Skip to main content
Log in

Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction

双金属酞菁异质结构高选择性电催化CO2还原

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Heterogeneous molecular catalysts, such as metal phthalocyanines, are efficient electrocatalysts for CO2 reduction reaction (CO2RR). However, the rational design and synthesis of a molecular catalyst-based heterostructure for CO2RR remains challenging. Herein, we developed a crystalline bimetallic phthalocyanine heterostructure electrocatalyst (CoPc/FePc HS), which achieved an excellent CO2-to-CO conversion efficiency (99%) and outstanding long-term stability after 10 h of electrocatalysis. Density functional theory calculations revealed that the enhancement of CO2RR performance could be attributed to the distinct electron transfer pattern between FePc and CoPc. The heterostructural engineering in molecular catalysts would inspire a unique approach for improving CO2RR performance.

摘要

自工业革命以来, 化石燃料的大量消耗导致大气中CO2浓度显著 增加, 引发了全球气候变暖等问题. 电化学CO2还原能够利用可再生能 源产生的间歇性电力可持续地将CO2转化为高附加值化学品或燃料, 是 实现碳中和的有效途径. 目前, 非均相分子催化剂如金属酞菁能够有效 催化CO2还原反应(CO2RR), 但是分子催化剂异质结构的合理设计与合 成仍极具挑战. 基于此, 我们发展了一种具有高结晶度的双金属酞菁异 质结构(CoPc/FePc HS), 其电催化CO2还原为CO的法拉第效率高达 99%, 并在运行10小时后性能基本保持不变. 密度泛函理论计算表明, FePc和CoPc之间不同的电子转移模式能够有效提高CO2RR性能. 构筑 分子催化剂异质结构有望成为CO2RR性能提升的有效策略.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal, 2019, 2: 648–658

    Article  CAS  Google Scholar 

  2. Wang L, Chen W, Zhang D, et al. Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms. Chem Soc Rev, 2019, 48: 5310–5349

    Article  CAS  Google Scholar 

  3. Nam DH, De Luna P, Rosas-Hernández A, et al. Molecular enhancement of heterogeneous CO2 reduction. Nat Mater, 2020, 19: 266–276

    Article  CAS  Google Scholar 

  4. Ding M, Flaig RW, Jiang HL, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem Soc Rev, 2019, 48: 2783–2828

    Article  CAS  Google Scholar 

  5. Nitopi S, Bertheussen E, Scott SB, et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem Rev, 2019, 119: 7610–7672

    Article  CAS  Google Scholar 

  6. Jiang X, Nie X, Guo X, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis. Chem Rev, 2020, 120: 7984–8034

    Article  CAS  Google Scholar 

  7. Daiyan R, Saputera WH, Masood H, et al. A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel. Adv Energy Mater, 2020, 10: 1902106

    Article  CAS  Google Scholar 

  8. Zhang L, Zhao ZJ, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed, 2017, 56: 11326–11353

    Article  CAS  Google Scholar 

  9. Seh ZW, Kibsgaard J, Dickens CF, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355: eaad4998

    Article  Google Scholar 

  10. Qiao J, Liu Y, Hong F, et al. A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels. Chem Soc Rev, 2014, 43: 631–675

    Article  CAS  Google Scholar 

  11. Weng Z, Jiang J, Wu Y, et al. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J Am Chem Soc, 2016, 138: 8076–8079

    Article  CAS  Google Scholar 

  12. Qin T, Qian Y, Zhang F, et al. Cloride-derived copper electrode for efficient electrochemical reduction of CO2 to ethylene. Chin Chem Lett, 2019, 30: 314–318

    Article  CAS  Google Scholar 

  13. Wang N, Miao RK, Lee G, et al. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat, 2021, 2: 12–16

    Article  Google Scholar 

  14. Chen Y, Li CW, Kanan MW. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc, 2012, 134: 19969–19972

    Article  CAS  Google Scholar 

  15. He Q, Lee JH, Liu D, et al. Accelerating CO2 electroreduction to CO over Pd single-atom catalyst. Adv Funct Mater, 2020, 30: 2000407

    Article  CAS  Google Scholar 

  16. García de Arquer FP, Dinh CT, Ozden A, et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science, 2020, 367: 661–666

    Article  Google Scholar 

  17. Zhang X, Wang Y, Gu M, et al. Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction. Nat Energy, 2020, 5: 684–692

    Article  CAS  Google Scholar 

  18. Genovese C, Schuster ME, Gibson EK, et al. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon. Nat Commun, 2018, 9: 935

    Article  Google Scholar 

  19. Wang Y, Li Y, Wang Z, et al. Reticular chemistry in electrochemical carbon dioxide reduction. Sci China Mater, 2020, 63: 1113–1141

    Article  CAS  Google Scholar 

  20. Costentin C, Drouet S, Robert M, et al. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science, 2012, 338: 90–94

    Article  CAS  Google Scholar 

  21. Lin S, Diercks CS, Zhang YB, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science, 2015, 349: 1208–1213

    Article  CAS  Google Scholar 

  22. Yang C, Li S, Zhang Z, et al. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small, 2020, 16: 2001847

    Article  CAS  Google Scholar 

  23. Zhong H, Zhang Q, Wang J, et al. Engineering ultrathin C3N4 quantum dots on graphene as a metal-free water reduction electrocatalyst. ACS Catal, 2018, 8: 3965–3970

    Article  CAS  Google Scholar 

  24. Liu KH, Zhong HX, Li SJ, et al. Advanced catalysts for sustainable hydrogen generation and storage via hydrogen evolution and carbon dioxide/nitrogen reduction reactions. Prog Mater Sci, 2018, 92: 64–111

    Article  CAS  Google Scholar 

  25. Wu Y, Hu G, Rooney CL, et al. Heterogeneous nature of electrocatalytic CO/CO2 reduction by cobalt phthalocyanines. ChemSusChem, 2020, cssc.202001396

  26. Wu J, Xie Y, Du S, et al. Heterophase engineering of SnO2/Sn3O4 drives enhanced carbon dioxide electrocatalytic reduction to formic acid. Sci China Mater, 2020, 63: 2314–2324

    Article  CAS  Google Scholar 

  27. Lin L, Liu T, Xiao J, et al. Enhancing CO2 electroreduction to methane with a cobalt phthalocyanine and zinc-nitrogen-carbon tandem catalyst. Angew Chem Int Ed, 2020, 59: 22408–22413

    Article  CAS  Google Scholar 

  28. Weng Z, Wu Y, Wang M, et al. Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat Commun, 2018, 9: 415

    Article  Google Scholar 

  29. Jiang Z, Wang Y, Zhang X, et al. Revealing the hidden performance of metal phthalocyanines for CO2 reduction electrocatalysis by hybridization with carbon nanotubes. Nano Res, 2019, 12: 2330–2334

    Article  CAS  Google Scholar 

  30. Ren S, Joulié D, Salvatore D, et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science, 2019, 365: 367–369

    Article  CAS  Google Scholar 

  31. Liu S, Yang HB, Hung SF, et al. Elucidating the electrocatalytic CO2 reduction reaction over a model single-atom nickel catalyst. Angew Chem Int Ed, 2020, 59: 798–803

    Article  CAS  Google Scholar 

  32. Lin L, Li H, Yan C, et al. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv Mater, 2019, 31: 1903470

    Article  CAS  Google Scholar 

  33. Kusama S, Saito T, Hashiba H, et al. Crystalline copper(II) phthalo-cyanine catalysts for electrochemical reduction of carbon dioxide in aqueous media. ACS Catal, 2017, 7: 8382–8385

    Article  CAS  Google Scholar 

  34. Han N, Wang Y, Ma L, et al. Supported cobalt polyphthalocyanine for high-performance electrocatalytic CO2 reduction. Chem, 2017, 3: 652–664

    Article  CAS  Google Scholar 

  35. Gong S, Wang W, Xiao X, et al. Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion. Nano Energy, 2021, 84: 105904

    Article  CAS  Google Scholar 

  36. De Riccardis A, Lee M, Kazantsev RV, et al. Heterogenized pyridinesubstituted cobalt(II) phthalocyanine yields reduction of CO2 by tuning the electron affinity of the Co center. ACS Appl Mater Interfaces, 2020, 12: 5251–5258

    Article  CAS  Google Scholar 

  37. Zhang X, Wu Z, Zhang X, et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat Commun, 2017, 8: 14675

    Article  Google Scholar 

  38. Ma Y, Li J, Liao X, et al. Heterostructure design in bimetallic phthalocyanine boosts oxygen reduction reaction activity and durability. Adv Funct Mater, 2020, 30: 2005000

    Article  CAS  Google Scholar 

  39. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  40. Blöchl PE. Projector augmented-wave method. Phys Rev B, 1994, 50: 17953–17979

    Article  Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  42. Monkhorst HJ, Pack JD. Special points for Brillouin-zone integrations. Phys Rev B, 1976, 13: 5188–5192

    Article  Google Scholar 

  43. Chen H, Shan H, Zhao A, et al. First-principles study of two dimensional transition metal phthalocyanine-based metal-organic frameworks in kagome lattice. Chin J Chem Phys, 2019, 32: 563–571

    Article  CAS  Google Scholar 

  44. Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem, 2011, 32: 1456–1465

    Article  CAS  Google Scholar 

  45. Liang W, Chen J, Liu Y, et al. Density-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal, 2014, 4: 4170–4177

    Article  CAS  Google Scholar 

  46. Wu Y, Jiang Z, Lu X, et al. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature, 2019, 575: 639–642

    Article  CAS  Google Scholar 

  47. Gajda Ł, Kupka T, Małolepszy A, et al. Spectroscopic characterization of non-covalent CuPc-GO system. Experiment and theory. Mater Chem Phys, 2019, 231: 301–310

    Article  CAS  Google Scholar 

  48. Verma D, Dash R, Katti KS, et al. Role of coordinated metal ions on the orientation of phthalocyanine based coatings. SpectroChim Acta Part A-Mol Biomol Spectr, 2008, 70: 1180–1186

    Article  Google Scholar 

  49. Latiff NM, Fu X, Mohamed DK, et al. Carbon based copper(II) phthalocyanine catalysts for electrochemical CO2 reduction: Effect of carbon support on electrocatalytic activity. Carbon, 2020, 168: 245–253

    Article  CAS  Google Scholar 

  50. Sonkar PK, Ganesan V, Gupta R, et al. Nickel phthalocyanine integrated graphene architecture as bifunctional electrocatalyst for CO2 and O2 reductions. J Electroanal Chem, 2018, 826: 1–9

    Article  CAS  Google Scholar 

  51. Ma DD, Han SG, Cao C, et al. Bifunctional single-molecular heterojunction enables completely selective CO2-to-CO conversion integrated with oxidative 3D nano-polymerization. Energy Environ Sci, 2021, 14: 1544–1552

    Article  CAS  Google Scholar 

  52. Sun L, Reddu V, Fisher AC, et al. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ Sci, 2020, 13: 374–403

    Article  CAS  Google Scholar 

  53. Meng F, Zhong H, Bao D, et al. In situ coupling of strung Co4N and intertwined N-C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J Am Chem Soc, 2016, 138: 10226–10231

    Article  CAS  Google Scholar 

  54. Zhong H, Liu K, Zhang Q, et al. Copper tetrazolate based metal-organic frameworks as highly efficient catalysts for artificially chemical and electrochemical CO2 conversion. Nano Sel, 2020, 1: 311–319

    Article  Google Scholar 

  55. Choi J, Wagner P, Gambhir S, et al. Steric modification of a cobalt phthalocyanine/graphene catalyst to give enhanced and stable electrochemical CO2 reduction to CO. ACS Energy Lett, 2019, 4: 666–672

    Article  CAS  Google Scholar 

  56. Wang J, Wang G, Zhang J, et al. Inversely tuning the CO2 electro-reduction and hydrogen evolution activity on metal oxide via heteroatom doping. Angew Chem Int Ed, 2021, 60: 7602–7606

    Article  CAS  Google Scholar 

  57. Zhu M, Chen J, Huang L, et al. Covalently grafting cobalt porphyrin onto carbon nanotubes for efficient CO2 electroreduction. Angew Chem Int Ed, 2019, 58: 6595–6599

    Article  CAS  Google Scholar 

  58. Chen J, Zhu M, Li J, et al. Structure-activity relationship of the polymerized cobalt phthalocyanines for electrocatalytic carbon dioxide reduction. J Phys Chem C, 2020, 124: 16501–16507

    Article  CAS  Google Scholar 

  59. Huai M, Yin Z, Wei F, et al. Electrochemical CO2 reduction on heterogeneous cobalt phthalocyanine catalysts with different carbon supports. Chem Phys Lett, 2020, 754: 137655

    Article  CAS  Google Scholar 

  60. Ju W, Bagger A, Wang X, et al. Unraveling mechanistic reaction pathways of the electrochemical CO2 reduction on Fe-N-C single-site catalysts. ACS Energy Lett, 2019, 4: 1663–1671

    Article  CAS  Google Scholar 

  61. Xu F, Zhang L, Ding X, et al. Selective electroreduction of dinitrogen to ammonia on a molecular iron phthalocyanine/O-MWCNT catalyst under ambient conditions. Chem Commun, 2019, 55: 14111–14114

    Article  CAS  Google Scholar 

  62. Li X, Rong H, Zhang J, et al. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res, 2020, 13: 1842–1855

    Article  CAS  Google Scholar 

  63. Nørskov JK, Rossmeisl J, Logadottir A, et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B, 2004, 108: 17886–17892

    Article  Google Scholar 

  64. Xu H, Cheng D, Cao D, et al. A universal principle for a rational design of single-atom electrocatalysts. Nat Catal, 2018, 1: 339–348

    Article  CAS  Google Scholar 

  65. Pan Y, Lin R, Chen Y, et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J Am Chem Soc, 2018, 140: 4218–4221

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22071172, 91833306, 21875158, 51633006, and 51733004).

Author information

Authors and Affiliations

Authors

Contributions

Zhang Z, Gao XJ, and Hu W conceived and supervised this study; Yang C, Gao Z, Zhang Z, and Gao XJ wrote the paper; Li S, Li J, Zhu Y, and Wang H carried out the materials fabrication, characterizations, and electrochemical measurements; Wang D, Yang W, and Gao XJ performed the DFT calculations and computational models; All authors contributed to discussions and manuscript review.

Corresponding authors

Correspondence to Xuejiao J. Gao  (高雪娇) or Zhicheng Zhang  (张志成).

Additional information

Xuejiao J. Gao received her PhD degree from the School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences (Beijing) in 2017. Then, she joined the College of Chemistry and Chemical Engineering, Jiangxi Normal University as an associate professor. Her research interests focus on surface and interface chemistry of nanomaterials and its application in biomimetic catalysis.

Zhicheng Zhang is a Professor of Tianjin University, China. He obtained his PhD degree from China University of Petroleum (Beijing) in 2012. Then he joined Tsinghua University as a postdoctoral researcher. In 2014, he worked as a research fellow at Nanyang Technological University, Singapore. In 2019, he joined Tianjin University as a full Professor. His research interests focus on the design and synthesis of functional metal-based nanomaterials and their applications in energy conversion and catalysis.

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Gao, Z., Wang, D. et al. Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction. Sci. China Mater. 65, 155–162 (2022). https://doi.org/10.1007/s40843-021-1749-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1749-5

Keywords

Navigation