Skip to main content
Log in

A model for the thermal conductivity of nanofluids – the effect of interfacial layer

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A model for predicting the effective thermal conductivity of nanofluids is proposed. It has been documented that the interfacial layer at the solid (particle)/liquid interface and particle size is one of the major mechanisms for enhancing the thermal conductivity of nanofluids. Comparing with other classical models, the proposed model takes into account some additional effects including volume fraction, thickness, thermal conductivity of the interfacial layer and particle size. The proposed model is found to be better than the existing models since the predicted effective thermal conductivity of different types of nanofluids are closer to the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

T :

temperature

k :

thermal conductivity

r :

radial position in spherical coordinates

h :

interfacial layer thickness

q :

heat flux

V :

volume

a :

particle radius

γ:

ratio of interfacial layer thickness and particle radius (h/a)

θ:

angular position in spherical coordinates

ϕ:

volume fraction

eff:

effective

p:

particle

lr:

interfacial layer

f:

base fluid

pe:

equivalent particle

References

  • Choi S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. In: Siginer, D.A. and Wang, H.P. eds. Developments and Application of Non-Newtonian Flows, ASME, New York, FED-Vol. 231/MD- Vol. 66, pp. 99–103

  • Choi S.U.S., Xu X., Keblinski P., Yu W., (2002). Nanofluids can take the heat, DOE BES 20th Symposium on Energy Engineering Sciences. Argonne, USA

    Google Scholar 

  • Ding Y., Wen D., Williams R.W., (2004). Nanofluids for heat transfer intensification - Where are we and where should we go? Proceedings of 6th International Symposium on Heat Transfer, Beijing, pp. 66–76

    Google Scholar 

  • Das S.K., Putra N., Thiesen P., Roetzel W., (2003). Temperature dependence of thermal conductivity enhancement for nanofluids. J. Heat Transfer 125: 567–574

    Article  CAS  Google Scholar 

  • Eastman J.A., S.U.S. Choi, S. Li & L.J. Thompson, 1997. Enhanced thermal conductivity through the development of nanofluids. Proceedings of the Symposium on Nanophase and Nanocomposite Materials II, Boston, Vol. 457, pp. 3–11

  • Eastman J.A., Choi S.U.S., Li S., Yu W., Thompson L.J., (2001). Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78(6): 718–720

    Article  CAS  Google Scholar 

  • Eastman J.A., Phillpot S.R., Choi S.U.S., Keblinski P., (2004). Thermal transport in nanofluids. Annu. Rev. Mater. Res. 34: 219–246

    Article  CAS  Google Scholar 

  • Hamilton R.L., Crosser O.K., (1962). Thermal conductivity of heterogeneous two component systems. I & EC Fundamentals 1: 187–191

    Article  CAS  Google Scholar 

  • Hui P.M., Zhang X., Markworth A.J., Stroud D., (1999). Thermal conductivity of graded composites: Numerical simulations and an effective medium approximation. J. Mater. Sci. 34: 5497–5503

    Article  CAS  Google Scholar 

  • Jang S.P., Choi S.U.S., (2004). Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84: 4316–4318

    Article  CAS  Google Scholar 

  • Keblinski P., Phillpot S.R., Choi S.U.S., Eastman J.A., (2002). Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int. J. Heat Mass Transfer 45: 855–863

    Article  CAS  Google Scholar 

  • Kumar D.H., Patel H.E., Kumar V.R.R., Sundararajan T., Pradeep T., Das S.K., (2004). Model for heat conduction in nanofluids. Phys. Rev. Lett. 93(14): 4301–4304

    Article  CAS  Google Scholar 

  • Lee S., Choi S.U.S., Li S., Eastman J.A., (1999). Measuring thermal conductivity of fluids containing oxide nanoparticles. J. Heat Transfer 121: 280–289

    Article  CAS  Google Scholar 

  • Masuda H., Ebata A., Teramae K., Hishinuma N., (1993). Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of Gama-Al2O3, SiO2, and TiO2 ultra-fine particles). Netsu Bussei (Japan) 4(4): 227–233

    Google Scholar 

  • Maxwell J.C., (1891). A treatise on electricity and magnetism 3rd edition. Clarendon Press, Oxford U.K

    Google Scholar 

  • Murshed S.M.S., Leong K. C., Yang C., (2005). Enhanced thermal conductivity of TiO2-water based nanofluids. Int. J. Therm. Sci. 44(4): 367–373

    Article  CAS  Google Scholar 

  • Tinga W.R., Voss W.A.G., Blossey D.F., (1973). Generalized approach to multiphase dielectric mixture theory. J. Appl. Phys. 44(9): 3897–3902

    Article  Google Scholar 

  • Wang Y., T.S. Fisher, J.L. Davidson & L. Jiang, 2002. Thermal conductivity of nanoparticle suspensions. Proceedings of 8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, Missouri, AIAA 2002–3345, pp. 1–6

  • Wang B.-X., Zhou L.-P., Peng X.-P., (2003). A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. Int. J. Heat Mass Transfer 46: 2665–2672

    Article  CAS  Google Scholar 

  • Xie H., Wang J., Xi T., Liu Y., Ai F., (2002). Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J. Appl. Phys. 91: 4568- 4572

    Article  CAS  Google Scholar 

  • Xuan Y., Li Q., Hu W., (2003). Aggregation structure and thermal conductivity of nanofluids. AIChE Journal 49: 1038–1043

    Article  CAS  Google Scholar 

  • Xue Q.-Z., (2003). Model for effective thermal conductivity of nanofluids. Phys. Lett. A 307: 313–317

    Article  CAS  Google Scholar 

  • Xue L., Keblinski P., Phillpot S.R., Choi S.U.S., Eastman J.A., (2004). Effect of liquid layering at the liquid-solid interface on thermal transport. Int. J. Heat Mass Transfer 47: 4277–4284

    Article  Google Scholar 

  • Yu W., Choi S.U.S., (2003). The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J. Nanoparticle Res. 5: 167–171

    Article  CAS  Google Scholar 

  • Yu C.-J., A.G. Richter, A. Datta, M.K. Durbin & P. Dutta, 2000. Molecular layering in a liquid on a solid substrate: An X-ray reflectivity study. Physica B 283, 27–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.C. Leong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leong, K., Yang, C. & Murshed, S. A model for the thermal conductivity of nanofluids – the effect of interfacial layer. J Nanopart Res 8, 245–254 (2006). https://doi.org/10.1007/s11051-005-9018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9018-9

Keywords

Navigation