

    Article  CAS  Google Scholar 

  214. Liu, J., Svärd, M., Hippen, P., & Rasmuson, Å. C. (2015). Solubility and crystal nucleation in organic solvents of two polymorphs of curcumin. Journal of Pharmaceutical Science, 104, 2183–2189.

    Article  CAS  Google Scholar 

  215. Kurniawansyah, F., Mammucari, R., & Foster, N. R. (2017). Polymorphism of curcumin from dense gas antisolvent precipitation. Powder Technology, 305, 748–756. https://doi.org/10.1016/j.powtec.2016.10.067.

    Article  CAS  Google Scholar 

  216. Thorat, A., & Dalvi, S. (2016). Ultrasound-assisted modulation of concomitant polymorphism of curcumin during liquid antisolvent precipitation. Ultrasonics Sonochemistry, 30, 35–43.

    Article  CAS  Google Scholar 

  217. Chow, S., Shi, L., Ng, W., Leung, K., Nagapudi, K., Sun, C., et al. (2014). Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Crystal Growth and Design, 14, 5079–5089.

    Article  CAS  Google Scholar 

  218. Su, H., He, H., Tian, Y., Zhao, N., Sun, F., & Zhang, X. (2015). Syntheses and characterizations of two curcumin-based cocrystals. Inorganic Chemistry Communications, 55, 92–95. https://doi.org/10.1016/j.inoche.2015.03.027.

    Article  CAS  Google Scholar 

  219. Wong, S. N., Hu, S., Ng, W. W., Xu, X., Lai, K. L., Lee, W. Y. T., et al. (2018). Cocrystallization of curcumin with benzenediols and benzenetriols via rapid solvent removal. Crystal Growth and Design, 18, 5534–5546. https://doi.org/10.1021/acs.cgd.8b00849.

    Article  CAS  Google Scholar 

  220. Ghosh, S., Basak, P., Dutta, S., Chowdhury, S., & Sil, P. C. (2017). New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food and Chemical Toxicology, 103, 41–55. https://doi.org/10.1016/j.fct.2017.02.028.

    Article  CAS  PubMed  Google Scholar 

  221. Siddiqui, N. A. (2015). Evaluation of thermo sensitivity of curcumin and quantification of ferulic acid and vanillin as degradation products by a validated HPTLC method. Pakistan Journal of Pharmaceutical Sciences, 28, 299–305.

    CAS  PubMed  Google Scholar 

  222. Bami, E., Ozakpinar, O. B., Ozdemir-Kumral, Z. N., Köroglu, K., Ercan, F., Cirakli, Z. et al. (2017). Protective effect of ferulic acid on cisplatin induced nephrotoxicity in rats. Environmental Toxicology and Pharmacology, 54, 105–111. https://doi.org/10.1016/j.etap.2017.06.026.

    Article  CAS  PubMed  Google Scholar 

  223. Ampasavate, C., Sotanaphun, U., Phattanawasin, P., & Piyapolrungroj, N. (2010). Effects of Curcuma spp. on P-glycoprotein function. International Journal of Phytotherapy and Phytopharmacology, 17, 506–512. https://doi.org/10.1016/j.phymed.2009.09.004.

    Article  CAS  Google Scholar 

  224. Lopes-Rodrigues, V., Sousa, E., & Vasconcelos, M. H. (2016). Curcumin as a modulator of P-glycoprotein in cancer: Challenges and perspectives. Pharmaceuticals, 9, 71. https://doi.org/10.3390/ph9040071.

    Article  CAS  PubMed Central  Google Scholar 

  225. Chearwae, W. (2006). Modulation of the function of the multidrug resistance-linked ATP-binding cassette transporter ABCG2 by the cancer chemopreventive agent curcumin. Molecular Cancer Therapeutics, 5, 995–2006. https://doi.org/10.1158/1535-7163.mct-06-0087.

    Article  Google Scholar 

  226. Kusuhara, H., Furuie, H., Inano, A., Sunagawa, A., Yamada, S., Wu, C. et al. (2012). Pharmacokinetic interaction study of sulphasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. British Journal of Pharmacology, 166, 1793–1803. https://doi.org/10.1111/j.1476-5381.2012.01887.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors appreciate the College of Health Sciences, University of KwaZulu-Natal for financial and infrastructural support while we also thank the Center for High-Performance Computing (CHPC, www.chpc.ac.za) Cape-Town, South Africa for providing computational resources.

Author Contribution

All authors have contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud E. S. Soliman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olotu, F., Agoni, C., Soremekun, O. et al. An Update on the Pharmacological Usage of Curcumin: Has it Failed in the Drug Discovery Pipeline?. Cell Biochem Biophys 78, 267–289 (2020). https://doi.org/10.1007/s12013-020-00922-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00922-5

Keywords

Navigation