Skip to main content
Log in

The promoting effect of low-level sulfidation in PdCuS nanoparticles catalyzed alkyne semihydrogenation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The promoting effect of sulfur sources is an intriguing but poorly understood phenomenon. Herein, we studied the treatment of PdCu bimetallic nanoparticles (NPs) with different amounts of sulfur powder. Low-level sulfidation led to the generation of a Pd30Cu10S9 NP catalyst consisting of surface enriched Pd NPs, electron deficient Pd and Cu, as well as zero valence sulfur. The Pd30Cu10S9 NP catalyst showed pronouncedly enhanced activity and selectivity in the semihydrogenation of alkynes. Our study revealed for the first time a possible cause for the promoting effect of sulfur at the atomic level, suggesting a new strategy in catalyst design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rezaeian, I.; Zahedi, P.; Rezaeian, A. Rubber adhesion to different substrates and its importance in industrial applications: A review. J. Adhes. Sci. Technol. 2012, 26, 721–744.

    Google Scholar 

  2. Klingender, R. C. Handbook of Specialty Elastomers; CRC Press: Boca Raton, FL, 2008.

    Book  Google Scholar 

  3. Bhowmick, A. K. Current Topics in Elastomers Research; CRC Press: Boca Raton, FL, 2008.

    Book  Google Scholar 

  4. Datta, R. N.; Huntink, N. M.; Datta, S.; Talma, A. G. Rubber vulcanizates degradation and stabilization. Rubber Chem. Technol. 2007, 80, 436–480.

    Article  Google Scholar 

  5. Drost, R. M.; Rosar, V.; Marta, S. D.; Lutz, M.; Demitri, N.; Milani, B.; de Bruin, B.; Elsevier, C. J. Pd-catalyzed Z-selective semihydrogenation of alkynes: Determining the type of active species. ChemCatChem. 2015, 7, 2095–2107.

    Article  Google Scholar 

  6. Dovell, F. S.; Greenfield, H. Platinum metal sulfides as heterogeneous hydrogenation catalysts. J. Am. Chem. Soc. 1965, 87, 2767–2768.

    Article  Google Scholar 

  7. Lindlar, H. Ein neuer Katalysator für selektive Hydrierungen. Helv. Chim. Acta 1952, 35, 446–450.

    Article  Google Scholar 

  8. McKenna, F. M.; Anderson, J. A. Selectivity enhancement in acetylene hydrogenation over diphenyl sulphide-modified Pd/TiO2 catalysts. J. Catal. 2011, 281, 231–240.

    Article  Google Scholar 

  9. Mori, A.; Mizusaki, T.; Miyakawa, Y.; Ohashi, E.; Haga, T.; Maegawa, T.; Monguchi, Y.; Sajiki, H. Chemoselective hydrogenation method catalyzed by Pd/C using diphenylsulfide as a reasonable catalyst poison. Tetrahedron 2006, 62, 11925–11932.

    Article  Google Scholar 

  10. Rodríguez, J. C.; Santamaría, J.; Monzón, A. Hydrogenation of 1,3-butadiene on Pd/SiO2 in the presence of H2S deactivation and reactivation of the catalyst. Appl. Catal. A 1997, 165, 147–157.

    Article  Google Scholar 

  11. Hutchings, G. J.; King, F.; Okoye, I. P.; Padley, M. B.; Rochester, C. H. Selectivity enhancement in the hydrogenation of α,β-unsaturated aldehydes and ketones using thiophene-modified catalysts. J. Catal. 1994, 148, 453–463.

    Article  Google Scholar 

  12. Bartholomew, C. H.; Bowman, R. M. Sulfur poisoning of cobalt and iron fischer-tropsch catalysts. Appl. Catal. 1985, 15, 59–67.

    Article  Google Scholar 

  13. McCue, A. J.; Anderson, J. A. Sulfur as a catalyst promoter or selectivity modifier in heterogeneous catalysis. Catal. Sci. Technol. 2014, 4, 272–294.

    Article  Google Scholar 

  14. Wang, D.-S.; Xie, T.; Li, Y.-D. Nanocrystals: Solution-based synthesis and applications as nanocatalysts. Nano Res. 2009, 2, 30–46.

    Article  Google Scholar 

  15. Astruc, D. Nanoparticles and Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008.

    Google Scholar 

  16. Wang, Q.; Ostafin, A. E. Encyclopedia of Nanoscience and Nanotechnology; American Scientific Publishers: Stevenson Ranch, CA, 2004; Vol. 5.

  17. Wang, X.-L.; Liu, X.; Zhu, D.-W.; Swihart, M. T. Controllable conversion of plasmonic Cu2−xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2−xS–Au2S core/shell nanostructures. Nanoscale 2014, 6, 8852–8857.

    Article  Google Scholar 

  18. Wang, D.-S.; Li, X.-Y.; Li, H.; Li, L.-S.; Hong, X.; Peng, Q.; Li, Y.-D. Semiconductor–noble metal hybrid nanomaterials with controlled structures. J. Mater. Chem. A 2013, 1, 1587–1590.

    Article  Google Scholar 

  19. Yang, J.; Ying, J.-Y. Room-temperature synthesis of nanocrystalline Ag2S and its nanocomposites with gold. Chem. Commun. 2009, 3187–3189.

    Google Scholar 

  20. Wang, D.-S.; Xie, T.; Peng, Q.; Li, Y.-D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016–4022.

    Article  Google Scholar 

  21. Habas, S. E.; Yang, P.-D.; Mokari, T. Selective growth of metal and binary metal tips on CdS nanorods. J. Am. Chem. Soc. 2008, 130, 3294–3295.

    Article  Google Scholar 

  22. Teranishi, T.; Saruyama, M.; Nakaya, M.; Kanehara, M. Anisotropically phase-segregated Pd–Co–Pd sulfide nanoparticles formed by fusing two Co–Pd sulfide nanoparticles. Angew. Chem., Int. Ed. 2007, 46, 1713–1715.

    Article  Google Scholar 

  23. Teranishi, T.; Inoue, Y.; Nakaya, M.; Oumi, Y.; Sano, T. Nanoacorns: Anisotropically phase-segregated CoPd sulfide nanoparticles. J. Am. Chem. Soc. 2004, 126, 9914–9915.

    Article  Google Scholar 

  24. Wang, Y.; Chen, Z.; Shen, R.-A.; Cao, X.; Chen, Y.-G.; Chen, C.; Wang, D.-S.; Peng, Q.; Li, Y.-D. Pd-dispersed CuS hetero-nanoplates for selective hydrogenation of phenylacetylene. Nano Res. 2016, 9, 1209–1219.

    Article  Google Scholar 

  25. Cui, J. B.; Li, Y. J.; Liu, L.; Chen, L.; Xu, J.; Ma, J. W.; Fang, G.; Zhu, E. B.; Wu, H.; Zhao, L. X. et al. Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 2015, 15, 6295–6301.

    Article  Google Scholar 

  26. Sang, W.; Zheng, T. T.; Wang, Y. C.; Li, X.; Zhao, X.; Zeng, J.; Hou, J.-G. One-step synthesis of hybrid nanocrystals with rational tuning of the morphology. Nano Lett. 2014, 14, 6666–6671.

    Article  Google Scholar 

  27. Jia, W.; Liu, Y.-X.; Hu, P.-F.; Yu, R.; Wang, Y.; Ma, L.; Wang, D.-S.; Li, Y.-D. Ultrathin CuO nanorods: Controllable synthesis and superior catalytic properties in styrene epoxidation. Chem. Commun. 2015, 51, 8817–8820.

    Article  Google Scholar 

  28. Mao, J.-J.; Liu, Y.-X.; Chen, Z.; Wang, D.-S.; Li, Y.-D. Bimetallic Pd–Cu nanocrystals and their tunable catalytic properties. Chem. Commun. 2014, 50, 4588–4591.

    Article  Google Scholar 

  29. Tauson, V. L.; Goettlicher, J.; Sapozhnikov, A. N.; Mangold, S.; Lustenberg, E. E. Sulphur speciation in lazurite-type minerals (Na, Ca)8[Al6Si6O24](SO4, S)2 and their annealing products: A comparative XPS and XAS study. Eur. J. Mineral. 2012, 24, 133–152.

    Article  Google Scholar 

  30. Shemesh, Y.; Macdonald, J. E.; Menagen, G.; Banin, U. Synthesis and photocatalytic properties of a family of CdSPdX hybrid nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 1185–1189.

    Article  Google Scholar 

  31. Mott, D.; Yin, J.; Engelhard, M.; Loukrakpam, R.; Chang, P.; Miller, G.; Bae, I. T.; Das, N. C.; Wang, C.-M.; Luo, J. et al. From ultrafine thiolate-capped copper nanoclusters toward copper sulfide nanodiscs: A thermally activated evolution route. Chem. Mater. 2010, 22, 261–271.

    Article  Google Scholar 

  32. Han, D. S.; Batchelor, B.; Abdel-Wahab, A. XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS). Environ. Prog. Sustain. Energy 2013, 32, 84–93.

    Article  Google Scholar 

  33. Sako, E. O.; Kondoh, H.; Nakai, I.; Nambu, A.; Nakamura, T.; Ohta, T. Reactive adsorption of thiophene on Au(111) from solution. Chem. Phys. Lett. 2005, 413, 267–271.

    Article  Google Scholar 

  34. Hagen, J. Industrial Catalysis, 2nd ed.; Wiley-VCH: Weinheim, 2006.

    Google Scholar 

  35. Siau, W. Y.; Zhang, Y.; Zhao, Y. Stereoselective synthesis of Z-Alkenes. In Stereoselective Alkene Synthesis. Topics in Current Chemistry; Wang, J., Ed.; Springer: Berlin, Heidelberg, 2012; Vol. 327, pp 33–58.

    Chapter  Google Scholar 

  36. de Vries, J. G.; Elsevier, C. J. The Handbook of Homogeneous Hydrogenation; Wiley-VCH: Weinheim, 2007; Vol. 1.

    Google Scholar 

  37. Yan, M.; Jin, T.-N.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L.-Y.; Bao, M.; Asao, N.; Chen, M.-W.; Yamamoto, Y. Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: Remarkable effect of amine additives. J. Am. Chem. Soc. 2012, 134, 17536–17542.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation to China (Nos. 21625104 and 21521091, W. H.; No. 81703418, H. F. G.)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huifang Guo or Wei He.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, C., Chen, Y., Shen, R. et al. The promoting effect of low-level sulfidation in PdCuS nanoparticles catalyzed alkyne semihydrogenation. Nano Res. 11, 4883–4889 (2018). https://doi.org/10.1007/s12274-018-2077-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2077-x

Keywords

Navigation