Skip to main content

Advertisement

Log in

4D Printing in Biomedical Engineering: a State-of-the-Art Review of Technologies, Biomaterials, and Application

  • Review
  • Published:
Regenerative Engineering and Translational Medicine Aims and scope Submit manuscript

Abstract

Background

Four-dimensional (4D) printing is an advancement of three-dimensional (3D) printing technology, which allows a static 3D-printed structure to transform its shape with time, via self-folding/unfolding, in the presence of external stimuli, such as temperature, light, pH, water, mechanical stress, and magnetic field. According to the reports, this technology has tremendous potential in the area of biomedical engineering.

Objective

To review the recent research and application breakthroughs of 4D printing in various biomedical fields, such as tissue engineering, wound healing, drug delivery, soft robotics, and other medical devices.

Materials and Methods

A thorough literature search has been performed regarding the 4D printing technology and its application in biomedical engineering using the “Web of Science” browser.

Results

After reviewing all the available literature related to the biomedical application of 4D printing, it can be summarized that 4D printing technology has remarkably diverse biomedical application potential.

Conclusion

4D printing technology revolutionizes research in the healthcare sector, such as tissue engineering, self-assembling human-scale biomaterials, and organ printing. However, the mainstream use of 4D printing, along with its translatability, is dependent on further intensive research and advancements.

Lay Summary

The goal of 4D printing is to synthesize smart shape-changing products using conventional 3D printing instruments. The fourth dimension in 4D printing is “time.” Post printing, the 3D-printed construct can be transformed into the shape of interest by exposure to specific stimuli. 4D printing is a rapidly growing technology and has been explored in different fields including biomedical engineering. This review documented a detailed discussion regarding the application of 4D printing technology in the area of biomedical engineering.

Future Work

One of the major obstacles in 4D printing technology is cellular survival in the presence of a stimulus. The stimulus should require to be well optimized in order to support cellular survival. Other problems are passive and unreliable actuation, deficiency in regulating intermediary states of deformation and restriction in the availability of material. In future work, more effective techniques or optimized methodologies for governing the application of stimuli are required to make the technique flawless in this particular field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu H, Tian H, Li X, Shao J, Ding Y, Liu H, An N. Biomimetic mushroom-shaped microfibers for dry adhesives by electrically induced polymer deformation. ACS Appl Mater Interfaces. 2014;6:14167–73. https://doi.org/10.1021/am503493u.

    Article  CAS  Google Scholar 

  2. Li X, Tian H, Ding Y, Shao J, Wei Y. Electrically templated dewetting of a UV-curable prepolymer film for the fabrication of a concave microlens array with well-defined curvature. ACS Appl Mater Interfaces. 2013;5:9975–82. https://doi.org/10.1021/am402043u.

    Article  CAS  Google Scholar 

  3. Li X, Tian H, Shao J, Ding Y, Chen X, Wang Li, Bingheng Lu. Decreasing the saturated contact angle in electrowetting-on-dielectrics by controlling the charge trapping at liquid-solid interfaces. Adv Func Mater. 2016;26:2994–3002. https://doi.org/10.1002/adfm.201504705.

    Article  CAS  Google Scholar 

  4. Yang Q, Gao B, Feng Xu. Recent advances in 4D bioprinting. Biotechnol J. 2020;15:1–10. https://doi.org/10.1002/biot.201900086.

    Article  CAS  Google Scholar 

  5. Li X, Shang J, Wang Z. Assembly automation intelligent materials : a review of applications in 4D printing article information : to cite this document : About Emerald www.emeraldinsight.com Emerald is a global publisher linking research and practice to the benefit of society. Assembly Autom. 2016.

  6. Neuss S, Blomenkamp I, Stainforth R, Boltersdorf D, Jansen M, Butz N, Perez-bouza A, Knu R. Biomaterials The use of a shape-memory poly ( e -caprolactone ) dimethacrylate network as a tissue engineering scaffold. Biomaterials. 2009;30:1697–705. https://doi.org/10.1016/j.biomaterials.2008.12.027.

    Article  CAS  Google Scholar 

  7. Cui J, Kratz K, Heuchel M, Hiebl B, Lendlein A. Mechanically active scaffolds from composites. 2011. https://doi.org/10.1002/pat.1733.

  8. Li Y, Rios O, Keum JK, Chen J, Kessler MR. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds. ACS Appl Mater Interfaces. 2016;8:15750–7. https://doi.org/10.1021/acsami.6b04374.

    Article  CAS  Google Scholar 

  9. Tabata O, Hirasawa H, Aoki S, Yoshida R, Kokufuta E. Ciliary motion actuator using self-oscillating gel. IEEE. 2002;00:405–8. https://doi.org/10.1109/memsys.2001.906562.

    Article  Google Scholar 

  10. White SR, Sottos NR, Geubelle PH, Moore JS, Kessler MR, Sriram SR, Brown EN, Viswanathan S. Erratum: correction: Autonomic healing of polymer composites. Nature. 2002;415:817–817. https://doi.org/10.1038/415817a.

    Article  CAS  Google Scholar 

  11. Kalista SJ, Ward TC. Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers. J R Soc Interface. 2007;4:405–11. https://doi.org/10.1098/rsif.2006.0169.

    Article  CAS  Google Scholar 

  12. Kalista SJ, Ward TC, Oyetunji Z. Self-healing of poly(ethylene-co-methacrylic acid) copolymers following projectile puncture. Mech Adv Mater Struct. 2007;14:391–7. https://doi.org/10.1080/15376490701298819.

    Article  CAS  Google Scholar 

  13. Tibbits S. The emergence of “4D printing”. 2013.

  14. Li Y-c, Zhang YS, Akpek A, Shin SR, Khademhosseini A. 4D bioprinting : the next-generation technology for biofabrication enabled by stimuli-responsive materials. Biofabrication. 2017;9:1–16. https://doi.org/10.1088/1758-5090/9/1/012001 (IOP Publishing).

    Article  CAS  Google Scholar 

  15. Tamay DG, Usal TD, Alagoz AS, Yucel D. 3D and 4D printing of polymers for tissue engineering applications. Front Bioeng Biotechnol. 2019;7:1–22. https://doi.org/10.3389/fbioe.2019.00164.

    Article  Google Scholar 

  16. Morouço P, Lattanzi W, Alves N. Four-dimensional bioprinting as a new era for tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2017;5:1–3. https://doi.org/10.3389/fbioe.2017.00061.

    Article  Google Scholar 

  17. Miao S, Castro N, Nowicki M, Xia L, Cui H, Zhou X, Zhu W, et al. 4D printing of polymeric materials for tissue and organ regeneration. Biochem Pharmacol. 2017; 1–15. https://doi.org/10.1016/j.mattod.2017.06.005. (Elsevier Ltd).

  18. Tibbits S. 4D printing: multi-material shape change. Archit Des. 2014;84:116–21.

    Google Scholar 

  19. Miao S, Zhu W, Castro NJ, Leng J, Zhang LG. Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng - Part C. 2016;22:952–63. https://doi.org/10.1089/ten.tec.2015.0542.

    Article  CAS  Google Scholar 

  20. Kokkinis D, Schaffner M, Studart AR. Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun. 2015; 6. https://doi.org/10.1038/ncomms9643.

  21. Qin Z, Compton BG, Lewis JA, Buehler MJ. Structural optimization of 3D-printed synthetic spider webs for high strength. Nat Commun. 2015;6:1–7. https://doi.org/10.1038/ncomms8038 (Nature Publishing Group).

    Article  CAS  Google Scholar 

  22. Gou M, Qu X, Zhu W, Xiang M, Yang J, Zhang K, Wei Y, Chen S. Bio-inspired detoxification using 3d-printed hydrogel nanocomposites. Nat Commun. 2014;5:1–9. https://doi.org/10.1038/ncomms4774 (Nature Publishing Group).

    Article  CAS  Google Scholar 

  23. Visser J, Melchels FPW, Jeon JE, Van Bussel EM, Kimpton LS, Byrne HM, Dhert WJA, Dalton PD, Hutmacher DW, Malda J. Three-dimensionally printed microfibres. Nat Commun. 2015; 1–10. https://doi.org/10.1038/ncomms7933. (Nature Publishing Group).

  24. Gao B, Yang Q, Zhao X, Jin G, Ma Y, Xu F. 4D bioprinting for biomedical applications. Trends Biotechnol. 2016;34:746–56. https://doi.org/10.1016/j.tibtech.2016.03.004 (Elsevier Ltd).

    Article  CAS  Google Scholar 

  25. Murphy SV, Atala A. review 3D bioprinting of tissues and organs. Nat Publ Group. 2014;32:773–85. https://doi.org/10.1038/nbt.2958 (Nature Publishing Group).

    Article  CAS  Google Scholar 

  26. Ursan I, Chiu L, Pierce A. Three-dimensional drug printing : a structured review. J Am Pharm Assoc. 2013;53:136–44. https://doi.org/10.1331/JAPhA.2013.12217.

    Article  Google Scholar 

  27. Stanton MM, Samitier J, Sánchez S. Bioprinting of 3D hydrogels. Lab on a Chip. Royal Society of Chemistry; 2015. https://doi.org/10.1039/C5LC90069G.

  28. Khoo ZX, Ee J, Teoh M, Liu Y, Chua CK. 3D printing of smart materials : a review on recent progresses in 4D printing. Virtual Phys Prototyping. 2015; 10. https://doi.org/10.1080/17452759.2015.1097054. (Taylor & Francis: 103–122).

  29. Hendrikson WJ, Rouwkema J, Clementi F, Van Blitterswijk CA, Farè S, Moroni L. Towards 4D printed scaffolds for tissue engineering: exploiting 3D shape memory polymers to deliver time-controlled stimulus on cultured cells. Biofabrication. 2017; 9. https://doi.org/10.1088/1758-5090/aa8114.

  30. Miao S, Cui H, Nowicki M, Lee SJ, Almeida J, Zhou X, Zhu W, et al. Photolithographic-stereolithographic-tandem fabrication of 4D smart scaffolds for improved stem cell cardiomyogenic differentiation. Biofabrication. 2018; 10. https://doi.org/10.1088/1758-5090/aabe0b.

  31. Zhang M, Vora A, Han W, Wojtecki RJ, Maune H, Le ABA, Thompson LE, et al. Dual-responsive hydrogels for direct-write 3D printing. Macromolecules. 2015;48:6482–8. https://doi.org/10.1021/acs.macromol.5b01550.

    Article  CAS  Google Scholar 

  32. Hu YY, Huang WM. Elastic and elastic-plastic analysis of multilayer thin films: closed-form solutions. J Appl Phys. 2004;96:4154–60. https://doi.org/10.1063/1.1786339.

    Article  CAS  Google Scholar 

  33. Morrison RJ, Hollister SJ, Niedner MF, Mahani MG, Park AH, Mehta DK, Ohye RG, Green GE. Erratum: mitigation of tracheobronchomalacia with 3D-printed personalized medical devices in pediatric patients (Science Translational Medicine (2015) 7 (287er4)). Sci Transl Med. 2015;7:1–12. https://doi.org/10.1126/scitranslmed.aac4749.

    Article  Google Scholar 

  34. Javaid M, Haleem A. 4D printing applications in medical field: a brief review. Clin Epidemiol Glob Health. 2019; 7. https://doi.org/10.1016/j.cegh.2018.09.007. (INDIACLEN: 317–321).

  35. Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater. 2016;28:4449–54. https://doi.org/10.1002/adma.201503132.

    Article  CAS  Google Scholar 

  36. Aguilar MR, San Román J. Introduction to smart polymers and their applications. Smart Polymers Appl. 2014; 1–11. https://doi.org/10.1533/9780857097026.1.

  37. Li YJ, Zhang FH, Liu YJ, Leng JS. 4D printed shape memory polymers and their structures for biomedical applications. Sci China Technol Sci. 2020;63:545–60. https://doi.org/10.1007/s11431-019-1494-0.

    Article  Google Scholar 

  38. Zhao W, Liu L, Zhang F, Leng J, Liu Y. Shape memory polymers and their composites in biomedical applications. Mater Sci Eng C. 2019;97:864–83. https://doi.org/10.1016/j.msec.2018.12.054 (Elsevier B.V.).

    Article  CAS  Google Scholar 

  39. Gladman S, Elisabetta A, Matsumoto A, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater. 2016;15:413–8. https://doi.org/10.1038/nmat4544.

    Article  CAS  Google Scholar 

  40. Okwuosa TC, Pereira BC, Arafat B, Cieszynska M, Isreb A, Alhnan MA. Fabricating a shell-core delayed release tablet using dual FDM 3D printing for patient-centred therapy. Pharm Res. 2017;34:427–37. https://doi.org/10.1007/s11095-016-2073-3 (Pharmaceutical Research).

    Article  CAS  Google Scholar 

  41. Yang X, Lu Z, Wu H, Li W, Zheng L, Zhao J. Collagen-alginate as bioink for three-dimensional (3D) cell printing based cartilage tissue engineering. Mater Sci Eng C. 2018;83:195–201. https://doi.org/10.1016/j.msec.2017.09.002 (Elsevier).

    Article  CAS  Google Scholar 

  42. Stratesteffen H, Köpf M, Kreimendahl F, Blaeser A, Jockenhoevel S, Fischer H. GelMA-collagen blends enable drop-on-demand 3D printablility and promote angiogenesis. Biofabrication. 2017; 9. https://doi.org/10.1088/1758-5090/aa857c.

  43. Wei H, Zhang Q, Yao Y, Liu L, Liu Y, Leng J. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite. ACS Appl Mater Interfaces. 2017;9:876–83. https://doi.org/10.1021/acsami.6b12824.

    Article  CAS  Google Scholar 

  44. Shinoda H, Azukizawa S, Maeda K, Tsumori F. Bio-mimic motion of 3D-printed gel structures dispersed with magnetic particles. J Electrochem Soc. 2019;166:B3235–9. https://doi.org/10.1149/2.0361909jes.

    Article  CAS  Google Scholar 

  45. Martin JJ, Fiore BE, Erb RM. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun. 2015;6:1–7. https://doi.org/10.1038/ncomms9641 (Nature Publishing Group).

    Article  CAS  Google Scholar 

  46. Wu J, Yuan C, Ding Z, Isakov M, Mao Y, Wang T, Dunn ML, Jerry Qi H. Multi-shape active composites by 3D printing of digital shape memory polymers. Sci Rep. 2016;6:1–11. https://doi.org/10.1038/srep24224 (Nature Publishing Group).

    Article  CAS  Google Scholar 

  47. Ren L, Li B, Song Z, Liu Q, Ren Lei, Zhou X. Bioinspired fiber-regulated composite with tunable permanent shape and shape memory properties via 3d magnetic printing. Composites Part B: Eng. 2019;164:458–66. https://doi.org/10.1016/j.compositesb.2019.01.061 (Elsevier).

    Article  CAS  Google Scholar 

  48. Kolesky DB, Truby RL, Sydney Gladman A, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26:3124–30. https://doi.org/10.1002/adma.201305506.

    Article  CAS  Google Scholar 

  49. Hua D, Zhang X, Ji Z, Yan C, Bo Yu, Li Y, Wang X, Zhou F. 3D printing of shape changing composites for constructing flexible paper-based photothermal bilayer actuators. J Mater Chem C. 2018;6:2123–31. https://doi.org/10.1039/c7tc05710e.

    Article  CAS  Google Scholar 

  50. Yang H, Leow WR, Wang T, Wang J, Jiancan Yu, He Ke, Qi D, Wan C, Chen X. 3D printed photoresponsive devices based on shape memory composites. Adv Mater. 2017;29:1–7. https://doi.org/10.1002/adma.201701627.

    Article  CAS  Google Scholar 

  51. Gupta MK, Meng F, Johnson BN, Kong YL, Tian L, Yeh YW, Masters N, Singamaneni S, McAlpine MC. 3D printed programmable release capsules. Nano Lett. 2015;15:5321–9. https://doi.org/10.1021/acs.nanolett.5b01688.

    Article  CAS  Google Scholar 

  52. Zhang B, Zhang W, Zhang Z, Zhang YF, Hingorani H, Liu Z, Liu J, Ge Qi. Self-healing four-dimensional printing with an ultraviolet curable double-network shape memory polymer system. ACS Appl Mater Interfaces. 2019;11:10328–36. https://doi.org/10.1021/acsami.9b00359.

    Article  CAS  Google Scholar 

  53. Joshi S, Rawat K, Karunakaran C, Rajamohan V, Mathew AT, Koziol K, Thakur VK, Balan ASS. 4D printing of materials for the future: opportunities and challenges. Appl Maters Today. 2020;18:100490. https://doi.org/10.1016/j.apmt.2019.100490 (Elsevier Ltd).

    Article  Google Scholar 

  54. Bajpai A, Baigent A, Raghav S, Brádaigh C, Koutsos V, Radacsi N. 4D printing: materials, technologies, and future applications in the biomedical field. Sustainability (Switzerland). 2020;12:1–32. https://doi.org/10.3390/su122410628.

    Article  Google Scholar 

  55. Andreasen GF, Hilleman TB. An evaluation of 55 cobalt substituted nitinol wire for use in orthodontics. J Am Dent Assoc (1939). 1971;82:1373–5. https://doi.org/10.14219/jada.archive.1971.0209.

    Article  CAS  Google Scholar 

  56. Airoldi G, Riva G, Vanelli M. Superelasticity and shape memory effect in NiTi orthodontic wires. J Phys IV. 1995;05:C8-1205-C8-1210. https://doi.org/10.1051/jp4/1995581205.

    Article  Google Scholar 

  57. Pyo Y, Kang M, Jang Jy, Park Y, Son YH, Choi MC, Ha Jw, Chang YW, Lee CS. Design of a shape memory composite(SMC) using 4D printing technology. Sensors Actuators A: Phys. 2018;283:187–95. https://doi.org/10.1016/j.sna.2018.08.049 (Elsevier B.V.).

    Article  CAS  Google Scholar 

  58. Miao S, Zhu W, Castro NJ, Nowicki M, Zhou X, Cui H, Fisher JP, Zhang LG. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep. 2016;6:1–10. https://doi.org/10.1038/srep27226 (Nature Publishing Group).

    Article  CAS  Google Scholar 

  59. Miao S, Zhu W, Castro NJ, Leng J, Zhang LG. Four-dimensional printing hierarchy scaffolds with highly biocompatible smart polymers for tissue engineering applications. Tissue Eng - Part C: Methods. 2016;22:952–63. https://doi.org/10.1089/ten.tec.2015.0542.

    Article  CAS  Google Scholar 

  60. Hsiao SH, Hsu SH. Synthesis and characterization of dual stimuli-sensitive biodegradable polyurethane soft hydrogels for 3D cell-Laden bioprinting. ACS Appl Mater Interfaces. 2018;10:29273–87. https://doi.org/10.1021/acsami.8b08362.

    Article  CAS  Google Scholar 

  61. Zarek M, Mansour N, Shapira S, Cohn D. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun. 2017;38:1–6. https://doi.org/10.1002/marc.201600628.

    Article  CAS  Google Scholar 

  62. Zhao W, Zhang F, Leng J, Liu Y. Personalized 4D printing of bioinspired tracheal scaffold concept based on magnetic stimulated shape memory composites. Compos Sci Technol. 2019;184:107866. https://doi.org/10.1016/j.compscitech.2019.107866 (Elsevier Ltd).

    Article  CAS  Google Scholar 

  63. Behl M, Razzaq MY, Lendlein A. Multifunctional shape-memory polymers. Adv Mater. 2010;22:3388–410. https://doi.org/10.1002/adma.200904447.

    Article  CAS  Google Scholar 

  64. Chen S, Jinlian Hu, Zhuo H, Zhu Y. Two-way shape memory effect in polymer laminates. Mater Lett. 2008;62:4088–90. https://doi.org/10.1016/j.matlet.2008.05.073.

    Article  CAS  Google Scholar 

  65. Basit A, L’Hostis G, Pac MJ, Durand B. Thermally activated composite with two-way and multi-shape memory effects. Materials. 2013;6:4031–45. https://doi.org/10.3390/ma6094031.

    Article  Google Scholar 

  66. Pei Eujin, Loh Giselle Hsiang. Technological considerations for 4D printing: an overview. Progress Addit Manuf. 2018;3:95–107. https://doi.org/10.1007/s40964-018-0047-1 (Springer International Publishing).

    Article  Google Scholar 

  67. Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H. 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater. 2019;92:19–36. https://doi.org/10.1016/j.actbio.2019.05.005 (Acta Materialia Inc.).

    Article  CAS  Google Scholar 

  68. Hoogenboom R. Temperature-responsive polymers: properties, synthesis and applications. Smart Polymers and their Applications. Woodhead Publishing Limited; 2014. https://doi.org/10.1533/9780857097026.1.15.

  69. Sun L, Huang WM, Ding Z, Zhao Y, Wang CC, Purnawali H, Tang C. Stimulus-responsive shape memory materials: a review. Mater Des. 2012;33:577–640. https://doi.org/10.1016/j.matdes.2011.04.065 (Elsevier Ltd).

    Article  CAS  Google Scholar 

  70. Hasirci V, Hasirci N. Controlled release systems. In Biomedical Engineering - Applications, Basis and Communications; 2018; 6:9–18. https://doi.org/10.1007/978-1-4939-8856-3.

  71. Senatov FS, Niaza KV, Yu Zadorozhnyy M, Maksimkin AV, Kaloshkin SD, Estrin YZ. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds. J Mech Behav Biomed Mater. 2016;57:139–48. https://doi.org/10.1016/j.jmbbm.2015.11.036 (Elsevier).

    Article  CAS  Google Scholar 

  72. Thérien-Aubin H, Zi Liang Wu, Nie Z, Kumacheva E. Multiple shape transformations of composite hydrogel sheets. J Am Chem Soc. 2013;135:4834–9. https://doi.org/10.1021/ja400518c.

    Article  CAS  Google Scholar 

  73. Dutta S, Cohn D. Temperature and pH responsive 3D printed scaffolds. J Mater Chem B. 2018; 6. https://doi.org/10.1039/x0xx00000x.

  74. Malachowski K, Breger J, Kwag HR, Wang MO, Fisher JP, Selaru FM, Gracias DH. Stimuli-responsive theragrippers for chemomechanical controlled release. Angew Chem - Int Ed. 2014;53:8045–9. https://doi.org/10.1002/anie.201311047.

    Article  CAS  Google Scholar 

  75. Jochum FD, Theato P. Temperature- and light-responsive smart polymer materials. Chem Soc Rev. 2013;42:7468–83. https://doi.org/10.1039/c2cs35191a.

    Article  CAS  Google Scholar 

  76. Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases. 2012;7:1–27. https://doi.org/10.1007/s13758-011-0009-3.

    Article  CAS  Google Scholar 

  77. Cui J, Del Campo A. Photo-responsive polymers: properties, synthesis and applications. Smart Polymers and their Applications. Woodhead Publishing Limited; 2014. https://doi.org/10.1533/9780857097026.1.93.

  78. Ercole F, Davis TP, Evans RA. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem. 2010;1:37–54. https://doi.org/10.1039/b9py00300b.

    Article  CAS  Google Scholar 

  79. Zhao Z, Jiangtao Wu, Xiaoming Mu, Haosen Chen H, Qi J, Fang D. Origami by frontal photopolymerization. Sci Adv. 2017;3:1–8. https://doi.org/10.1126/sciadv.1602326.

    Article  CAS  Google Scholar 

  80. Boyle BM, French TA, Pearson RM, McCarthy BG, Miyake GM. Structural Color for additive manufacturing: 3D-printed photonic crystals from block copolymers. ACS Nano. 2017;11:3052–8. https://doi.org/10.1021/acsnano.7b00032.

    Article  CAS  Google Scholar 

  81. Van Oosten CL, Bastiaansen CWM, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater. 2009;8:677–82. https://doi.org/10.1038/nmat2487 (Nature Publishing Group).

    Article  CAS  Google Scholar 

  82. Ellis KJ. Human body composition: in vivo methods. Physiol Rev. 2000;80:649–80. https://doi.org/10.1152/physrev.2000.80.2.649.

    Article  CAS  Google Scholar 

  83. Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissue engineering. Part I Traditional factors. Tissue Eng. 2001;7:679–89. https://doi.org/10.1089/107632701753337645.

    Article  CAS  Google Scholar 

  84. Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33:6020–41. https://doi.org/10.1016/j.biomaterials.2012.04.050 (Elsevier Ltd).

    Article  CAS  Google Scholar 

  85. Ionov L. Hydrogel-based actuators: possibilities and limitations. Mater Today. 2014;17:494–503. https://doi.org/10.1016/j.mattod.2014.07.002 (Elsevier Ltd).

    Article  Google Scholar 

  86. Villar G, Graham AD, Bayley H. A tissue-like printed material. Science. 2013;340:48–52. https://doi.org/10.1126/science.1229495.

    Article  CAS  Google Scholar 

  87. Jamal M, Kadam SS, Xiao R, Jivan F, Onn TM, Fernandes R, Nguyen TD, Gracias DH. Bio-origami hydrogel scaffolds composed of photocrosslinked PEG bilayers. Adv Healthc Mater. 2013;2:1142–50. https://doi.org/10.1002/adhm.201200458.

    Article  CAS  Google Scholar 

  88. Mulakkal MC, Trask RS, Ting VP, Seddon AM. Responsive cellulose-hydrogel composite ink for 4D printing. Mater Des. 2018;160:108–18. https://doi.org/10.1016/j.matdes.2018.09.009 (The Authors).

    Article  CAS  Google Scholar 

  89. Lv C, Xia H, Shi Q, Wang G, Wang YS, Chen QD, Zhang YL, Liu LQ, Sun HB. Sensitively humidity-driven actuator based on photopolymerizable PEG-DA films. Adv Mater Interfaces. 2017; 4. https://doi.org/10.1002/admi.201601002.

  90. Lei D, Yang Y, Liu Z, Chen S, Song B, Shen A, Yang B, et al. A general strategy of 3D printing thermosets for diverse applications. Mater Horizons. 2019;6:394–404. https://doi.org/10.1039/c8mh00937f (Royal Society of Chemistry).

    Article  CAS  Google Scholar 

  91. Ramanujan RV. Magnetic particles for biomedical applications. In Biomedical Materials; 2009; 477–491. https://doi.org/10.1007/978-0-387-84872-3.

  92. Mcbain SC, Yiu HHP, Dobson J. Magnetic nanoparticles for gene and drug delivery. Int J Nanomed. 2008;3:169–80.

    CAS  Google Scholar 

  93. Lin G, Makarov D, Schmidt OG. Magnetic sensing platform technologies for biomedical applications. Lab on a Chip. Royal Society of Chemistry; 2017. https://doi.org/10.1039/C7LC00026J.

  94. Zhu P, Yang W, Wang R, Gao S, Li Bo, Li Qi. Applications of polymer, composite, and coating materials 4D printing of complex structures with a fast response time to magnetic stimulus school of materials science and engineering. Appl Maerials Interface. 2018;10:36435–42. https://doi.org/10.1021/acsami.8b12853.

    Article  CAS  Google Scholar 

  95. Boncheva M, Andreev SA, Mahadevan L, Winkleman A, Reichman DR, Prentiss MG, Whitesides S, Whitesides GM. Magnetic self-assembly of three-dimensional surfaces from planar sheets. PNAS. 2005;102:3924–9.

    Article  CAS  Google Scholar 

  96. Singh N, Jenkins GJS, Asadi R, Doak SH. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev. 2010;1:1–15. https://doi.org/10.3402/nano.v1i0.5358.

    Article  CAS  Google Scholar 

  97. Markides H, Rotherham M, El Haj AJ. Biocompatibility and toxicity of magnetic nanoparticles in regenerative medicine. J Nanomater. 2012;2012:1–11. https://doi.org/10.1155/2012/614094.

    Article  CAS  Google Scholar 

  98. Pretsch T. Review on the functional determinants and durability of shape memory polymers. Polymer. 2010;2:120–58. https://doi.org/10.3390/polym2030120.

    Article  CAS  Google Scholar 

  99. Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry. 2006;69:133–41. https://doi.org/10.1016/j.bioelechem.2005.11.007.

    Article  CAS  Google Scholar 

  100. Sun S, Wise J, Cho M. Human fibroblast migration in three-dimensional collagen. Tissue Eng. 2004;10:1548–58.

    CAS  Google Scholar 

  101. Caig CDMC, Rajnicek ANNM, Song B, Zhao MIN. Controlling cell behavior electrically : current views and future potential. 2005; 943–978. https://doi.org/10.1152/physrev.00020.2004.

  102. Dong S-L, Han Lu, Cai-xia Du, Wang X-y, Li L-H, Wei Y. 3D printing of aniline tetramer-grafted- polyethylenimine and pluronic F127 composites for electroactive scaffolds. Macromol Rapid Commun. 2017;201600551:1–7. https://doi.org/10.1002/marc.201600551.

    Article  CAS  Google Scholar 

  103. Cvetkovic C, Raman R, Chan V, Williams BJ, Tolish M, Bajaj P. Three-dimensionally printed biological machines powered by skeletal muscle. PNAS. 2014;111:10125–30. https://doi.org/10.1073/pnas.1401577111.

    Article  CAS  Google Scholar 

  104. Reyes-Ortega F. pH-responsive polymers: properties, synthesis and applications. Smart Polymers and their Applications. Woodhead Publishing Limited; 2014. https://doi.org/10.1533/9780857097026.1.45.

  105. Bagherifam S, Skjeldal FM, Griffiths G, Mælandsmo GM, Engebråten O, Nyström Bo, Hasirci V, Hasirci N. PH-responsive nano carriers for doxorubicin delivery. Pharm Res. 2015;32:1249–63. https://doi.org/10.1007/s11095-014-1530-0.

    Article  CAS  Google Scholar 

  106. Ashfaq UA, Riaz M, Yasmeen E, Yousaf M. Recent advances in nanoparticle-based targeted drug-delivery systems against cancer and role of tumor microenvironment. Crit Rev Ther Drug Carrier Syst. 2017;34:317–53. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2017017845.

    Article  Google Scholar 

  107. Lowman AM, Morishita M, Kajita M, Nagai T, Peppas NA. Oral delivery of insulin using pH-responsive complexation gels. J Pharm Sci. 1999;88:933–7. https://doi.org/10.1021/js980337n.

    Article  CAS  Google Scholar 

  108. Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42:445–51. https://doi.org/10.1016/j.ejps.2010.12.007 (Elsevier B.V.).

    Article  CAS  Google Scholar 

  109. Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther. 2018;3:1–19. https://doi.org/10.1038/s41392-017-0004-3.

    Article  CAS  Google Scholar 

  110. Dai S, Ravi P, Tam KC. pH-responsive polymers: Synthesis, properties and applications. Soft Matter. 2008;4:435–49. https://doi.org/10.1039/b714741d.

    Article  CAS  Google Scholar 

  111. Arizaga A, Ibarz G, Piñol R. Stimuli-responsive poly(4-vinyl pyridine) hydrogel nanoparticles: synthesis by nanoprecipitation and swelling behavior. J Colloid Interface Sci. 2010;348:668–72. https://doi.org/10.1016/j.jcis.2010.05.051 (Elsevier Inc.).

    Article  CAS  Google Scholar 

  112. Kocak G, Tuncer C, Bütün V. pH-responsive polymers. Polymer Chem. 2017;8:144–76. https://doi.org/10.1039/c6py01872f (Royal Society of Chemistry).

    Article  CAS  Google Scholar 

  113. Li Y, Zhi X, Lin J, You X, Yuan J. Preparation and characterization of DOX loaded keratin nanoparticles for pH / GSH dual responsive release. Mater Sci Eng C. 2017;73:189–97. https://doi.org/10.1016/j.msec.2016.12.067 (Elsevier B.V.).

    Article  CAS  Google Scholar 

  114. Anandhakumar S, Krishnamoorthy G, Ramkumar KM, Raichur AM. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method : an effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater Sci Eng C. 2017;70:378–85. https://doi.org/10.1016/j.msec.2016.09.003 (Elsevier B.V.).

    Article  CAS  Google Scholar 

  115. Villanueva ME, Cuestas ML, Pérez CJ, Campo V, Orto D, Copello GJ. Smart release of antimicrobial ZnO nanoplates from a pH-responsive keratin hydrogel. J Colloid Interface Sci. 2019;536:372–80. https://doi.org/10.1016/j.jcis.2018.10.067.

    Article  CAS  Google Scholar 

  116. Larush L, Kaner I, Fluksman A, Tamsut A, Pawar AA. 3D printing of responsive hydrogels for drug-delivery systems. 2017; 1: 219–229.

  117. Mirani B, Pagan E, Currie B, Siddiqui MA, Hosseinzadeh R. An advanced multifunctional hydrogel-based dressing for wound monitoring and drug delivery. 2017; 1700718: 1–15. https://doi.org/10.1002/adhm.201700718.

  118. Nadgorny M, Xiao Z, Chen C, Connal LA. Three-dimensional printing of pH-responsive and functional polymers on an a ff ordable desktop printer. Appl Maerials Interface. 2016;8:28946–54. https://doi.org/10.1021/acsami.6b07388.

    Article  CAS  Google Scholar 

  119. Huang L, Jiang R, Jingjun Wu, Song J, Bai H, Li B, Zhao Q, Xie T. Ultrafast digital printing toward 4D shape changing materials. Adv Mater. 2017;29:1–6. https://doi.org/10.1002/adma.201605390.

    Article  CAS  Google Scholar 

  120. Kang Y, Walish JJ, Gorishnyy T, Thomas EL. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat Mater. 2007;6:957–60. https://doi.org/10.1038/nmat2032.

    Article  CAS  Google Scholar 

  121. Isobe T, Takahashi H, Ueki S, Takagi J, Saito Y. Activity-independent cell adhesion to tissue-type transglutaminase is mediated by α4β1 integrin. Eur J Cell Biol. 1999;78:876–83. https://doi.org/10.1016/S0171-9335(99)80089-2.

    Article  CAS  Google Scholar 

  122. Brownlee M, Cerami A. A glucose-controlled insulin-delivery system : semisynthetic insulin bound to lectin. Science. 2016;206:1190–1.

    Article  Google Scholar 

  123. Galuska SP, Geyer R, Gerardy-Schahn R, Mühlenhoff M, Geyer H. Enzyme-dependent variations in the polysialylation of the neural cell adhesion molecule (NCAM) in vivo. J Biol Chem. 2008;283:17–28. https://doi.org/10.1074/jbc.M707024200.

    Article  CAS  Google Scholar 

  124. Tauro JR, Gemeinhart RA. Matrix metalloprotease triggered delivery of cancer chemotherapeutics from hydrogel matrixes. Bioconjug Chem. 2005;16:1133–9. https://doi.org/10.1021/bc0501303.

    Article  CAS  Google Scholar 

  125. Wang X, Qin XH, Chengzhi Hu, Terzopoulou A, Chen XZ, Huang TY, Maniura-Weber K, Pané S, Nelson BJ. 3D printed enzymatically biodegradable soft helical microswimmers. Adv Func Mater. 2018;28:1–8. https://doi.org/10.1002/adfm.201804107.

    Article  CAS  Google Scholar 

  126. Ceylan H, Ceren Yasa I, Yasa O, Tabak AF, Giltinan J, Sitti M. 3D-printed biodegradable microswimmer for drug delivery and targeted cell labeling. bioRxiv. 2018, 379024. https://doi.org/10.1101/379024.

  127. Song KH, Highley CB, Rouff A, Burdick JA. Complex 3D-printed microchannels within cell-degradable hydrogels. Adv Func Mater. 2018;28:1–10. https://doi.org/10.1002/adfm.201801331.

    Article  CAS  Google Scholar 

  128. Zelzer M, Todd SJ, Hirst AR, McDonald TO, Ulijn RV. Enzyme responsive materials: design strategies and future developments. Biomater Sci. 2013;1:11–39. https://doi.org/10.1039/c2bm00041e.

    Article  CAS  Google Scholar 

  129. Yeh H-C, Brown TT, Maruthur N. Comparative effectiveness and safety of methods of insulin delivery and glucose monitoring for diabetes mellitus. Ann Intern Med. 2013;157:336–47.

    Article  Google Scholar 

  130. Tamborlane WV, et al. Continuous glucose monitoring and intensive treatment of type 1 diabetes. N Engl J Med. 2008;359:1464–76. https://doi.org/10.1016/s0084-3741(09)79371-0.

    Article  Google Scholar 

  131. Adams A, Malkoc A, La Belle JT. The development of a glucose dehydrogenase 3D-printed glucose sensor: a proof-of-concept study. J Diabetes Sci Technol. 2018;12:176–82. https://doi.org/10.1177/1932296817715272.

    Article  CAS  Google Scholar 

  132. Song E, da Costa TH, Choi JW. A chemiresistive glucose sensor fabricated by inkjet printing. Microsyst Technol. 2017;23:3505–11. https://doi.org/10.1007/s00542-016-3160-4 (Springer Berlin Heidelberg).

    Article  CAS  Google Scholar 

  133. Matsumoto A, Ishii T, Nishida J, Matsumoto H, Kataoka K, Miyahara Y. A synthetic approach toward a self-regulated insulin delivery system. Angew Chem. 2012;124:2166–70. https://doi.org/10.1002/ange.201106252.

    Article  Google Scholar 

  134. Podual K, Doyle FJ, Peppas NA. Glucose-sensitivity of glucose oxidase-containing cationic copolymer hydrogels having poly(ethylene glycol) grafts. J Control Release. 2000;67:9–17. https://doi.org/10.1016/S0168-3659(00)00195-4.

    Article  CAS  Google Scholar 

  135. Song J, Millman JR. Economic 3D-printing approach for transplantation of human stem cell-derived β-like cells. Biofabrication. 2017;9:1–14. https://doi.org/10.1088/1758-5090/9/1/015002 (IOP Publishing).

    Article  CAS  Google Scholar 

  136. Marchand Marion, Monnot Catherine, Muller Laurent, Germain Stéphane. Extracellular matrix scaffolding in angiogenesis and capillary homeostasis. Semin Cell Dev Biol. 2019;89:147–56. https://doi.org/10.1016/j.semcdb.2018.08.007 (Elsevier).

    Article  CAS  Google Scholar 

  137. Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJA, Groll J, Hutmacher DW. 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater. 2013;25:5011–28. https://doi.org/10.1002/adma.201302042.

    Article  CAS  Google Scholar 

  138. Qu F, Guilak F, Mauck RL. Cell migration: implications for repair and regeneration in joint disease. Nat Rev Rheumatol. 2019;15:167–79. https://doi.org/10.1038/s41584-018-0151-0 (Springer US).

    Article  Google Scholar 

  139. Morouço PG. The usefulness of direct digital manufacturing for biomedical applications. In Intensification of biobased processes, ed. Andrzej Górak and Andrzej Stankiewicz, 478–487. The Royal Society of Chemistry; 2018.

  140. Poomathi N, Singh S, Prakash C, Subramanian A, Sahay R, Cinappan A, Ramakrishna S. 3D printing in tissue engineering: a state of the art review of technologies and biomaterials. Rapid Prototyp J. 2020;26:1313–34. https://doi.org/10.1108/RPJ-08-2018-0217.

    Article  Google Scholar 

  141. An J, Chua CK, Mironov V. A perspective on 4D bioprinting. Int J Bioprint. 2016;2:3–5. https://doi.org/10.18063/IJB.2016.01.003.

    Article  Google Scholar 

  142. Ghizal R, Fatima GR, Srivastava S. Smart polymers and their applications. Int J Eng Technol Manag Appl Sci. 2014;2:104–15. https://doi.org/10.1016/b978-0-85709-695-1.50018-2.

    Article  Google Scholar 

  143. Ikegami T, Maehara Y. 3D printing of the liver in living donor liver transplantation. Nat Rev Gastroenterol Hepatol. 2013;10:697–8. https://doi.org/10.1038/nrgastro.2013.195 (Nature Publishing Group).

    Article  Google Scholar 

  144. Batteux C, Haidar MA, Bonnet D. 3D-printed models for surgical planning in complex congenital heart diseases: a systematic review. Front Pediatr. 2019;7:1–19. https://doi.org/10.3389/fped.2019.00023.

    Article  Google Scholar 

  145. Zhang F, Wen N, Wang L, Bai Y, Leng J. Design of 4D printed shape-changing tracheal stent and remote controlling actuation. Int J Smart Nano Mater. 2021;12:375–89. https://doi.org/10.1080/19475411.2021.1974972 (Taylor & Francis).

    Article  Google Scholar 

  146. Ge Q, Dunn CK, Qi HJ, Dunn ML. Active origami by 4D printing. Smart Mater Struct. 2014; 23. https://doi.org/10.1088/0964-1726/23/9/094007.

  147. Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication using shape-morphing hydrogels. Adv Mater. 2017;29:1–8. https://doi.org/10.1002/adma.201703443.

    Article  CAS  Google Scholar 

  148. Muehlenfeld C, Roberts SA. 3D / 4D printing in additive manufacturing : process engineering and novel excipients. In 3D and 4D printing in biomedical applications: process engineering and additive manufacturing, ed. Mohammed Maniruzzaman, 1st ed., 1–24. Wiley-VCHVerlag GmbH& Co; 2019.

  149. Champeau M, Heinze DA, Viana TN, Rodrigues E, de Souza A, Chinellato C, Titotto S. 4D printing of hydrogels: a review. Adv Func Mater. 2020;30:1–22. https://doi.org/10.1002/adfm.201910606.

    Article  CAS  Google Scholar 

  150. Malekmohammadi S, Aminabad NS, Sabzi A, Zarebkohan A, Razavi M, Vosough M, Bodaghi M, Maleki H. Smart and biomimetic 3d and 4d printed composite hydrogels: opportunities for different biomedical applications. Biomedicines. 2021;9:1–46. https://doi.org/10.3390/biomedicines9111537.

    Article  CAS  Google Scholar 

  151. Le Fer G, Becker ML. 4D printing of resorbable complex shape-memory poly(propylene fumarate) star scaffolds. ACS Appl Mater Interfaces. 2020;12:22444–52. https://doi.org/10.1021/acsami.0c01444.

    Article  CAS  Google Scholar 

  152. Costa L, Silva-Correia J, Oliveira JM, Reis RL. Gellan gum-based hydrogels for osteochondral repair. In Advances in Experimental Medicine and Biology; 2018; 281–304. https://doi.org/10.1007/978-3-319-76711-6_13.

  153. Cui H, Miao S, Esworthy T, Lee S-J, Zhou X, Yun S, Webster TJ, Harris BT, Zhang LG. HHS public access. Nano Res. 2019;12:1381–8. https://doi.org/10.1007/s12274-019-2340-9.A.

    Article  CAS  Google Scholar 

  154. Miao S, Cui H, Nowicki M, Xia L, Zhou X, Lee SJ, Zhu W, Sarkar K, Zhang Z, Zhang LG. Stereolithographic 4D bioprinting of multiresponsive architectures for neural engineering. Adv Biosyst. 2018;2:1–10. https://doi.org/10.1002/adbi.201800101.

    Article  Google Scholar 

  155. Fang JH, Hsu HH, Hsu RS, Peng CK, Lu YJ, Chen YY, Chen SY, Hu SH. 4D printing of stretchable nanocookie@conduit material hosting biocues and magnetoelectric stimulation for neurite sprouting. NPG Asia Mater. 2020;12:1–16. https://doi.org/10.1038/s41427-020-00244-1 (Springer US).

    Article  CAS  Google Scholar 

  156. Miao S, Nowicki M, Cui H, Lee SJ, Zhou X, Mills DK, Zhang LG. 4D anisotropic skeletal muscle tissue constructs fabricated by staircase effect strategy. Biofabrication. 2019; 11. https://doi.org/10.1088/1758-5090/ab1d07. (IOP Publishing).

  157. Constante G, Apsite I, Alkhamis H, Dulle M, Schwarzer M, Caspari A, Synytska A, Salehi S, Ionov L. 4D biofabrication using a combination of 3D printing and melt-electrowriting of shape-morphing polymers. ACS Appl Mater Interfaces. 2021;13:12767–76. https://doi.org/10.1021/acsami.0c18608.

    Article  CAS  Google Scholar 

  158. Uribe-Gomez J, Posada-Murcia A, Shukla A, Ergin M, Constante G, Apsite I, Martin D, et al. Shape-morphing fibrous hydrogel/elastomer bilayers fabricated by a combination of 3D printing and melt electrowriting for muscle tissue regeneration. ACS Appl Bio Mater. 2021;4:1720–30. https://doi.org/10.1021/acsabm.0c01495.

    Article  CAS  Google Scholar 

  159. Cui H, Liu C, Esworthy T, Huang Y, Yu ZX, Zhou X, San H, et al. 4D physiologically adaptable cardiac patch: a 4-month in vivo study for the treatment of myocardial infarction. Sci Adv. 2020;6:eabb5067. https://doi.org/10.1126/sciadv.abb5067.

    Article  CAS  Google Scholar 

  160. Wang Y, Cui H, Wang Y, Chengyao Xu, Esworthy TJ, Hann SY, Boehm M, Shen YL, Mei D, Zhang LG. 4D printed cardiac construct with aligned myofibers and adjustable curvature for myocardial regeneration. ACS Appl Mater Interfaces. 2021;13:12746–58. https://doi.org/10.1021/acsami.0c17610.

    Article  CAS  Google Scholar 

  161. Lin C, Liu L, Liu Y, Leng J. 4D printing of bioinspired absorbable left atrial appendage occluders: a proof-of-concept study. ACS Appl Mater Interfaces. 2021;13:12668–78. https://doi.org/10.1021/acsami.0c17192.

    Article  CAS  Google Scholar 

  162. Pedron S, Van Lierop S, Horstman P, Penterman R, Broer DJ, Peeters E. Stimuli responsive delivery vehicles for cardiac microtissue transplantation. Adv Func Mater. 2011;21:1624–30. https://doi.org/10.1002/adfm.201002708.

    Article  CAS  Google Scholar 

  163. Lee YB, Jeon O, Lee SJ, Ding A, Wells D, Alsberg E. Inuction of four-dimensional spatiotemporal geometric transformations in high cell.pdf. Adv Funct Mater. 2021;31:2010104.

    Article  CAS  Google Scholar 

  164. Ding A, Lee SJ, Ayyagari S, Tang R, Huynh CT, Alsberg E. 4D biofabrication via instantly generated graded hydrogel scaffolds. Bioactive Materials. 2022;7:324–32. https://doi.org/10.1016/j.bioactmat.2021.05.021 (KeAi Communications Co., Ltd).

    Article  CAS  Google Scholar 

  165. Jen WY, Ser Jeng U, Hsu SH. Biodegradable water-based polyurethane shape memory elastomers for bone tissue engineering. ACS Biomater Sci Eng. 2018;4:1397–406. https://doi.org/10.1021/acsbiomaterials.8b00091.

    Article  CAS  Google Scholar 

  166. Wang C, Yue H, Liu J, Zhao Q, He Z, Li K, Bingheng Lu, et al. Advanced reconfigurable scaffolds fabricated by 4D printing for treating critical-size bone defects of irregular shapes. Biofabrication. 2020;12: 045025. https://doi.org/10.1088/1758-5090/abab5b.

    Article  CAS  Google Scholar 

  167. You D, Chen G, Liu C, Ye X, Wang S, Dong M, Sun M, et al. Printing of multi-responsive membrane for accelerated in vivo bone healing via remote.pdf. Adv Funct Mater. 2021;31:2103920.

    Article  CAS  Google Scholar 

  168. Devillard CD, Mandon CA, Lambert SA, Blum LJ, Marquette CA. Bioinspired multi-activities 4D printing objects a new approach toward complex tissue engineering. Biotechnol J. 2018;13:1800098.

    Article  Google Scholar 

  169. Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, Zhang C. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B. 2014;2:7583–95. https://doi.org/10.1039/c4tb01063a (Royal Society of Chemistry).

    Article  CAS  Google Scholar 

  170. D’Amora U, Russo T, Gloria A, Rivieccio V, D’Antò V, Negri G, Ambrosio L, De Santis R. 3D additive-manufactured nanocomposite magnetic scaffolds: effect of the application mode of a time-dependent magnetic field on hMSCs behavior. Bioactive Mater. 2017;2:138–45. https://doi.org/10.1016/j.bioactmat.2017.04.003.

    Article  Google Scholar 

  171. Betsch M, Cristian C, Lin YY, Blaeser A, Schöneberg J, Vogt M, Buhl EM, Fischer H, Campos DFD. Incorporating 4D into bioprinting: real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues. Adv Healthc Mater. 2018;7:1–9. https://doi.org/10.1002/adhm.201800894.

    Article  CAS  Google Scholar 

  172. Kirillova A, Maxson R, Stoychev G, Gomillion CT, Ionov L. 4D biofabrication using shape-morphing hydrogels. Adv Mater. 2017;29:1703443.

    Article  Google Scholar 

  173. Zhang C, Cai D, Liao P, Su JW, Deng H, Vardhanabhuti B, Ulery BD, Chen SY, Lin J. 4D Printing of shape-memory polymeric scaffolds for adaptive biomedical implantation. Acta Biomater. 2021;122:101–10. https://doi.org/10.1016/j.actbio.2020.12.042 (Elsevier Ltd).

    Article  CAS  Google Scholar 

  174. Kuang X, Chen K, Dunn CK, Jiangtao Wu, Li VCF, Jerry Qi H. 3D printing of highly stretchable, shape-memory, and self-healing elastomer toward novel 4D printing. ACS Appl Mater Interfaces. 2018;10:7381–8. https://doi.org/10.1021/acsami.7b18265.

    Article  CAS  Google Scholar 

  175. Kim SH, Seo YB, Yeon YK, Lee YJ, Park HS, Sultan MT, Lee JM, et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials. 2020;260:120281. https://doi.org/10.1016/j.biomaterials.2020.120281 (Elsevier Ltd).

    Article  CAS  Google Scholar 

  176. Zarek M, Mansour N, Shapira S, Cohn D. 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun. 2017;38:1600628.

    Article  Google Scholar 

  177. Cui C, Kim DO, Pack MY, Han B, Han L, Sun Y, Han LH. 4D printing of self-folding and cell-encapsulating 3D microstructures as scaffolds for tissue-engineering applications. Biofabrication. 2020; 12. https://doi.org/10.1088/1758-5090/aba502.

  178. Luo Y, Lin X, Chen B, Wei X. Cell-laden four-dimensional bioprinting using near- cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate / polydopamine bioinks. Biofabrication. 2019;11:045019 (IOP Publishing).

    Article  CAS  Google Scholar 

  179. Ko H, Ratri MC, Kim K, Jung Y, Tae G, Shin K. Formulation of sugar/hydrogel inks for rapid thermal response 4D architectures with sugar-derived macropores. Sci Rep. 2020;10:1–10. https://doi.org/10.1038/s41598-020-64457-8.

    Article  CAS  Google Scholar 

  180. Seo JW, Shin SR, Park YJ, Bae H. Hydrogel production platform with dynamic movement using photo-crosslinkable/temperature reversible chitosan polymer and stereolithography 4D printing technology. Tissue Eng Regen Med. 2020;17:423–31. https://doi.org/10.1007/s13770-020-00264-6 (Springer Singapore).

    Article  CAS  Google Scholar 

  181. Singaravelu S, Ramanathan G, Sivagnanam UT. Dual-layered 3D nanofibrous matrix incorporated with dual drugs and their synergetic effect on accelerating wound healing through growth factor regulation. Mater Sci Eng C. 2017;76:37–49. https://doi.org/10.1016/j.msec.2017.02.148 (Elsevier B.V.).

    Article  CAS  Google Scholar 

  182. Albanna M, Binder KW, Murphy SV, Kim J, Qasem SA, Zhao W, Tan J, et al. In situ bioprinting of autologous skin cells accelerates wound healing of extensive excisional full-thickness wounds. Sci Rep. 2019;9:1–15. https://doi.org/10.1038/s41598-018-38366-w (Springer US).

    Article  CAS  Google Scholar 

  183. Montero FE, Rezende RA, da Silva JVL, Sabino MA. Development of a smart bioink for bioprinting applications. Front Mech Eng. 2019;5:1–12. https://doi.org/10.3389/fmech.2019.00056.

    Article  Google Scholar 

  184. Smandri A, Nordin A, Hwei NM, Chin KY, Aziz IA, Fauzi MB. Natural 3D-printed bioinks for skin regeneration and wound healing: a systematic review. Polymers. 2020;12:1–19. https://doi.org/10.3390/polym12081782.

    Article  CAS  Google Scholar 

  185. Xu W, Molino BZ, Cheng F, Molino PJ, Yue Z, Dandan Su, Wang X, Willför S, Chunlin Xu, Wallace GG. On low-concentration inks formulated by nanocellulose assisted with gelatin methacrylate (GelMA) for 3D printing toward wound healing application. ACS Appl Mater Interfaces. 2019;11:8838–48. https://doi.org/10.1021/acsami.8b21268.

    Article  CAS  Google Scholar 

  186. Osidak EO, Karalkin PA, Osidak MS, Parfenov VA, Sivogrivov DE, Pereira FDAS, Gryadunova AA, et al. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J Mater Sci - Mater Med. 2019;30:1–12. https://doi.org/10.1007/s10856-019-6233-y.

    Article  CAS  Google Scholar 

  187. Xiong S, Zhang X, Lu P, Wu Y, Wang Q, Sun H, Heng BC, Bunpetch V, Zhang S, Ouyang H. A gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization. Sci Rep. 2017;7:1–12. https://doi.org/10.1038/s41598-017-04149-y (Springer US).

    Article  CAS  Google Scholar 

  188. Nocera AD, Comín R, Salvatierra NA, Cid MP. Development of 3D printed fibrillar collagen scaffold for tissue engineering. Biomed Microdevices. 2018;20:1–13. https://doi.org/10.1007/s10544-018-0270-z (Biomedical Microdevices).

    Article  CAS  Google Scholar 

  189. Kim BS, Kwon YW, Kong JS, Park GT, Gao G, Han W, Kim MB, Lee H, Kim JH, Cho DW. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials. 2018;168:38–53. https://doi.org/10.1016/j.biomaterials.2018.03.040 (Elsevier Ltd).

    Article  CAS  Google Scholar 

  190. Sood A, Granick MS, Tomaselli NL. Wound dressings and comparative effectiveness data. Adv Wound Care. 2014;3:511–29. https://doi.org/10.1089/wound.2012.0401.

    Article  Google Scholar 

  191. Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of silk fibroin use in wound dressings. Trends Biotechnol. 2018;36:907–22. https://doi.org/10.1016/j.tibtech.2018.04.004 (Elsevier Ltd).

    Article  CAS  Google Scholar 

  192. Ribeiro MP, Espiga A, Silva D, Baptista P, Henriques J, Ferreira C, Silva JC, et al. Development of a new chitosan hydrogel for wound dressing. Wound Repair Regen. 2009;17:817–24. https://doi.org/10.1111/j.1524-475X.2009.00538.x.

    Article  Google Scholar 

  193. Domínguez-Robles J, Martin NK, Fong ML, Stewart SA, Irwin NJ, Rial-Hermida MI, Donnelly RF, Larrañeta E. Antioxidant pla composites containing lignin for 3D printing applications: a potential material for healthcare applications. Pharmaceutics. 2019;11:5–7. https://doi.org/10.3390/pharmaceutics11040165.

    Article  CAS  Google Scholar 

  194. Ajalloueian F, Tavanai H, Hilborn J, Donzel-Gargand O, Leifer K, Wickham A, Arpanaei A. Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Res Int. 2014; 2014. https://doi.org/10.1155/2014/475280.

  195. Wischke C, Neffe AT, Steuer S, Lendlein A. Evaluation of a degradable shape-memory polymer network as matrix for controlled drug release. J Control Release. 2009;138:243–50. https://doi.org/10.1016/j.jconrel.2009.05.027 (Elsevier B.V.).

    Article  CAS  Google Scholar 

  196. Firth J, Gaisford S, Basit AW. A new dimension: 4D printing opportunities in pharmaceutics. In AAPS Advances in the Pharmaceutical Sciences Series; 2018; 31:153–162. https://doi.org/10.1007/978-3-319-90755-0_8.

  197. Ghosh A, Li L, Xu L, Dash RP, Gupta N, Lam J, Jin Q, et al. Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. Sci Adv. 2020; 6. https://doi.org/10.1126/sciadv.abb4133.

  198. Villar G, Heron AJ, Bayley H. Formation of droplet networks that function in aqueous environments. Nat Nanotechnol. 2011;6:803–8. https://doi.org/10.1038/nnano.2011.183 (Nature Publishing Group).

    Article  CAS  Google Scholar 

  199. Stoychev G, Puretskiy N, Ionov L. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter. 2011;7:3277–9. https://doi.org/10.1039/c1sm05109a.

    Article  CAS  Google Scholar 

  200. Kokardekar RR, Shah VK, Mody HR. PNIPAM poly (N-isopropylacrylamide): a thermoresponsive “smart” polymer in novel drug delivery systems. Internet J Med Update. 2012;7:59–62.

    Google Scholar 

  201. Breger JC, Yoon C, Xiao R, Kwag HR, Wang MO, Fisher JP, Nguyen TD, Gracias DH. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces. 2015;7:3398–405. https://doi.org/10.1021/am508621s.

    Article  CAS  Google Scholar 

  202. Li H, Go G, Ko SY, Park JO, Park S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater Struct. 2016;25:27001. https://doi.org/10.1088/0964-1726/25/2/027001 (IOP Publishing).

    Article  CAS  Google Scholar 

  203. Azam A, Laflin KE, Jamal M, Fernandes R, Gracias DH. Self-folding micropatterned polymeric containers. Biomed Microdevice. 2011;13:51–8. https://doi.org/10.1007/s10544-010-9470-x.

    Article  CAS  Google Scholar 

  204. Wang Y, Miao Y, Zhang J, Wu JP, Kirk TB, Xu J, Ma Dong, Xue W. Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Mater Sci Eng C. 2018;84:44–51. https://doi.org/10.1016/j.msec.2017.11.025 (Elsevier).

    Article  CAS  Google Scholar 

  205. Melocchi A, Inverardi N, Uboldi M, Baldi F, Maroni A, Pandini S, Briatico-Vangosa F, Zema L, Gazzaniga A. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinyl alcohol): design concept and 4D printing feasibility. Int J Pharm. 2019;559:299–311. https://doi.org/10.1016/j.ijpharm.2019.01.045 (Elsevier).

    Article  CAS  Google Scholar 

  206. Han D, Morde RS, Mariani S, La Mattina AA, Vignali E, Yang C, Barillaro G, Lee H. 4D printing of a bioinspired microneedle array with backward-facing barbs for enhanced tissue adhesion. Adv Func Mater. 2020;30:1909197.

    Article  CAS  Google Scholar 

  207. Wan X, Wei H, Zhang F, Liu Y, Leng J. 3D printing of shape memory poly d l-lactide-co-trimethylene carbonate by direct ink writing. J Appl Polym Sci. 2019;136:48177.

    Article  Google Scholar 

  208. Kim D, Kim T, Lee YG. 4D printed bifurcated stents with kirigami-inspired structures. J Vis Exp. 2019;2019:1–9. https://doi.org/10.3791/59746.

    Article  CAS  Google Scholar 

  209. Bodaghi M, Damanpack AR, Liao WH. Self-expanding/shrinking structures by 4D printing. Smart Mater Struct. 2016;25:105034. https://doi.org/10.1088/0964-1726/25/10/105034 (IOP Publishing).

    Article  CAS  Google Scholar 

  210. Bon B, Silvia IC, Morselli D, Esposti MD, Fabbri P, De Maria C, Viligiardi TF, Morabito A, Giorgi G, Valentini L. Printable smart 3D architectures of regenerated silk on poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Mater Des. 2021;201:109492. https://doi.org/10.1016/j.matdes.2021.109492 (The Authors).

    Article  CAS  Google Scholar 

  211. Zhang Y, Wang Q, Yi S, Lin Zi, Wang C, Chen Z, Jiang L. 4D printing of magnetoactive soft materials for on-demand magnetic actuation transformation. ACS Appl Mater Interfaces. 2021;13:4174–84. https://doi.org/10.1021/acsami.0c19280.

    Article  CAS  Google Scholar 

  212. Liu J, Erol O, Pantula A, Liu W, Jiang Z, Kobayashi K, Chatterjee D, et al. Dual-gel 4D printing of bioinspired tubes. ACS Appl Mater Interfaces. 2019;11:8492–8. https://doi.org/10.1021/acsami.8b17218.

    Article  CAS  Google Scholar 

  213. Chen D, Liu Q, Han Z, Zhang J, Song HL, Wang K, Song Z, et al. 4D Printing strain self-sensing and temperature self-sensing integrated sensor–actuator with bioinspired gradient gaps. Adv Sci. 2020;7:2000584. https://doi.org/10.1002/advs.202000584.

    Article  CAS  Google Scholar 

  214. Guo J, Zhang R, Zhang L, Cao X. 4D printing of robust hydrogels consisted of agarose nanofibers and polyacrylamide. ACS Macro Lett. 2018;7:442–6. https://doi.org/10.1021/acsmacrolett.7b00957.

    Article  CAS  Google Scholar 

  215. Langford T, Mohammed A, Essa K, Elshaer A, Hassanin H. 4D printing of origami structures for minimally invasive surgeries using functional scaffold. Appl Sci (Switzerland). 2021;11:1–13. https://doi.org/10.3390/app11010332.

    Article  CAS  Google Scholar 

  216. Ji Z, Yan C, Bo Yu, Zhang X, Cai M, Jia X, Wang X, Zhou F. 3D printing of hydrogel architectures with complex and controllable shape deformation. Adv Mater Technol. 2019;4:1–8. https://doi.org/10.1002/admt.201800713.

    Article  CAS  Google Scholar 

  217. Ploszajski AR, Jackson R, Ransley M, Miodownik M. 4D printing of magnetically functionalized chainmail for exoskeletal biomedical applications. MRS Adv. 2019;4:1361–6. https://doi.org/10.1557/adv.201.

    Article  CAS  Google Scholar 

  218. Cheng CY, Xie H, Xu Zy, Li L, Jiang MN, Tang L, Yang KK, Wang YZ. 4D printing of shape memory aliphatic copolyester via UV-assisted FDM strategy for medical protective devices. Chem Eng J. 2020;396: 125242. https://doi.org/10.1016/j.cej.2020.125242.

    Article  CAS  Google Scholar 

  219. Podstawczyk D, Nizioł M, Szymczyk-Ziółkowska P, Fiedot-Toboła M. Development of thermoinks for 4D direct printing of temperature-induced self-rolling hydrogel actuators. Adv Func Mater. 2021;31:2009664.

    Article  CAS  Google Scholar 

  220. Nishiguchi A, Zhang H, Schweizerhof S, Schulte MF, Mourran A, Möller M. 4D printing of a light-driven soft actuator with programmed printing density. ACS Appl Mater Interfaces. 2020;12:12176–85. https://doi.org/10.1021/acsami.0c02781.

    Article  CAS  Google Scholar 

  221. Song Z, Ren L, Zhao C, Liu H, Zhenglei Yu, Liu Q, Ren L. Biomimetic nonuniform, dual-stimuli self-morphing enabled by gradient four-dimensional printing. ACS Appl Mater Interfaces. 2020;12:6351–61. https://doi.org/10.1021/acsami.9b17577.

    Article  CAS  Google Scholar 

  222. Hu Y, Wang Z, Jin D, Zhang C, Sun R, Li Z, Kai Hu, et al. Botanical-inspired 4D printing of hydrogel at the microscale. Adv Func Mater. 2020;30:1907377.

    Article  CAS  Google Scholar 

  223. Narupai B, Smith PT, Nelson A. 4D printing of multi-stimuli responsive protein-based hydrogels for autonomous shape Transformations. Adv Func Mater. 2021;31:2011012.

    Article  CAS  Google Scholar 

  224. Whitesides GM. Soft robotics. Angew Chem - Int Ed. 2018;57:4258–73. https://doi.org/10.1002/anie.201800907.

    Article  CAS  Google Scholar 

  225. Polygerinos P, Wang Z, Galloway KC, Wood RJ, Walsh CJ. Soft robotic glove for combined assistance and at-home rehabilitation. Robot Autonomous Syst. 2015;73:135–43. https://doi.org/10.1016/j.robot.2014.08.014 (Elsevier B.V.).

    Article  Google Scholar 

  226. Zolfagharian A, Kaynak A, Bodaghi M, Kouzani AZ, Gharaie S. Applied sciences control-based 4D printing : adaptive 4D-printed systems. 2020.

  227. Ong CS, Nam L, Ong K, Krishnan A, Huang CY, Fukunishi T, Hibino N. 3D and 4D bioprinting of the myocardium: current approaches, challenges, and future prospects. BioMed Res Int. 2018; 2018. https://doi.org/10.1155/2018/6497242

Download references

Acknowledgements

The authors acknowledge the infrastructure provided by the Indian Institute of Technology Roorkee for their research activities in this field.

Author information

Authors and Affiliations

Authors

Contributions

Souvik Ghosh: literature review, writing—original draft, and review and editing; Siddhi Chaudhuri: writing—original draft; Partha Roy: validation and review; Debrupa Lahiri: conceptualization, validation, review and editing, supervision, and project administration.

Corresponding author

Correspondence to Debrupa Lahiri.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Chaudhuri, S., Roy, P. et al. 4D Printing in Biomedical Engineering: a State-of-the-Art Review of Technologies, Biomaterials, and Application. Regen. Eng. Transl. Med. 9, 339–365 (2023). https://doi.org/10.1007/s40883-022-00288-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40883-022-00288-5

Keywords

Navigation