Skip to main content
Log in

Extended Legendre Wavelet Method for Solving Fractional Order Time Hyperbolic Partial Differential Equation

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

An efficient numerical technique is developed for solving fractional order time hyperbolic partial differential equations by using the extended Legendre wavelet method. The fractional integral of extended Legendre wavelet in Riemann–Liouville sense is obtained by using Laplace transformation. The proposed scheme is established to compute an approximate solution and also to achieve a high degree of accuracy with a low computational cost. The solution obtained by the Extended Legendre wavelet method and standard Legendre wavelet method has been compared with their exact solution. Moreover, the convergence behavior and error analysis of the proposed method is studied through several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availibility

Enquiries about data availability should be directed to the authors.

References

  1. Abdi, N., Aminikhah, H., Sheikhani, A.R.: High-order rotated grid point iterative method for solving 2D time fractional telegraph equation and its convergence analysis. Comput. Appl. Math. 40, 1–26 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arshed, S.: Numerical study of time-fractional hyperbolic partial differential equations. J. Math. Comput. Sci. 17, 53–65 (2017)

    Article  MATH  Google Scholar 

  3. Baleanu, D., Jassim, H.K.: Exact solution of two-dimensional fractional partial differential equations. Fractal Fract. 4, 21 (2020)

    Article  Google Scholar 

  4. Chui, C.K.: Wavelets: A Mathematical Tool for Signal Analysis. Society for Industrial and Applied Mathematics (1997)

  5. Do, Q.H., Ngo, H.T., Razzaghi, M.: A generalized fractional-order Chebyshev wavelet method for two-dimensional distributed-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 95, 105597 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gupta, S., Ranta, S.: Legendre wavelet based numerical approach for solving a fractional eigenvalue problem. Chaos Solitons Fractals 155, 111647 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  8. Jafari, H., Tajadodi, H.: Electro-spunorganic nanofibers elaboration process investigations using BPs operational matrices. Iran. J. Math. Chem. 7, 19–27 (2016)

    MATH  Google Scholar 

  9. Jafari, H., Tajadodi, H., Bolandtalat, A., Johnston, S.J.: A decomposition method for solving the fractional Davey–Stewartson equations. Int. J. Appl. Comput. Math. 1, 559–568 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jafari, H., Ganji, R. M., Sayevand, K., Baleanu, D.: A numerical approach for solving fractional optimal control problems with Mittag-Leffler kernel. J. Vib. Control 10775463211016967 (2021)

  11. Javeed, S., Baleanu, D., Waheed, A., Shaukat Khan, M., Affan, H.: Analysis of homotopy perturbation method for solving fractional order differential equations. Mathematics 7, 40 (2019)

    Article  Google Scholar 

  12. Khan, H., Abdeljawad, T., Gomez-Aguilar, J.F., Tajadodi, H., Khan, A.: Fractional order Volterra integro-differential equation with Mittag–Leffler kernel. Fractals 29, 2150154 (2021)

    Article  MATH  Google Scholar 

  13. Khan, H., Shah, R., Kumam, P., Baleanu, D., Arif, M.: Laplace decomposition for solving nonlinear system of fractional order partial differential equations. Adv. Differ. Equ. 2020, 1–18 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  15. Kulish, V.V., Lage, J.L.: Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124, 803–806 (2002)

    Article  Google Scholar 

  16. Lal, S., Sharma, P.R.: Approximations of a function whose first and second derivatives belonging to generalized Hölder’s class by extended Legendre wavelet method and its applications in solutions of differential equations. Rend. Circ. Mat. Palermo. 70, 959–993 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mahor, T.C., Mishra, R., Jain, R.: Analytical solutions of linear fractional partial differential equations using fractional Fourier transform. J. Comput. Appl. Math. 385, 113202 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier (1999)

  19. Moallem, G.R., Jafari, H., Adem, A.R.: A numerical scheme to solve variable order diffusion-wave equations. Therm. Sci. 23, 2063–2071 (2019)

    Article  Google Scholar 

  20. Modanli, M., Akgül, A.: On Solutions of Fractional order Telegraph partial differential equation by Crank–Nicholson finite difference method. Appl. Math. Nonlinear Sci. 5, 163–170 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mohammadi, F.: An extended Legendre wavelet method for solving differential equations with non analytic solutions. J. Math. Ext. 8, 55–74 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Mohammadi, F., Cattani, C.: A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations. J. Comput. Appl. Math. 339, 306–316 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier (1974)

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  25. Prakash, A., Veeresha, P., Prakasha, D.G., Goyal, M.: A homotopy technique for a fractional order multi-dimensional telegraph equation via the Laplace transform. Eur. Phys. J. Plus. 134, 1–18 (2019)

    Article  Google Scholar 

  26. Rahimkhani, P., Ordokhani, Y., Babolian, E.: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309, 493–510 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rahimkhani, P., Ordokhani, Y., Babolian, E.: A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithms 74, 223–245 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Razzaghi, M., Yousefi, S.: The Legendre wavelets operational matrix of integration. Int. J. Syst. Sci. 32, 495–502 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rigi, F., Tajadodi, H.: Numerical approach of fractional Abel differential equation by Genocchi polynomials. Int. J. Appl. Comput. Math. 5, 1–11 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Amsterdam (1993)

    MATH  Google Scholar 

  31. Shiralashetti, S.C., Kumbinarasaiah, S.: Theoretical study on continuous polynomial wavelet bases through wavelet series collocation method for nonlinear Lane-Emden type equations. Appl. Math. Comput. 315, 591–602 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Schiff, J.L.: The Laplace Transform: Theory and Applications. Springer, New Zealand (1999)

    Book  MATH  Google Scholar 

  33. Srinivasa, K., Rezazadeh, H.: Numerical solution for the fractional-order one-dimensional telegraph equation via wavelet technique. Int. J. Nonlinear Sci. Numer. Simul. 22, 767–780 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tajadodi, H.: Variable-order Mittag–Leffler fractional operator and application to mobile-immobile advection–dispersion model. Alex. Eng. J. 61, 3719–3728 (2022)

    Article  Google Scholar 

  35. Xu, X., Xu, D.: Legendre wavelets direct method for the numerical solution of time-fractional order telegraph equations. Mediterr. J. Math. 15, 1–33 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xie, J.: Numerical computation of fractional partial differential equations with variable coefficients utilizing the modified fractional Legendre wavelets and error analysis. Math. Methods Appl. Sci. 44, 7150–7164 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yalcinbas, S., Sezer, M., Sorkun, H.H.: Legendre polynomial solutions of high-order linear Fredholm integro-differential equations. Appl. Math. Comput. 210, 334–349 (2009)

    MathSciNet  MATH  Google Scholar 

  38. Yang, X., Liu, X.: Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discret. Contin. Dyn. Syst. Ser. B 26, 3921 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Youssef, I.K., El Dewaik, M.H.: Solving Poisson’s Equations with fractional order using Haarwavelet. Appl. Math. Nonlinear Sci. 2, 271–284 (2017)

    Article  MathSciNet  Google Scholar 

  40. Yuttanan, B., Razzaghi, M., Vo, T.N.: Legendre Wavelet Method for Fractional Delay Differential Equations. Appl. Numer, Math (2021)

    Book  MATH  Google Scholar 

  41. Yuttanan, B., Razzaghi, M., Vo, T.N.: A numerical method based on fractional-order generalized Taylor wavelets for solving distributed-order fractional partial differential equations. Appl. Numer. Math. 160, 349–367 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, A., Ganji, R.M., Jafari, H., Ncube, M.N., Agamalieva, L.: Numerical Solution of Distributed-Order Integro-Differential Equations. Fractals (2021)

Download references

Acknowledgements

Authors are thankful to Eternal University for providing necessary facilities. We are also sincerely thankful to the editor and reviewers for giving us valuable comments and suggestions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharti Thakur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Thakur, B. Extended Legendre Wavelet Method for Solving Fractional Order Time Hyperbolic Partial Differential Equation. Int. J. Appl. Comput. Math 9, 41 (2023). https://doi.org/10.1007/s40819-023-01512-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01512-8

Keywords

Navigation