Skip to main content
Log in

Numerical investigation of heat radiation on MHD viscoelastic nanofluid flow over a stretching sheet with heat source and slip conditions

  • Original Paper
  • Published:
International Journal on Interactive Design and Manufacturing (IJIDeM) Aims and scope Submit manuscript

Abstract

In this research, we look at the rate of heat and mass transfer in an MHD viscoelastic (Walter's liquid-B model) nanofluid over a stretching sheet when that sheet is subject to heat generation/absorption and thermal radiation. According to the mathematical configuration, the current flow problem follows the fundamental laws of motion and heat transfer. The governing equations have been converted to nonlinear ordinary differential (ODEs) equations using similarity transformations. Using the homotopy analysis method (HAM), we have obtained the numerical solution to the resulting nonlinear ODEs and their associated boundary conditions. The behavior of the problem's resultant equations under the impact of various flow factors is examined graphically, which ensures that the rate of heat transfer reduces with an elevation in the Brownian motion parameter and improves with an increase in the thermophoresis parameter. Greater viscoelastic and stretching parameter values accelerate velocity slip. The nanofluid's viscoelasticity minimizes local skin friction, Nusselt, and Sherwood numbers. It is noticed that the slip parameter substantially influences flow velocity. The momentum boundary layer thickness diminished and the thermal boundary layer thickness flourished as the velocity slip factor enhanced. The general conclusions obtained in this article provide an opportunity to understand the importance of this fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Hartmann, J., Hg-Dynamics, I.: Theory of the laminar flow of an electrically conductive liquid in a homogenous magnetic field. Det Kgl Danske Videnskabernes Selskab-Fysiske Meddelelser, XV 6, 1–22 (1937)

    Google Scholar 

  2. Agarwal, K.M., Tyagi, R.K., Saxena, K.K.: Deformation analysis of Al alloy AA2024 through equal channel angular pressing for aircraft structures. Adv. Mater. Process. Technol. 8(1), 828–842 (2022)

    Google Scholar 

  3. Lehnert, B.: On the behaviour of an electrically conductive liquid in a magnetic field. Arkiv Fysik 5, 69–90 (1952)

    MathSciNet  MATH  Google Scholar 

  4. U. S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, ASME, FED 231/MD 66, 99–105, 1995.

  5. Abu-Nada, E., Oztop, H.F.: Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid. Int. J. Heat Fluid Flow 30, 669–678 (2009)

    Article  Google Scholar 

  6. Zargartalebi, H., Ghalambaz, M., Noghrehabadi, A., Chamkha, A.J.: Stagnation point heat transfer of nanofluids toward stretching sheets with variable thermo-physical properties. Adv. Power Technol. 26, 819–829 (2015)

    Article  Google Scholar 

  7. Makinde, O.D., Aziz, A.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Thermal Sci. 50(7), 1326–1332 (2011)

    Article  Google Scholar 

  8. Ibrahim, S.M., Lorenzini, G., Vijaya Kumar, P., Raju, C.S.K.: Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet. Int. J. Heat and Mass Transfer 111, 346–355 (2017)

    Article  Google Scholar 

  9. Ibrahim, S.M., Kumar, P.V., Lorenzini, G.: Analytical modeling of heat and mass transfer of radiative MHD Casson fluid over an exponentially permeable stretching sheet with chemical reaction. J. Eng. Thermophys. 29(1), 136–155 (2020)

    Article  Google Scholar 

  10. Hayat, T., Khan, W.A., Abbas, S.Z.: Impact of induced magnetic field on second-grade nanofluid flow past a convectively heated stretching sheet. Appl. Nanosci. 10, 3001–3009 (2020)

    Article  Google Scholar 

  11. Mabod, F.M., Ibrahim, S.M., Kumar, P.V., Lorenzini, G.: Effects of slip and radiation on convective MHD Casson nanofluid flow over a stretching sheet influenced by variable viscosity. J. Eng. Thermophys. 29, 303–315 (2020)

    Article  Google Scholar 

  12. Sheremet, M.A., Dinarvand, S., Pop, I.: Effect of thermal stratification on free convection in a square porous cavity filled with nanofluid using Tiwari and Das’ nanofluid model. Physica E 69, 332–341 (2015)

    Article  Google Scholar 

  13. Singh, B., Singhal, P., Saxena, K.K.: Effect of transverse speed on mechanical and microstructural properties of friction stir welded aluminium AA2024-T351. Adv. Mater. Process. Technol. 6(3), 519–529 (2020)

    Google Scholar 

  14. Hassan, A.R., Fenuga, O.J.: The effects of thermal radiation on the flow of a reactive hydromagnetic heat generating couple stress fluid through a porous channel. SN Appl. Sci. 1, 1278 (2019)

    Article  Google Scholar 

  15. Mohammed Anees Sheik, Erdem Cuce, M K Aravindan, Abhishek Dasore, Upendra Rajak, Saboor Shaik, A Muthu Manokar, Saffa Riffat, A comprehensive review on recent advancements in cooling of solar photovoltaic (PV) systems using phase change materials (PCMs), International Journal of Low-Carbon Technologies, ctac053.

  16. Zhang, C., Zheng, L., Zhang, X., Chen, G.: MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl. Math. Model. 39(1), 165–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Alok Kumar Pandey and Manoj Kumar: Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation. Alex. Eng. J. 56(1), 55–62 (2017)

    Article  Google Scholar 

  18. Hakiem, M.A.E., Amin, M.F.E.: Mass transfer effects on the non-Newtonian fluids past a vertical plate embedded in a porous medium with non-uniform surface heat flux. Heat Mass Transfer 37, 293–297 (2001)

    Article  Google Scholar 

  19. Ganesh Rajkumar, N., Adam Khan, M., Rajesh, S., B. Shahul Hamid Khan,: Sustainable design and development of commercial system cleanser unit for trimmers. Proc. Inst. Mech. Eng. Part E 236(5), 2187–2195 (2022)

    Article  Google Scholar 

  20. Ganesh Rajkumar, N., Adam Khan, M., Rajesh, S., Faris, W.F.: Design optimization of office chair star base leg using product LCM and anisotropic material properties from injection moulding simulation. Mater. Today 45(2), 1087–1093 (2021)

    Google Scholar 

  21. Upadhyay, S., Saxena, K.K.: Effect of Cu and Mo addition on mechanical properties and microstructure of grey cast iron: an overview. Mater. Today 26, 2462–2470 (2020)

    Google Scholar 

  22. Raghunath, K., Ganteda, C., Abhishek Dasore, M., Logesh Kumar, G., Laxmaiah, M.A., Hasan, S.I., Abdul razak,: Influence of MHD mixed convection flow for maxwell nanofluid through a vertical cone with porous material in the existence of variable heat conductivity and diffusion. Case Stud. Therm. Eng. 44, 102875 (2023)

    Article  Google Scholar 

  23. Rathod, N.J., Chopra, M.K., Chaurasiya, P.K., et al.: Optimization on the turning process parameters of SS 304 Using Taguchi and TOPSIS. Ann. Data. Sci. (2022). https://doi.org/10.1007/s40745-021-00369-2

    Article  Google Scholar 

  24. Siddiqui, A.M., Kaloni, P.N.: Certain inverse solutions of a non-Newtonian fluid. Int. J. Non-Linear Mech. 21, 459–473 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sheik, M.A., Dasore, A., Naik, B.K., Malik, V.: Influence of Geometric Configuration on the Flow and Heat Transfer Characteristics of an Open Microchannel Thermal Sinks. In: Singh, V.K., Choubey, G., Suresh, S. (eds.) Advances in Thermal Sciences. Lecture Notes in Mechanical Engineering, Springer, Singapore (2023)

    Google Scholar 

  26. Malik, M.Y., Salahuddin, T., Arif Hussain, S., Bilal and M. Awais,: Homogeneous-heterogeneous reactions in Williamson fluid model over a stretching cylinder by using Keller box method. AIP Adv. 5, 107227 (2015)

    Article  Google Scholar 

  27. Mohamed, R.A., Ahmed, S.E., Aly, A.M., Chamkha, A.J., Soliman, M.S.: MHD Casson nanofluid flow over a stretching surface embedded in a porous medium: Effects of thermal radiation and slip conditions. Lat. Am. Appl. Res. 51(4), 229–239 (2021)

    Google Scholar 

  28. Liu, L., Liu, F.: Boundary layer flow of fractional Maxwell fluid over a stretching sheet with variable thickness. Appl. Math. Lett. 79, 92–99 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mahat, R., Saqib, M., Khan, I., Shafie, S., Noor, N.A.M.: Thermal radiation effect on Viscoelastic Walters’-B nanofluid flow through a circular cylinder in convective and constant heat flux. Case Stud. Therm. Eng. 39, 102394 (2022)

    Article  Google Scholar 

  30. Kamran, A., Azhar, E.: Numerical outlook of a viscoelastic nanofluid in an inclined channel via Keller box method. Int. Commun. Heat and Mass Transfer 137, 106260 (2022)

    Article  Google Scholar 

  31. Rajak, U., Nashine, P., Dasore, A., Balijepalli, R.: Prem Kumar Chaurasiya, Tikendra Nath Verma, Numerical analysis of performance and emission behavior of CI engine fueled with microalgae biodiesel blend, Materials Today: Proceedings, Volume 49. Part 2, 301–306 (2022)

    Google Scholar 

  32. Zhu, Y., Granick, S.: No-slip boundary condition switches to partial slip when fluid contains surfactant. Langmuir 18, 10058–10063 (2002)

    Article  Google Scholar 

  33. Wu, L.: A slip model for rarefied gas flows at arbitrary Knudsen number. Appl. Phys. Lett. 93, 253103 (2008)

    Article  Google Scholar 

  34. Liao, S.J.: Homotopy analysis method in nonlinear differential equations. Springer & Higher Education Press, Heidelberg (2012)

    Book  MATH  Google Scholar 

  35. Verma, T.N., Rajak, U., Dasore, A., et al.: Experimental and empirical investigation of a CI engine fuelled with blends of diesel and roselle biodiesel. Sci Rep 11, 18865 (2021)

    Article  Google Scholar 

  36. Agarwal, K.M., Tyagi, R.K., Choubey, V., Saxena, K.K.: Mechanical behaviour of aluminium alloy AA6063 processed through ECAP with optimum die design parameters. Adv. Mater. Process. Technol. 8(2), 1901–1915 (2022)

    Google Scholar 

  37. Bandhu, D., Kumari, S., Prajapati, V., Saxena, K.K., Abhishek, K.: Experimental investigation and optimization of RMDTM welding parameters for ASTM A387 grade 11 steel. Mater. Manuf. Processes 36(13), 1524–1534 (2021)

    Article  Google Scholar 

  38. Srikakulapu, R., Subburaj, V., Sujith, S., Shahid, M., Bhutto, J.K., Dasore, A., Saleel, C.A.: Modelling farm-based electric vehicles on charging systems for power distribution networks with dynamic grid interactions. Ain Shams Eng. J. 14(8), 102046 (2022)

    Article  Google Scholar 

  39. Nadeem, S., Lee, C.: Boundary layer flow of nanofluid over an exponentially stretching surface. Nanoscale Res. Lett. 7, 94–99 (2012)

    Article  Google Scholar 

  40. Ishak, N., Hussanan, A., Mohamed, M.K.A., Rosli, N., Salleh, M.Z.: Heat and mass transfer flow of a viscoelastic nanofluid over a stretching/shrinking sheet with slip condition. AIP Conf. Proc. 2059, 020011 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Raja Sekhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekhar, P.R., Sreedhar, S., Ibrahim, S.M. et al. Numerical investigation of heat radiation on MHD viscoelastic nanofluid flow over a stretching sheet with heat source and slip conditions. Int J Interact Des Manuf (2023). https://doi.org/10.1007/s12008-023-01407-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12008-023-01407-4

Keywords

Navigation