Skip to main content
Log in

Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a Pd–thiolate cluster

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A novel one-pot approach to synthesize the tiara-like Pd(II) thiolate complex compound, [Pd(SCH3)2]6 was developed. In this strategy, dimethyl sulfoxide (DMSO) was used as a thiolate source instead of methyl mercaptan (CH3SH). DMSO was first decomposed into CH3SH and formaldehyde (HCHO); then, the in situ as-formed CH3SH molecules reacted with palladium acetate, and formed [Pd(SCH3)2]6. By tuning the reaction condition, the morphology of the [Pd(SCH3)2]6 assemblies can change from microprism to nanosphere. The characterization of the pyrolysis product demonstrated that these two kinds of [Pd(SCH3)2]6 assemblies with different shapes could further decompose into palladium or palladium sulfides through different pyrolysis conditions.

中文摘要

本文以醋酸钯为钯源, 二甲基亚砜为硫源, 在乙二醇和醋酸存在的条件下通过一步法制备了一种六核钯–甲硫醇团簇化合物 [Pd(SCH3)2]6. 其具有特征的类花冠形结构. 对其反应机制进行了探讨, 首先二甲基亚砜分解生成甲硫醇和甲醛, 钯与甲硫醇反应原位生 成钯–甲硫醇团簇. 这些生成的团簇分子进一步组装成微米尺寸大小的棱柱. 通过向反应体系中引入一种表面活性剂, 产物的形貌从微 米棱柱转变为纳米球. 350°C下, [Pd(SCH3)2]6的微米棱柱在空气中分解得到金属钯单质. 对其热解产物进行电镜表征, 发现其在保持原 有棱柱形貌的基础上形成了孔道结构. 在不同的热解条件下可以得到钯或硫化钯热解产物.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alemany P, Hoffmann R. Toroidal nickel thiolates: structure and bonding. J Am Chem Soc, 1993, 115: 8290–8297

    Article  Google Scholar 

  2. Krebs B, Henkel G. Transition-metal thiolates: from molecular fragments of sulfidic solids to models for active centers in biomolecules. Angew Chem Int Ed, 1991, 30: 769–788

    Article  Google Scholar 

  3. Dance IG. The structural chemistry of metal thiolate complexes. Polyhedron, 1986, 5: 1037–1104

    Article  Google Scholar 

  4. Desireddy A, Conn BE, Guo J, et al. Ultrastable silver nanoparticles. Nature, 2013, 501: 399–402

    Article  Google Scholar 

  5. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science, 2007, 318: 430–433

    Article  Google Scholar 

  6. Hsu IJ, Hsieh CH, Ke SC, et al. New members of a class of iron-thiolate-nitrosyl compounds: trinuclear iron-thiolate-nitrosyl complexes containing Fe3S6 core. J Am Chem Soc, 2007, 129: 1151–1159

    Article  Google Scholar 

  7. Eichhofer A, Andrushko V, Bodenstein T, Fink K. Trinuclear early/late-transition-metal thiolate complexes. Eur J Inorg Chem, 2014, 3510–3520

    Google Scholar 

  8. Jian FF, Jiao K, Li Y, Zhao PS, Lu LD. [Ni6(SCH2CH2OH)12]: a double crown [12]metallacrown-6 nickel(II) cluster. Angew Chem Int Ed, 2003, 42: 5722–5724

    Article  Google Scholar 

  9. Woodward P, Dahl LF, Abel EW, Crosse BC. A new type of cyclic transition metal complex, [Ni(SC2H5)2]6. J Am Chem Soc, 1965, 87: 5251–5253

    Article  Google Scholar 

  10. Zhu M, Zhou S, Yao C, Liao L, Wu Z. Reduction-resistant and reduction-catalytic double-crown nickel nanoclusters. Nanoscale, 2014, 6: 14195–14199

    Article  Google Scholar 

  11. Yang HY, Wang Y, Yan JZ, et al. Structural evolution of atomically precise thiolated bimetallic [Au12+n Cu32(SR)30+n ]4-(n=0, 2, 4, 6) nanoclusters. J Am Chem Soc, 2014, 136: 7197–7200

    Article  Google Scholar 

  12. Melzer MM, Mossin S, Cardenas AJP, et al. A copper(II) thiolate from reductive cleavage of an S-nitrosothiol. Inorg Chem, 2012, 51: 8658–8660

    Article  Google Scholar 

  13. Ibrahim MM, Seebacher J, Steinfeld G, Vahrenkamp H. Tris(thloimidazolyl) borate-zinc-thiolate complexes for the modeling of biological thiolate alkylations. Inorg Chem, 2005, 44: 8531–8538

    Article  Google Scholar 

  14. Ananikov VP, Orlov NV, Zalesskiy SS, et al. Catalytic adaptive recognition of thiol (SH) and selenol (SeH) groups toward synthesis of functionalized vinyl monomers. J Am Chem Soc, 2012, 134: 6637–6649

    Article  Google Scholar 

  15. Chen J, Liu L, Weng L, et al. Synthesis and properties evolution of a family of tiara-like phenylethanethiolated palladium nanoclusters. Sci Rep, 2015, 5: 16628

    Article  Google Scholar 

  16. Anson CE, Eichhöfer A, Issac I, et al. Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [Ag154Se77(dppxy)18], [Ag320(StBu)60S130(dppp)12], [Ag352S128(StC5H11)96], and [Ag490S188(StC5H11)114]. Angew Chem Int Ed, 2008, 47: 1326–1331

    Article  Google Scholar 

  17. Chakraborty I, Govindarajan A, Erusappan J, et al. The superstable 25 kDa monolayer protected silver nanoparticle: measurements and interpretation as an icosahedral Ag152(SCH2CH2Ph)60 cluster. Nano Lett, 2012, 12: 5861–5866

    Article  Google Scholar 

  18. Albrecht C, Schwieger S, Bruhn C, et al. Alkylthio bridged 44 cve triangular platinum clusters: synthesis, oxidation, degradation, ligand substitution, and quantum chemical calculations. J Am Chem Soc, 2007, 129: 4551–4566

    Article  Google Scholar 

  19. Heaven MW, Dass A, White PS, Holt KM, Murray RW. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J Am Chem Soc, 2008, 130: 3754–3755

    Article  Google Scholar 

  20. Chong H, Li P, Wang S, et al. Au25 clusters as electron-transfer catalysts induced the intramolecular cascade reaction of 2-nitrobenzonitrile. Sci Rep, 2013, 3: 3214

    Article  Google Scholar 

  21. Li G, Zeng C, Jin R. Thermally robust Au99(SPh)42 nanoclusters for chemoselective hydrogenation of nitrobenzaldehyde derivatives in water. J Am Chem Soc, 2014, 136: 3673–3679

    Article  Google Scholar 

  22. Li G, Lei Z, Wang QM. Luminescent molecular Ag-S nanocluster [Ag62S13(SBut)32](BF4)4. J Am Chem Soc, 2010, 132: 17678–17679

    Article  Google Scholar 

  23. Udaya Bhaskara Rao T, Pradeep T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed, 2010, 49: 3925–3929

    Article  Google Scholar 

  24. Zhu M, Aikens CM, Hendrich MP, et al. Reversible switching of magnetism in thiolate-protected Au25 superatoms. J Am Chem Soc, 2009, 131: 2490–2492

    Article  Google Scholar 

  25. Antonello S, Perera NV, Ruzzi M, Gascón JA, Maran F. Interplay of charge state, lability, and magnetism in the molecule-like Au25(SR)18 cluster. J Am Chem Soc, 2013, 135: 15585–15594

    Article  Google Scholar 

  26. Wu ZN, Li YC, Liu JL, et al. Colloidal self-assembly of catalytic copper nanoclusters into ultrathin ribbons. Angew Chem Int Ed, 2014, 53: 12196–12200

    Article  Google Scholar 

  27. Wu ZN, Dong CW, Li YC, et al. Self-assembly of Au-15 into single-cluster-thick sheets at the interface of two miscible high-boiling solvents. Angew Chem Int Ed, 2013, 52: 9952–9955

    Article  Google Scholar 

  28. Li L, Wang Q. Spontaneous self-assembly of silver nanoparticles into lamellar structured silver nanoleaves. ACS Nano, 2013, 7: 3053–3060

    Article  Google Scholar 

  29. Liu Y, Wu ZN, Zhang H. Deriving the colloidal synthesis of crystalline nanosheets to create self-assembly monolayers of nanoclusters. Adv Colloid Interface Sci, 2014, 207: 347–360

    Article  Google Scholar 

  30. Jia XF, Li J, Wang EK. Supramolecular self-assembly of morphology-dependent luminescent Ag nanoclusters. Chem Commun, 2014, 50: 9565–9568

    Article  Google Scholar 

  31. Beletskaya IP, Cheprakov AV. The heck reaction as a sharpening stone of palladium catalysis. Chem Rev, 2000, 100: 3009–3066

    Article  Google Scholar 

  32. Jiang B, Song S, Wang J, et al. Nitrogen-doped graphene supported Pd@PdO core-shell clusters for C-C coupling reactions. Nano Res, 2014, 7: 1280–1290

    Article  Google Scholar 

  33. Wang Z, Chen W, Han Z, et al. Pd embedded in porous carbon (Pd@ CMK-3) as an active catalyst for Suzuki reactions: accelerating mass transfer to enhance the reaction rate. Nano Res, 2014, 7: 1254–1262

    Article  Google Scholar 

  34. Long R, Wu D, Li Y, et al. Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control. Nano Res, 2015, 8: 2115–2123

    Article  Google Scholar 

  35. Li L, Zhou C, Zhao H, Wang R. Spatial control of palladium nanoparticles in flexible click-based porous organic polymers for hydrogenation of olefins and nitrobenzene. Nano Res, 2015, 8: 709–721

    Article  Google Scholar 

  36. Xu B, Yang H, Zhou G, Wang X. Strong metal-support interaction in size-controlled monodisperse palladium-hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Sci China Mater, 2014, 57: 34–41

    Article  Google Scholar 

  37. Gao D, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles. J Am Chem Soc, 2015, 4288–4291

    Google Scholar 

  38. Huang H, Bao S, Chen Q, et al. Novel hydrogen storage properties of palladium nanocrystals activated by a pentagonal cyclic twinned structure. Nano Res, 2015, 8: 2698–2705

    Article  Google Scholar 

  39. Huang XQ, Tang SH, Mu XL, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat Nanotechnol, 2011, 6: 28–32

    Article  Google Scholar 

  40. Mashkina AV, Sakhaltueva LG. Gas-phase thiophene hydrogenation to tetrahydrothiophene over sulfide catalysts. Kinet Catal, 2002, 43: 107–114

    Article  Google Scholar 

  41. Raybaud P, Hafner J, Kresse G, Toulhoat H. Ab initio density functional studies of transition-metal sulphides: II. electronic structure. J Phys Condens Matter, 1997, 9: 11107

    Article  Google Scholar 

  42. Dey S, Jain VK. Platinum group metal chalcogenides. Platinum Met Rev, 2004, 48: 16–29

    Google Scholar 

  43. Bladon JJ, Lamola A, Lytle FW, et al. A palladium sulfide catalyst for electrolytic plating. J Electrochem Soc, 1996, 143: 1206–1213

    Article  Google Scholar 

  44. Li X, Wen J, Low J, Fang Y, Yu J. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel. Sci China Mater, 2014, 57: 70–100

    Article  Google Scholar 

  45. Liu J, Zhao Y, Liu J, et al. From Cu2S nanocrystals to Cu doped CdS nanocrystals through cation exchange: controlled synthesis, optical properties and their p-type conductivity research. Sci China Mater, 2015, 58: 693–703

    Article  Google Scholar 

  46. Yang ZQ, Smetana AB, Sorensen CM, Klabunde KJ. Synthesis and characterization of a new tiara Pd(II) thiolate complex, [Pd(SC12H25)2]6, and its solution-phase thermolysis to prepare nearly monodisperse palladium sulfide nanoparticles. Inorg Chem, 2007, 46: 2427–2431

    Article  Google Scholar 

  47. Jose D, Jagirdar BR. Synthesis and characterization of Pd(0), PdS, and Pd@PdO core-shell nanoparticles by solventless thermolysis of a Pd-thiolate cluster. J Solid State Chem, 2010, 183: 2059–2067

    Article  Google Scholar 

  48. Carlsen L, Egsgaard H, Harpp DN. Gas-phase thermolyses 4. Gasphase thermolyses of thietan 1-oxide and 1,2-oxathiolan 2-oxide-evidence for the intermediacy of 1,2-oxathiolan. J Chem Soc Perkin Trans 2, 1981, 1166–1170

    Google Scholar 

  49. Spek AL. Refcode AFACUG. Cambridge Crystallographic Database, 2007

    Google Scholar 

  50. Nobusada K, Yamaki T. Electronic properties of palladium-thiolate complexes with tiara-like structures. J Phys Chem A, 2004, 108: 1813–1817

    Article  Google Scholar 

  51. Stash AI, Perepelkova TI, Noskov YG, Buslaeva TM, Romm IP. Palladium clusters Pd4(SEt)4(OAc)4 and Pd6(SEt)12: structure and properties. Russ J Coord Chem, 2001, 27: 585–590

    Article  Google Scholar 

  52. Higgins JD, Suggs JW. Preparation, structure and spectroscopic studies of the palladium mercaptides Pd8(S-Npr)16 and Pd6(SNpr)12. Inorg Chim Acta, 1988, 145: 247–252

    Article  Google Scholar 

  53. Stash AI, Levashova VV, Lebedev SA, et al. Palladium clusters Pd4(SR)4(OAc)4 and Pd6(SR)12 (R = Bu, Ph): structure and properties. Russ J Coord Chem, 2009, 35: 136–141

    Article  Google Scholar 

  54. Schneider I, Horner M, Olendzki RN, Strahle J. Structure of cyclo-hexakis[bis-µ-(methoxycarbonylmethylthiolato)-palladium( II)], [Pd(SCH2COOCH3)2]6. Acta Crystallogr Sect C Cryst Struct Commun, 1993, 49: 2091–2093

    Article  Google Scholar 

  55. Mahmudov KT, Hasanov XI, Maharramov AM, et al. A hexanuclear metallacrown palladium(II) cluster derived from 2-mercaptoethanol. Inorg Chem Commun, 2013, 29: 37–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinpeng Li or Chen Chen.

Additional information

Quanchen Feng received his MSc degree in chemistry from Beihang University in 2013. Currently, he is a PhD candidate in inorganic chemistry under the supervision of Prof. Yadong Li at Tsinghua University. His research interest is mainly focused on the simple synthesis of intermetallic nanomaterials and their applications as heterogeneous catalysts.

Jinpeng Li received his PhD degree in chemistry from Tohoku University in Japan in 2012. Currently, he is a postdoctoral researcher in the group of Prof. Yadong Li at Tsinghua University. His research focuses on the synthesis of metallic nanomaterial composite and their applications in heterogeneous catalysis.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Q., Wang, W., Cheong, WC. et al. Synthesis of palladium and palladium sulfide nanocrystals via thermolysis of a Pd–thiolate cluster. Sci. China Mater. 58, 936–943 (2015). https://doi.org/10.1007/s40843-015-0109-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-015-0109-3

Keywords

Navigation