Skip to main content
Log in

Numerical Approach of Fractional Abel Differential Equation by Genocchi Polynomials

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In the present paper, we study a computational technique for solving a fractional Abel differential equation. The fractional derivative is considered in the Caputo sense. Genocchi polynomials is applied in this technique. To this aim, the operational matrices of the fractional integration and product are applied. The primary motivation of this study is by aid of these matrices, the aforesaid equation is reduced a system of algebraic equations. To show the accuracy of the proposed method, some examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baleanu, D., Tenreiro Machado, J.A., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)

    Book  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  3. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel trends and recent results. Appl. Mech. Rev. 63, 1–51 (2010)

    Google Scholar 

  4. Oldham, K.: Fractional differential equations in electrochemistry. Adv. Eng. Soft. 41, 9–17 (2010)

    Article  Google Scholar 

  5. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  6. Ilie, M., Biazar, J., Ayati, Z.: Lie symmetry analysis for the solution of first-order linear and nonlinear fractional differential equations. Int. J. Appl. Math. Res. 7(2), 37–41 (2018)

    Article  Google Scholar 

  7. Ilie, M., Biazar, J., Ayati, Z.: The first integral method for solving some conformable fractional differential equations. Opt. Quantum Electron. 50(2), 55 (2018)

    Article  Google Scholar 

  8. Jafari, H., Sayevand, K., Tajadodi, H., Baleanu, D.: Homotopy analysis method for solving Abel differential equation of fractional order. Cent. Eur. J. Phys. 11(10), 1523–1527 (2013)

    Google Scholar 

  9. Kumar Singh, B., Kumar, P., Kumar, V.: Homotopy perturbation method for solving time fractional coupled viscous Burgers equation in (2+1) and (3+1) dimensions. Int. J. Appl. Comput. Math. 4, 38 (2018)

    Article  MathSciNet  Google Scholar 

  10. Ragab, A.A., Hemida, K.M., Mohamed, M.S., Abd El Salam, M.A.: Solution of time-fractional Navier–Stokes equation by using homotopy analysis method. Gen. Math. Notes 13(2), 13–21 (2012)

    Google Scholar 

  11. Ray, S.: A new coupled fractional reduced differential transform method for the numerical solutions of 2-dimensional time fractional coupled Burger equations. Model. Simul. Eng. 2014, 12 (2014)

    Google Scholar 

  12. Khan, A., Khan, T.S., Syam, M.I., Khan, H.: Analytical solutions of time-fractional wave equation by double Laplace transform method. Eur. Phys. J. Plus 134, 163 (2019)

    Article  Google Scholar 

  13. Khan, H., Abdeljawad, T., Aslam, M., Khan, R.A., Khan, A.: Existence of positive solution and Hyers–Ulam stability for a nonlinear singular-delay-fractional differential equation. Adv. Differ. Equ. 2019, 104 (2019)

    Article  MathSciNet  Google Scholar 

  14. Alkhazzan, A., Jiang, P., Baleanu, D., Khan, H., Khan, A.: Stability and existence results for a class of nonlinear fractional differential equations with singularity. Math. Methods Appl. Sci. 41(18), 9321–9334 (2018)

    Article  MathSciNet  Google Scholar 

  15. Bhrawy, A., Doha, E., Ezz-Eldien, S., Abdelkawy, M.: A numerical technique based on the shifted Legendre polynomials for solving the time-fractional coupled KdV equations. Calcolo 53, 1–17 (2016)

    Article  MathSciNet  Google Scholar 

  16. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62, 2364–2373 (2011)

    Article  MathSciNet  Google Scholar 

  17. Doha, E.H., Bhrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36, 4931–4943 (2012)

    Article  MathSciNet  Google Scholar 

  18. Jafari, H., Tajadodi, H.: New method for solving a class of fractional partial differential equations with applications. Therm. Sci. 22(1), S277–S286 (2019)

    Google Scholar 

  19. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Model. 38, 6038–6051 (2014)

    Article  MathSciNet  Google Scholar 

  20. Lakestani, M., Dehghan, M., Irandoust-Pakchin, S.: The construction of operational matrix of fractional derivatives using B-spline functions. Commun. Nonlinear Sci. Numer. Simul. 17, 1149–1162 (2012)

    Article  MathSciNet  Google Scholar 

  21. Rehman, M., Khan, R.A.: The Legendre wavelet method for solving fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 4163–4173 (2011)

    Article  MathSciNet  Google Scholar 

  22. Sheybak, M., Tajadodi, H.: Numerical solutions of fractional chemical kinetics system. Nonlinear Dyn. Syst. Theory 19(1), 200–208 (2019)

    MathSciNet  MATH  Google Scholar 

  23. Isah, A., Phang, C.: New operational matrix of derivative for solving non-linear fractional differential equations via Genocchi polynomials. J. King Saud Univ. Sci. 31(1), 1–7 (2019)

    Article  Google Scholar 

  24. Isah, A., Phang, C., Phang, P.: Collocation method based on Genocchi operational matrix for solving generalized fractional Pantograph equations. Int. J. Differ. Equ. Article ID 2097317, 10 pages (2017)

  25. Loh, J.R., Phang, C., Isah, A.: New operational matrix via Gnocchi polynomials for solving Fredholm–Volterra fractional integro-differential equations. Adv. Math. Phys. Article ID 3821870, 12 pages (2017)

  26. Gine, J., Santallusia, X.: Abel differential equations admitting a certain first integral. J. Math. Anal. Appl. 370, 187–199 (2010)

    Article  MathSciNet  Google Scholar 

  27. Xu, Y., He, Z.: The short memory principle for solving Abel differential equation of fractional order. Comput. Math. Appl. 64, 4796–4805 (2011)

    Article  MathSciNet  Google Scholar 

  28. Parand, K., Nikarya, M.: New numerical method based on generalized Bessel function to solve nonlinear Abel fractional differential equation of the first kind. Nonlinear Eng. 8(1), 438–448 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haleh Tajadodi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigi, F., Tajadodi, H. Numerical Approach of Fractional Abel Differential Equation by Genocchi Polynomials. Int. J. Appl. Comput. Math 5, 134 (2019). https://doi.org/10.1007/s40819-019-0720-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40819-019-0720-1

Keywords

Navigation