Skip to main content
Log in

Dish-like higher-ordered palladium nanostructures through metal ion-ligand complexation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Unlike nucleation and growth in simple precipitation processes, described by the classical theory, metal nanoparticles formed in organic solvents with capping ligands often involve chemical reactions that occur homogeneously in solution or heterogeneously on the metal surface. These chemical reactions lead to the formation of intermediates that occurs in the process of deposition onto nuclei during the reduction. The understanding of these chemical reactions would enable a better design of functional metal nanocrystals, even those with unconventional hierarchical morphologies. In this study, we report the formation of dish-shaped nanostructures of palladium (Pd) obtained from palladium acetylacetonate (Pd(acac)2) in the presence of oleylamine and oleic acid. The process was correlated with the kinetic-controlled evolution of two-dimensional (2D) Pd nanosheets. The formation of Pd-ligand complexes was revealed using single-crystal X-ray diffraction, ultraviolet-visible spectroscopy, and mass spectrometry. These intermediates affected the formation kinetics of the 2D nanostructures and higher-ordered morphology of the nanodishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balanta, A.; Godard, C.; Claver, C. Pd nanoparticles for C-C coupling reactions. Chem. Soc. Rev. 2011, 40, 4973–4985.

    Article  Google Scholar 

  2. Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J. M.; Polshettiwar, V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev. 2011, 40, 5181–5203.

    Article  Google Scholar 

  3. Noh, J. S.; Lee, J. M.; Lee, W. Low-dimensional palladium nanostructures for fast and reliable hydrogen gas detection. Sensors 2011, 11, 825–851.

    Article  Google Scholar 

  4. Saldan, I.; Semenyuk, Y.; Marchuk, I.; Reshetnyak, O. Chemical synthesis and application of palladium nanoparticles. J. Mater. Sci. 2015, 50, 2337–2354.

    Article  Google Scholar 

  5. Chen, A. C.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044.

    Article  Google Scholar 

  6. Jia, J.; Wang, H.; Lu, Z. L.; O’Brien, P. G.; Ghoussoub, M.; Duchesne, P.; Zheng, Z. Q.; Li, P. C.; Qiao, Q.; Wang, L. et al. Photothermal catalyst engineering: Hydrogenation of gaseous CO2 with high activity and tailored selectivity. Adv. Sci. 2017, 4, 1700252.

    Article  Google Scholar 

  7. Cheong, S. S.; Watt, J. D.; Tilley, R. D. Shape control of platinum and palladium nanoparticles for catalysis. Nanoscale 2010, 2, 2045–2053.

    Article  Google Scholar 

  8. Xiao, L.; Zhuang, L.; Liu, Y.; Lu, J. T.; Abruña, H. D. Activating Pd by morphology tailoring for oxygen reduction. J. Am. Chem. Soc. 2009, 131, 602–608.

    Article  Google Scholar 

  9. Zhang, H.; Jin, M. S.; Xiong, Y. J.; Lim, B.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc. Chem. Res. 2013, 46, 1783–1794.

    Article  Google Scholar 

  10. Li, Y.; Yan, Y. C.; Li, Y. H.; Zhang, H.; Li, D. S.; Yang, D. R. Size-controlled synthesis of Pd nanosheets for tunable plasmonic properties. CrystEngComm 2015, 17, 1833–1838.

    Article  Google Scholar 

  11. Xiong, Y.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 2007, 19, 3385–3391.

    Article  Google Scholar 

  12. Lim, B.; Jiang, M. J.; Tao, J.; Camargo, P. H. C.; Zhu, Y. M.; Xia, Y. N. Shape-controlled synthesis of Pd nanocrystals in aqueous solutions. Adv. Funct. Mater. 2009, 19, 189–200.

    Article  Google Scholar 

  13. Kong, X. K.; Liu, Q. C.; Zhang, C. L.; Peng, Z. M.; Chen, Q. W. Elemental two-dimensional nanosheets beyond graphene. Chem. Soc. Rev. 2017, 46, 2127–2157.

    Article  Google Scholar 

  14. Ling, T.; Wang, J. J.; Zhang, H.; Song, S. T.; Zhou, Y. Z.; Zhao, J.; Du, X. W. Freestanding ultrathin metallic nanosheets: Materials, synthesis, and applications. Adv. Mater. 2015, 27, 5396–5402.

    Article  Google Scholar 

  15. Pan, Y. T.; Smith, C. E.; Kwok, K. S.; Chen, J. R.; Kong, H.; Yang, H. Functionalized ultrathin palladium nanosheets as patches for HepG2 cancer cells. Chem. Commun. 2015, 51, 14171–14174.

    Article  Google Scholar 

  16. Xu, D. D.; Liu, Y.; Zhao, S. L.; Lu, Y.; Han, M.; Bao, J. C. Novel surfactant-directed synthesis of ultra-thin palladium nanosheets as efficient electrocatalysts for glycerol oxidation. Chem. Commun. 2017, 53, 1642–1645.

    Article  Google Scholar 

  17. Yazdan-Abad, M. Z.; Noroozifar, M.; Alam, A. R. M.; Saravani, H. Palladium aerogel as a high-performance electrocatalyst for ethanol electro-oxidation in alkaline media. J. Mater. Chem. A 2017, 5, 10244–10249.

    Article  Google Scholar 

  18. Pan, Y. T.; Yin, X.; Kwok, K. S.; Yang, H. Higher-order nanostructures of two-dimensional palladium nanosheets for fast hydrogen sensing. Nano Lett. 2014, 14, 5953–5959.

    Article  Google Scholar 

  19. Yin, X.; Liu, X. H.; Pan, Y. T.; Walsh, K. A.; Yang, H. Hanoi tower-like multilayered ultrathin palladium nanosheets. Nano Lett. 2014, 14, 7188–7194.

    Article  Google Scholar 

  20. Li, Y.; Wang, W. X.; Xia, K. Y.; Zhang, W. J.; Jiang, Y. Y.; Zeng, Y. W.; Zhang, H.; Jin, C. H.; Zhang, Z.; Yang, D. R. Ultrathin two-dimensional Pd-based nanorings as catalysts for hydrogenation with high activity and stability. Small 2015, 11, 4745–4752.

    Article  Google Scholar 

  21. Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. Y.; Li, Z. Y.; Xia, Y. N. Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties. J. Am. Chem. Soc. 2005, 127, 17118–17127.

    Article  Google Scholar 

  22. Huang, X. Q.; Tang, S. H.; Mu, X. L.; Dai, Y.; Chen, G. X.; Zhou, Z. Y.; Ruan, F. X.; Yang, Z. L.; Zheng, N. F. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol. 2011, 6, 28–32.

    Article  Google Scholar 

  23. Nie, L. M.; Chen, M.; Sun, X. L.; Rong, P. F.; Zheng, N. F.; Chen, X. Y. Palladium nanosheets as highly stable and effective contrast agents for in vivo photoacoustic molecular imaging. Nanoscale 2014, 6, 1271–1276.

    Article  Google Scholar 

  24. Dumas, A.; Couvreur, P. Palladium: A future key player in the nanomedical field? Chem. Sci. 2015, 6, 2153–2157.

    Article  Google Scholar 

  25. Zhang, Y.; Wang, M. S.; Zhu, E. B.; Zheng, Y. B.; Huang, Y.; Huang, X. Q. Seedless growth of palladium nanocrystals with tunable structures: From tetrahedra to nanosheets. Nano Lett. 2015, 15, 7519–7525.

    Article  Google Scholar 

  26. Huang, X. Q.; Tang, S. S.; Yang, J.; Tan, Y. M.; Zheng, N. F. Etching growth under surface confinement: An effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc. 2011, 133, 15946–15949.

    Article  Google Scholar 

  27. Yin, X.; Warren, S. A.; Pan, Y. T.; Tsao, K. C.; Gray, D. L.; Bertke, J.; Yang, H. A motif for infinite metal atom wires. Angew. Chem., Int. Ed. 2014, 53, 14087–14091.

    Article  Google Scholar 

  28. Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

    Article  Google Scholar 

  29. Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

    Article  Google Scholar 

  30. Liu, H. T.; Owen, J. S.; Alivisatos, A. P. Mechanistic study of precursor evolution in colloidal group II−VI semiconductor nanocrystal synthesis. J. Am. Chem. Soc. 2007, 129, 305–312.

    Article  Google Scholar 

  31. Zheng, H. M.; Smith, R. K.; Jun, Y. W.; Kisielowski, C.; Dahmen, U.; Alivisatos, A. P. Observation of single colloidal platinum nanocrystal growth trajectories. Science 2009, 324, 1309–1312.

    Article  Google Scholar 

  32. Carenco, S.; Labouille, S.; Bouchonnet, S.; Boissière, C.; Le Goff, X. F.; Sanchez, C.; Mézailles, N. Revisiting the molecular roots of a ubiquitously successful synthesis: Nickel(0) nanoparticles by reduction of [Ni(acetylacetonate)2]. Chem.—Eur. J. 2012, 18, 14165–14173.

    Article  Google Scholar 

  33. Chen, M.; Wu, B. H.; Yang, J.; Zheng, N. F. Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv. Mater. 2012, 24, 862–879.

    Article  Google Scholar 

  34. Ortiz, N.; Skrabalak, S. E. Manipulating local ligand environments for the controlled nucleation of metal nanoparticles and their assembly into nanodendrites. Angew. Chem., Int. Ed. 2012, 51, 11757–11761.

    Article  Google Scholar 

  35. Yao, T.; Liu, S. J.; Sun, Z. H.; Li, Y. Y.; He, S.; Cheng, H.; Xie, Y.; Liu, Q. H.; Jiang, Y.; Wu, Z. Y. et al. Probing nucleation pathways for morphological manipulation of platinum nanocrystals. J. Am. Chem. Soc. 2012, 134, 9410–9416.

    Article  Google Scholar 

  36. Lohse, S. E.; Murphy, C. J. The quest for shape control: A history of gold nanorod synthesis. Chem. Mater. 2013, 25, 1250–1261.

    Article  Google Scholar 

  37. Mourdikoudis, S.; Liz-Marzán, L. M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476.

    Article  Google Scholar 

  38. Sowers, K. L.; Swartz, B.; Krauss, T. D. Chemical mechanisms of semiconductor nanocrystal synthesis. Chem. Mater. 2013, 25, 1351–1362.

    Article  Google Scholar 

  39. Lohse, S. E.; Burrows, N. D.; Scarabelli, L.; Liz-Marzán, L. M.; Murphy, C. J. Anisotropic noble metal nanocrystal growth: The role of halides. Chem. Mater. 2014, 26, 34–43.

    Article  Google Scholar 

  40. Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

    Article  Google Scholar 

  41. Lee, J.; Yang, J.; Kwon, S. G.; Hyeon, T. Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 2016, 1, 16034.

    Article  Google Scholar 

  42. Liu, Q.; Gao, M. R.; Liu, Y. Z.; Okasinski, J. S.; Ren, Y.; Sun, Y. G. Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy X-ray scattering. Nano Lett. 2016, 16, 715–720.

    Article  Google Scholar 

  43. Yin, X.; Wu, J. B.; Li, P. P.; Shi, M.; Yang, H. Self-heating approach to the fast production of uniform metal nanostructures. Chem Nano Mat 2016, 2, 37–41.

    Google Scholar 

  44. Yin, X.; Shi, M.; Wu, J. B.; Pan, Y. T.; Gray, D. L.; Bertke, J. A.; Yang, H. Quantitative analysis of different formation modes of platinum nanocrystals controlled by ligand chemistry. Nano Lett. 2017, 17, 6146–6150.

    Article  Google Scholar 

  45. Wang, Y.; Peng, H. C.; Liu, J. Y.; Huang, C. Z.; Xia, Y. N. Use of reduction rate as a quantitative knob for controlling the twin structure and shape of palladium nanocrystals. Nano Lett. 2015, 15, 1445–1450.

    Article  Google Scholar 

  46. Xiong, Y. J.; Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y. N. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 2006, 22, 8563–8570.

    Article  Google Scholar 

  47. Lv, T.; Wang, Y.; Choi, S. I.; Chi, M. F.; Tao, J.; Pan, L. K.; Huang, C. Z.; Zhu, Y. M.; Xia, Y. N. Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation. ChemSusChem 2013, 6, 1923–1930.

    Article  Google Scholar 

  48. Liu, S. Y.; Shen, Y. T.; Chiu, C. Y.; Rej, S.; Lin, P. H.; Tsao, Y. C.; Huang, M. H. Direct synthesis of palladium nanocrystals in aqueous solution with systematic shape evolution. Langmuir 2015, 31, 6538–6545.

    Article  Google Scholar 

  49. Wang, Y.; Xie, S. F.; Liu, J. Y.; Park, J.; Huang, C. Z.; Xia, Y. N. Shape-controlled synthesis of palladium nanocrystals: A mechanistic understanding of the evolution from octahedrons to tetrahedrons. Nano Lett. 2013, 13, 2276–2281.

    Article  Google Scholar 

  50. Niu, Z. Q.; Peng, Q.; Gong, M.; Rong, H. P.; Li, Y. D. Oleylamine-mediated shape evolution of palladium nanocrystals. Angew. Chem. 2011, 123, 6439–6443.

    Article  Google Scholar 

  51. Ortiz, N.; Hammons, J. A.; Cheong, S.; Skrabalak, S. E. Monitoring ligand-mediated growth and aggregation of metal nanoparticles and nanodendrites by in situ synchrotron scattering techniques. ChemNanoMat 2015, 1, 109–114.

    Article  Google Scholar 

  52. Yang, T. H.; Peng, H. C.; Zhou, S.; Lee, C. T.; Bao, S. X.; Lee, Y. H.; Wu, J. M.; Xia, Y. N. Toward a quantitative understanding of the reduction pathways of a salt precursor in the synthesis of metal nanocrystals. Nano Lett. 2017, 17, 334–340.

    Article  Google Scholar 

  53. Ortiz, N.; Skrabalak, S. E. On the dual roles of ligands in the synthesis of colloidal metal nanostructures. Langmuir 2014, 30, 6649–6659.

    Article  Google Scholar 

  54. Kang, Y. J.; Ye, X. C.; Murray, C. B. Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. Angew. Chem., Int. Ed. 2010, 49, 6156–6159.

    Article  Google Scholar 

  55. Wu, B. H.; Zheng, N. F.; Fu, G. Small molecules control the formation of Pt nanocrystals: A key role of carbon monoxide in the synthesis of Pt nanocubes. Chem. Commun. 2011, 47, 1039–1041.

    Article  Google Scholar 

  56. Wu, J. B.; Gross, A.; Yang, H. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 2011, 11, 798–802.

    Article  Google Scholar 

  57. Woodward, R. B. Structure and the absorption spectra of α, β-unsaturated ketones. J. Am. Chem. Soc. 1941, 63, 1123–1126.

    Article  Google Scholar 

  58. Dabrowski, J.; Kamienska-Trela, K. Electronic spectra of alpha, beta-unsaturated carbonyl compounds. I. an evaluation of increments characteristic of changes in configuration (cis/trans) and conformation (s-cis/s-trans) based on direct observation of the isomerization of enamino aldehydes and ketones. J. Am. Chem. Soc. 1976, 98, 2826–2834.

    Article  Google Scholar 

  59. Redjala, T.; Apostolecu, G.; Beaunier, P.; Mostafavi, M.; Etcheberry, A.; Uzio, D.; Thomazeau, C.; Remita, H. Palladium nanostructures synthesized by radiolysis or by photoreduction. New J. Chem. 2008, 32, 1403–1408.

    Article  Google Scholar 

  60. Zhang, J. W.; Liu, J. Y.; Xie, Z. X.; Qin, D. HAuCl4: A dual agent for studying the chloride-assisted vertical growth of citrate-free Ag nanoplates with Au serving as a marker. Langmuir 2014, 30, 15520–15530.

    Article  Google Scholar 

  61. Jang, H. J.; Ham, S.; Acapulco, J. A. I., Jr.; Song, Y.; Hong, S.; Shuford, K. L.; Park, S. Fabrication of 2D Au nanorings with Pt framework. J. Am. Chem. Soc. 2014, 136, 17674–17680.

    Article  Google Scholar 

  62. Si, G. L.; Ma, Z. F.; Li, K.; Shi, W. T. Triangular Au–Ag nanoframes with tunable surface plasmon resonance signal from visible to near-infrared region. Plasmonics 2011, 6, 241–244.

    Article  Google Scholar 

  63. Métraux, G. S.; Cao, Y. C.; Jin, R. C.; Mirkin, C. A. Triangular nanoframes made of gold and silver. Nano Lett. 2003, 3, 519–522.

    Article  Google Scholar 

  64. Jiang, L. P.; Xu, S.; Zhu, J. M.; Zhang, J. R.; Zhu, J. J.; Chen, H. Y. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings. Inorg. Chem. 2004, 43, 5877–5883.

    Article  Google Scholar 

  65. Bögels, G.; Buijnsters, J. G.; Verhaegen, S. A. C.; Meekes, H.; Bennema, P.; Bollen, D. Morphology and growth mechanism of multiply twinned AgBr and AgCl needle crystals. J. Cryst. Growth 1999, 203, 554–563.

    Article  Google Scholar 

  66. Lofton, C.; Sigmund, W. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 2005, 15, 1197–1208.

    Article  Google Scholar 

  67. Shao, M. H.; Yu, T.; Odell, J. H.; Jin, M.; Xia, Y. N. Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem. Commun. 2011, 47, 6566–6568.

    Article  Google Scholar 

  68. Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. N. Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ. Sci. 2012, 5, 6352–6357.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF (No. CHE1213926) and a start-up fund from UIUC. The authors acknowledge helpful discussions with Yung-Tin Pan and the assistance from Bing Ni. Sample characterization was carried out in part at the School of Chemical Sciences George L. Clark X-Ray Facility & 3M Materials Laboratory, and Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Shi, M., Kwok, K.S. et al. Dish-like higher-ordered palladium nanostructures through metal ion-ligand complexation. Nano Res. 11, 3442–3452 (2018). https://doi.org/10.1007/s12274-018-1993-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-1993-0

Keywords

Navigation