Skip to main content
Log in

Theoretical studies of non-noble metal single-atom catalyst Ni1/MoS2: Electronic structure and electrocatalytic CO2 reduction

非贵金属单原子催化剂Ni1/MoS2的电子结构及CO2还原电催化性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Single-atom catalysts (SACs) have aroused significant interest in heterogeneous catalysis in recent years because of their high catalytic selectivity and tunable activity in various chemical reactions. Herein, non-noble metal SACs with 3d-series metal single atoms (M1) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) supported on MoS2 are computationally screened by using first-principles quantum-chemical theory. The Ni1/MoS2 catalyst is found to be the most stable among those 3d-series SACs due to the optimal binding energy. In order to provide a fundamental understanding of the intrinsic stability and bonding interaction between the metal single atoms and MoS2 support, the electronic structure, including the spin density populations, charge density difference (CDD), electron localization function (ELF), band structure, density of states (DOS), and crystal orbital Hamiltonian populations (COHP) are systematically examined. The solid-state quantum theory of atoms in molecules (QTAIM) is also applied to further characterize the Ni—S and Mo—S covalent and ionic bonding nature between the metal single atoms and support. It is found that in addition to Ni—S bonding, there exists significant Ni—Mo bonding that is critical for the electronic structure, stability, and catalytic properties of Ni1/MoS2 catalyst. As a typical application of this Ni1/MoS2 catalyst, the electrocatalytic mechanism and reaction pathway of CO2 reduction reaction (CO2RR) on Ni1/MoS2 catalyst have been investigated. The MoS2-supported Ni single atoms are found to exhibit high catalytic activity for CO2RR to methanol. The calculational results provide theoretical insights towards the design of highly efficient SACs on MoS2-based functional materials.

摘要

单原子催化剂(SACs)因其在化学反应中具有高选择性及催化活 性, 近年来在多相催化领域已引起广泛关注. 本文采用第一性原理理论 计算, 对MoS2负载的非贵金属SACs进行计算化学筛选, 考察了3d金属 单原子(M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn)负载的SACs的稳定性. 我们发现, Ni1/MoS2催化剂具有最佳的结合能, 在此3d系列催化剂结构 中最稳定. 为分析SACs的稳定性与成键作用, 本文系统地研究了Ni1/MoS2的电子结构, 包括使用自旋密度、 电荷密度差分(CDD)、 电子局域化函数(ELF)、 能带结构、 态密度(DOS)以及局部晶体轨道哈密顿量(COHP). 此外, 还应用分子中原子的固态量子理论(QTAIM)进一步表征了Ni–S、 Ni–Mo及Mo–S键的共价性与离子性. 此外, 为研究Ni1/MoS2的电催化应用, 对CO2还原反应(CO2RR)制甲醇的反应机理与路径进行了分析. 计算表明, Ni1/MoS2对于CO2RR具有较高的催化活性. 本文为MoS2基功能材料高效SACs的设计提供了理论依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Voiry D, Goswami A, Kappera R, et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat Chem, 2015, 7: 45–49

    Article  CAS  Google Scholar 

  2. Yang Y, Wang G, Huang W, et al. Reversible optical control of the metal-insulator transition across the epitaxial heterointerface of a VO2/Nb:TiO2 junction. Sci China Mater, 2021, 64: 1687–1702

    Article  CAS  Google Scholar 

  3. Aljarb A, Fu JH, Hsu CC, et al. Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nat Mater, 2020, 19: 1300–1306

    Article  CAS  Google Scholar 

  4. Zhang M, Lihter M, Chen TH, et al. Super-resolved optical mapping of reactive sulfur-vacancies in two-dimensional transition metal dichalcogenides. ACS Nano, 2021, 15: 7168–7178

    Article  CAS  Google Scholar 

  5. Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photon, 2016, 10: 216–226

    Article  CAS  Google Scholar 

  6. Wang J, Zhang Z, Ding J, et al. Recent progresses of micro-nanostructured transition metal compound-based electrocatalysts for energy conversion technologies. Sci China Mater, 2021, 64: 1–26

    Article  CAS  Google Scholar 

  7. Shuai H, Li J, Jiang F, et al. Electrochemically intercalated intermediate induced exfoliation of few-layer MoS2 from molybdenite for long-life sodium storage. Sci China Mater, 2021, 64: 115–127

    Article  CAS  Google Scholar 

  8. Chen B, Wang T, Zhao S, et al. Efficient reversible conversion between MoS2 and Mo/Na2S enabled by graphene-supported single atom catalysts. Adv Mater, 2021, 33: 2007090

    Article  CAS  Google Scholar 

  9. Niu S, Jiang WJ, Tang T, et al. Autogenous growth of hierarchical NiFe(OH)x/FeS nanosheet-on-microsheet arrays for synergistically enhanced high-output water oxidation. Adv Funct Mater, 2019, 29: 1902180

    Article  Google Scholar 

  10. Peng J, Liu Y, Pan Y, et al. Fast lithium ion conductivity in layered (Li-Ag)CrS2. J Am Chem Soc, 2020, 142: 18645–18651

    Article  CAS  Google Scholar 

  11. Liang J, Wang Y, Liu Q, et al. Electrocatalytic hydrogen peroxide production in acidic media enabled by NiS2 nanosheets. J Mater Chem A, 2021, 9: 6117–6122

    Article  CAS  Google Scholar 

  12. Lin Y, Adilbekova B, Firdaus Y, et al. 17% Efficient organic solar cells based on liquid exfoliated WS2 as a replacement for PEDOT:PSS. Adv Mater, 2019, 31: 1902965

    Article  CAS  Google Scholar 

  13. He H, Chen C, Chen Z, et al. Ni3S2@S-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells. Sci China Mater, 2020, 63: 216–228

    Article  CAS  Google Scholar 

  14. Chu K, Liu YP, Li YB, et al. Two-dimensional (2D)/2D interface engineering of a MoS2/C3N4 heterostructure for promoted electrocatalytic nitrogen fixation. ACS Appl Mater Interfaces, 2020, 12: 7081–7090

    Article  CAS  Google Scholar 

  15. Tang B, Zhao Y, Zhou C, et al. Threshold voltage modulation in monolayer MoS2 field-effect transistors via selective gallium ion beam irradiation. Sci China Mater, 2022, 65: 741–747

    Article  CAS  Google Scholar 

  16. Guo Y, Tang J, Henzie J, et al. Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic-metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano, 2020, 14: 4141–4152

    Article  CAS  Google Scholar 

  17. Schauble K, Zakhidov D, Yalon E, et al. Uncovering the effects of metal contacts on monolayer MoS2. ACS Nano, 2020, 14: 14798–14808

    Article  CAS  Google Scholar 

  18. Chen X, Zang J, Yang X, et al. Ultrasensitive monolayer-MoS2 heterojunction photodetectors realized via an asymmetric Fabry-Perot cavity. Sci China Mater, 2022, 65: 1861–1868

    Article  CAS  Google Scholar 

  19. Hong X, Chan K, Tsai C, et al. How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal, 2016, 6: 4428–4437

    Article  CAS  Google Scholar 

  20. Mao X, Wang L, Xu Y, et al. Modulating the MoS2 edge structures by doping transition metals for electrocatalytic CO2 reduction. J Phys Chem C, 2020, 124: 10523–10529

    Article  CAS  Google Scholar 

  21. Li H, Tsai C, Koh AL, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater, 2016, 15: 48–53

    Article  CAS  Google Scholar 

  22. Yu XY, Hu H, Wang Y, et al. Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew Chem, 2015, 127: 7503–7506

    Article  Google Scholar 

  23. Seh ZW, Kibsgaard J, Dickens CF, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355: 4998

    Article  Google Scholar 

  24. Escalera-López D, Niu Y, Yin J, et al. Enhancement of the hydrogen evolution reaction from Ni-MoS2 hybrid nanoclusters. ACS Catal, 2016, 6: 6008–6017

    Article  Google Scholar 

  25. Qiao BT, Wang AQ, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem, 2011, 3: 634–641

    Article  CAS  Google Scholar 

  26. Xu Q, Guo CX, Tian S, et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Sci China Mater, 2020, 63: 972–981

    Article  CAS  Google Scholar 

  27. Li J, Li Y, Zhang T. Recent progresses in the research of single-atom catalysts. Sci China Mater, 2020, 63: 889–891

    Article  Google Scholar 

  28. Zhuo HY, Zhang X, Liang JX, et al. Theoretical understandings of graphene-based metal single-atom catalysts: Stability and catalytic performance. Chem Rev, 2020, 120: 12315–12341

    Article  CAS  Google Scholar 

  29. Li Z, Ji S, Liu Y, et al. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem Rev, 2020, 120: 623–682

    Article  CAS  Google Scholar 

  30. Ren S, Yu Q, Yu X, et al. Graphene-supported metal single-atom catalysts: A concise review. Sci China Mater, 2020, 63: 903–920

    Article  CAS  Google Scholar 

  31. Chen S, Kang Z, Hu X, et al. Delocalized spin states in 2D atomic layers realizing enhanced electrocatalytic oxygen evolution. Adv Mater, 2017, 29: 1701687

    Article  Google Scholar 

  32. Li X, Cao CS, Hung SF, et al. Identification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Chem, 2020, 6: 3440–3454

    Article  CAS  Google Scholar 

  33. Rong P, Jiang YF, Wang Q, et al. Photocatalytic degradation of methylene blue (MB) with Cu1-ZnO single atom catalysts on graphene-coated flexible substrates. J Mater Chem A, 2022, 10: 6231–6241

    Article  CAS  Google Scholar 

  34. Gong YN, Zhong W, Li Y, et al. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J Am Chem Soc, 2020, 142: 16723–16731

    Article  CAS  Google Scholar 

  35. Chen Y, Huang Z, Gu X, et al. Top-down synthesis strategies: Maximum noble-metal atom efficiency in catalytic materials. Chin J Catal, 2017, 38: 1588–1596

    Article  CAS  Google Scholar 

  36. Zhou S, Jang H, Qin Q, et al. Three-dimensional hierarchical Co(OH)F nanosheet arrays decorated by single-atom Ru for boosting oxygen evolution reaction. Sci China Mater, 2021, 64: 1408–1417

    Article  CAS  Google Scholar 

  37. Yang ZK, Wang XL, Zhu MZ, et al. Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance. Nano Res, 2021, 14: 4512–4519

    Article  CAS  Google Scholar 

  38. Yang J, Wang ZY, Huang CX, et al. Compressive strain modulation of single iron sites on helical carbon support boosts electrocatalytic oxygen reduction. Angew Chem Int Ed, 2021, 60: 22722–22728

    Article  CAS  Google Scholar 

  39. Zhu MZ, Zhao C, Liu XK, et al. Single atomic cerium sites with a high coordination number for efficient oxygen reduction in proton-exchange membrane fuel cells. ACS Catal, 2021, 11: 3923–3929

    Article  CAS  Google Scholar 

  40. Xue ZG, Yan MY, Wang XL, et al. Tailoring unsymmetrical-co-ordinated atomic site inoxide-supported Pt catalysts for enhanced surface activity and stability. Small, 2021, 17: 2101008

    Article  CAS  Google Scholar 

  41. Li Y, Gu Q, Johannessen B, et al. Synergistic Pt doping and phase conversion engineering in two-dimensional MoS2 for efficient hydrogen evolution. Nano Energy, 2021, 84: 105898

    Article  CAS  Google Scholar 

  42. Jiao D, Liu Y, Cai Q, et al. Coordination tunes the activity and selectivity of the nitrogen reduction reaction on single-atom iron catalysts: A computational study. J Mater Chem A, 2021, 9: 1240–1251

    Article  CAS  Google Scholar 

  43. Huang CX, Li GL, Yang LM, et al. Ammonia synthesis using single-atom catalysts based on two-dimensional organometallic metal phthalocyanine monolayers under ambient conditions. ACS Appl Mater Interfaces, 2021, 13: 608–621

    Article  CAS  Google Scholar 

  44. Xu L, Yang LM, Ganz E. Electrocatalytic reduction of N2 using metal-doped borophene. ACS Appl Mater Interfaces, 2021, 13: 14091–14101

    Article  CAS  Google Scholar 

  45. Zhao MR, Song BY, Yang LM. Two-dimensional single-atom catalyst TM3(HAB)2 monolayers for electrocatalytic dinitrogen reduction using hierarchical high-throughput screening. ACS Appl Mater Interfaces, 2021, 13: 26109–26122

    Article  CAS  Google Scholar 

  46. Lv SY, Huang CX, Li GL, et al. Electrocatalytic mechanism of N2 reduction reaction by single-atom catalyst rectangular TM-TCNQ monolayers. ACS Appl Mater Interfaces, 2021, 13: 29641–29653

    Article  CAS  Google Scholar 

  47. Lv SY, Li GL, Yang LM. Transition metals embedded two-dimensional square tetrafluorotetracyanoquinodimethane monolayers as a class of novel electrocatalysts for nitrogen reduction reaction. ACS Appl Mater Interfaces, 2022, 14: 25317–25325

    Article  CAS  Google Scholar 

  48. Wang XL, Yang LM. Unveiling the underlying mechanism of nitrogen fixation by a new class of electrocatalysts two-dimensional TM@g-C4N3 monosheets. Appl Surf Sci, 2022, 576: 151839

    Article  CAS  Google Scholar 

  49. Lv SY, Huang CX, Li GL, et al. Unveiling the underlying mechanism of transition metal atoms anchored square tetracyanoquinodimethane monolayers as electrocatalysts for N2 fixation. Energy Environ Mater, 2022, 5: 533–542

    Article  CAS  Google Scholar 

  50. Wang XL, Yang LM. Efficient modulation of the catalytic performance of electrocatalytic nitrogen reduction with transition metals anchored on N/O-codoped graphene by coordination engineering. J Mater Chem A, 2022, 10: 1481–1496

    Article  CAS  Google Scholar 

  51. Huang CX, Lv SY, Li C, et al. Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for ammonia synthesis under ambient conditions. Nano Res, 2022, 15: 4039–4047

    Article  CAS  Google Scholar 

  52. Lv SY, Li GL, Yang LM. Prognostication of two-dimensional transition-metal atoms embedded rectangular tetrafluorotetracyanoquinodimethane single-atom catalysts for high-efficiency electrochemical nitrogen reduction. J Colloid Interface Sci, 2022, 621: 24–32

    Article  CAS  Google Scholar 

  53. Liu Y, Song BY, Huang CX, et al. Dual transition metal atoms embedded in N-doped graphene for electrochemical nitrogen fixation under ambient conditions. J Mater Chem A, 2022, 10: 13527–13543

    Article  CAS  Google Scholar 

  54. Li M, Wang H, Luo W, et al. Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv Mater, 2020, 32: 2001848

    Article  CAS  Google Scholar 

  55. Yang J, Wang XL, Qu YT, et al. Bi-based metal-organic framework derived leafy bismuth nanosheets for carbon dioxide electroreduction. Adv Energy Mater, 2020, 10: 2001709

    Article  CAS  Google Scholar 

  56. Liu JH, Yang LM, Ganz E. Efficient and selective electroreduction of CO2 by single-atom catalyst two-dimensional TM-Pc monolayers. ACS Sustain Chem Eng, 2018, 6: 15494–15502

    Article  CAS  Google Scholar 

  57. Liu JH, Yang LM, Ganz E. Electrochemical reduction of CO2 by single atom catalyst TM-TCNQ monolayers. J Mater Chem A, 2019, 7: 3805–3814

    Article  CAS  Google Scholar 

  58. Liu JH, Yang LM, Ganz E. Electrocatalytic reduction of CO2 by two-dimensional transition metal porphyrin sheets. J Mater Chem A, 2019, 7: 11944–11952

    Article  CAS  Google Scholar 

  59. Liu JH, Yang LM, Ganz E. Two-dimensional organometallic TM3-C12S12 monolayers for electrocatalytic reduction of CO2. Energy Environ Mater, 2019, 2: 193–200

    Article  CAS  Google Scholar 

  60. Liu JH, Yang LM, Ganz E. Efficient electrocatalytic reduction of carbon dioxide by metal-doped β12-borophene monolayers. RSC Adv, 2019, 9: 27710–27719

    Article  CAS  Google Scholar 

  61. Lu Y, Wang J, Yu L, et al. Identification of the active complex for Co oxidation over single-atom Ir-on-MgAl2O4 catalysts. Nat Catal, 2019, 2: 149–156

    Article  CAS  Google Scholar 

  62. Zheng T, Jiang K, Wang H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv Mater, 2018, 30: 1802066

    Article  Google Scholar 

  63. Zhao Q, Zhang C, Hu R, et al. Selective etching quaternary MAX phase toward single atom copper immobilized MXene (Ti3C2Clx) for efficient CO2 electroreduction to methanol. ACS Nano, 2021, 15: 4927–4936

    Article  CAS  Google Scholar 

  64. Zhang S, Kang P, Ubnoske S, et al. Polyethylenimine-enhanced electrocatalytic reduction of CO2 to formate at nitrogen-doped carbon nanomaterials. J Am Chem Soc, 2014, 136: 7845–7848

    Article  CAS  Google Scholar 

  65. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  66. Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  67. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  68. Bader RFW. A quantum theory of molecular structure and its applications. Chem Rev, 1991, 91: 893–928

    Article  CAS  Google Scholar 

  69. Maintz S, Deringer VL, Tchougréeff AL, et al. Lobster: A tool to extract chemical bonding from plane-wave based DFT. J Comput Chem, 2016, 37: 1030–1035

    Article  CAS  Google Scholar 

  70. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B, 2004, 108: 17886–17892

    Article  Google Scholar 

  71. Peterson AA, Nørskov JK. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett, 2012, 3: 251–258

    Article  CAS  Google Scholar 

  72. Baerends EJ, Ziegler T, Autschbach J, et al. ADF2017, SCM, Theoretical Chemistry. Amsterdam: Vrije Universiteit, 2014

    Google Scholar 

  73. Bader RFW. Atoms in Molecules: A Quantum Theory. Oxford: Clarendon Press, 1994

    Google Scholar 

  74. Qiao B, Liang JX, Wang AQ, et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res, 2015, 8: 2913–2924

    Article  CAS  Google Scholar 

  75. Dang Q, Tang S, Liu T, et al. Regulating electronic spin moments of single-atom catalyst sites via single-atom promoter tuning on S-vacancy MoS2 for efficient nitrogen fixation. J Phys Chem Lett, 2021, 12: 8355–8362

    Article  CAS  Google Scholar 

  76. Wang L, Guan E, Zhang J, et al. Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation. Nat Commun, 2018, 9: 1362

    Article  CAS  Google Scholar 

  77. Wang V, Xu N, Liu JC, et al. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput Phys Commun, 2021, 267: 108033

    Article  CAS  Google Scholar 

  78. Lin S, Ye X, Johnson RS, et al. First-principles investigations of metal (Cu, Ag, Au, Pt, Rh, Pd, Fe, Co, and Ir) doped hexagonal boron nitride nanosheets: Stability and catalysis of Co oxidation. J Phys Chem C, 2013, 117: 17319–17326

    Article  CAS  Google Scholar 

  79. Liu S, Huang S. Atomically dispersed Co atoms on MoS2 monolayer: A promising high-activity catalyst for CO oxidation. Appl Surf Sci, 2017, 425: 478–483

    Article  CAS  Google Scholar 

  80. Becke AD, Edgecombe KE. A simple measure of electron localization in atomic and molecular systems. J Chem Phys, 1990, 92: 5397–5403

    Article  CAS  Google Scholar 

  81. Liu J, Cheng B, Yu J. A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure. Phys Chem Chem Phys, 2016, 18: 31175–31183

    Article  CAS  Google Scholar 

  82. Popelier PLA. Atoms in molecules: An introduction. Pearson Education, Harlow, UK, 2000. 144–197

    Google Scholar 

  83. Xie JF, Zhao XT, Wu MX, et al. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew Chem Int Ed, 2018, 57: 9640–9644

    Article  CAS  Google Scholar 

  84. Lv K, Teng C, Shi M, et al. Hydrophobic and electronic properties of the E-MoS2 nanosheets induced by FAS for the CO2 electroreduction to syngas with a wide range of CO/H2 ratios. Adv Funct Mater, 2018, 28: 1802339

    Article  Google Scholar 

Download references

Acknowledgements

I thank Assoc. Prof. Hai Xiao and Dr. Zhaoming Xia for their helpful discussion. This work was financially supported by the National Natural Science Foundation of China (92061109), the Natural Science Basic Research Program of Shaanxi (2021JCW-20 and S2020-JC-WT-0001), the Open Project Program of Fujian Key Laboratory of Functional Marine Sensing Materials (MJUKF-FMSM202002), and Guangdong Provincial Key Laboratory of Catalysis (2020B121201002). Computational resources are provided by Beijing Clouds Supercomputing Center.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Yu Q designed the project, performed the calculations and wrote the paper.

Corresponding author

Correspondence to Qi Yu  (于琦).

Ethics declarations

Conflict of interest The author declares no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Qi Yu obtained her BSc (2008), MSc (2010) and PhD (2013) degrees from Jilin University, China. She is currently a professor at the Institute of Graphene at Shaanxi Key Laboratory of Catalysis, Shaanxi University of Technology. Her research interests include theoretical investigations on graphene materials and electrocatalysis with single-atom catalysts.

Supplementary Information

40843_2022_2222_MOESM1_ESM.pdf

Theoretical Studies of Non-Noble Metal Single Atom Catalyst Ni1/MoS2: Electronic Structure and Electrocatalytic CO2 Reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q. Theoretical studies of non-noble metal single-atom catalyst Ni1/MoS2: Electronic structure and electrocatalytic CO2 reduction. Sci. China Mater. 66, 1079–1088 (2023). https://doi.org/10.1007/s40843-022-2222-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2222-6

Keywords

Navigation