Skip to main content

Advertisement

Log in

Entropy generation in MHD nanofluid flow induced by a slendering stretching sheet with activation energy, viscous dissipation and Joule heating impacts

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This research article looks at entropy generation and activation energy analysis on hydromagnetic and thermally radiated nanofluid flow generated by a nonlinearly stretching sheet of variable thickness considering heat generation, mixed convection, velocity slip, viscous dissipation, thermal slip, binary chemical reaction and Ohmic dissipation aspects. Governing model equations of continuity, momentum, energy and concentration are converted into ODEs by employing appropriate similarity transformations. The resulting coupled highly nonlinear equations have been solved numerically with the help of the Runge–Kutta–Fehlberg method-based shooting technique. Results obtained for a particular case of the current fluid flow problem are in good agreement with the existing results. The graphical outcomes are discussed for velocity, temperature, entropy generation and concentration regarding various controlling parameters. The impacts of different controlling parameters on the local skin-friction coefficient, local Nusselt and Sherwood numbers are also analyzed and the numerical results are presented in tabular form. The obtained results reveal a reduction in entropy generation for growing values of magnetic and temperature ratio parameters near the solid surface, while a reverse effect is noticed for power-law index and Brinkmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42

Similar content being viewed by others

References

  1. A V Kuznetsov and D A Nield Int. J. Therm. Sci. 49 243 (2010)

    Article  Google Scholar 

  2. W A Khan and I Pop Int. J. Heat Mass Transf. 53 2477 (2010)

    Article  Google Scholar 

  3. C Kleinstreuer and Y Feng Nanoscale Res. Lett. 6 229 (2011)

    Article  ADS  Google Scholar 

  4. W A Khan and A Aziz Int. J. Therm. Sci. 50 1207 (2011)

    Article  Google Scholar 

  5. O D Makinde and A Aziz Int. J. Therm. Sci. 50 1326 (2011)

    Article  Google Scholar 

  6. S Nandi and B Kumbhakar Indian J. Phys. (2021). https://doi.org/10.1007/s12648-020-02001-0

    Article  Google Scholar 

  7. W Ibrahim, B Shankar and M M Nandeppanavar Int. J. Heat Mass Transf. 56 1 (2013)

    Article  Google Scholar 

  8. B Ganga, S Saranya, G N Vishnu and H A K Abdul J. Hydrodyn. 27 945 (2015)

    Article  ADS  Google Scholar 

  9. S P A Devi and P Suriyakumar J. Taibah Univ. Sci. 11 1275 (2017)

    Article  Google Scholar 

  10. W Ibrahim Propuls. Power Res. 6 214 (2017)

    Article  Google Scholar 

  11. S Ghosh and S Mukhopadhyay Pramana-J. Phys. 94 61 (2020)

    Article  ADS  Google Scholar 

  12. T V Laxmi and B Shankar J. Appl. Math. Phys. 4 307 (2016)

    Article  Google Scholar 

  13. M J Babu and N Sandeep Alex. Eng. J. 55 1931 (2016)

    Article  Google Scholar 

  14. U Khan, N Ahmed, B Bin-mohsen and S T Mohyud-din Int. J. Numer. Method Heat Fluid Flow 27 48 (2017)

  15. O D Makinde, K G Kumar, S Manjunatha and B J Gireesha Defect Diffus. Forum 378 125 (2017)

  16. K G Kumar, B J Gireesha, S Manjunatha and N G Rudraswamy Int. J. Mech. Mater. Eng. 12 18 (2017)

  17. D Pal, K Vajravelu and G Mandal J. Mech. 30 289 (2014)

  18. M G Reddy, P Padma and B Shankar Ain Shams Eng. J. 6 1195 (2015)

  19. M R Krishnamurthy, B C Prasannakumara, B J Gireesha and R S R Gorla Cogent math. 2 1050973 (2015)

  20. K Govardhan, G Narender and G S Sarma Int. J. Math. Eng. Manag. Sci. 5 343 (2020)

  21. A B Jafar, S Shafie and I Ullah Heliyon 6 e04201 (2020)

  22. T Hayat, M Imtiaz and A Alsaedi Adv. Powder Technol. 27 1301 (2016)

  23. Y S Daniel, Z A Aziz, Z Ismail and F Salah Chinese J. Phys. 55 630 (2017)

  24. S M Ibrahim, P V Kumar, G Lorenzini and E Lorenzini J. Eng. Thermophys. 28 332 (2019)

  25. D Srinivasacharya and P Jgadeeshwar Math. Sci. 13 201 (2019)

    Article  MathSciNet  Google Scholar 

  26. W Ibrahim and B Shankar Comput. Fluids 75 1 (2013)

    Article  MathSciNet  Google Scholar 

  27. R U Haq, S Nadeem, Z H Khan and N S Akbar Physica E 65 17 (2015)

  28. A Awais, T Hayat, A Ali and S Irum Alex. Eng. J. 55 2107 (2016)

  29. D Ramya, R S Raju, J A Rao and A J Chamkha Propuls. Power Res. 7 182 (2018)

  30. N Najib, N Bachok, N MD Arifin and F MD Ali Numer. Algebra Control. Optim. 9 423 (2019)

  31. S Nandi and B Kumbhakar Int. Commun. Heat Mass Transf. 118 104813 (2020)

  32. M M Rashidi, M M Bhatti, M A Abbas and M El-S Ali Entropy 18 117 (2016)

  33. S Das, S Chakraborty, R N Jana and O D Makinde Appl. Math. Mech. 36 1593 (2015)

  34. N Freidoonimehr and A B Rahimi Appl. Math. Mech. 28 671 (2016)

    Google Scholar 

  35. T Abbas, M Ayub, M M Bhatti, M M Rashidi and M El-S Ali Entropy 18 223 (2016)

  36. M M Bhatti, T Abbas, M M Rashidi, M El-S Ali and Z Yang Entropy 18 224 (2016)

  37. T Armaghani, A Kasaeipoor, N Alavi and M M Rashidi J. Mol. Liq. 36 243 (2016)

  38. M M Rashidi, M Nasiri, M S Shadloo and Z Yang Heat Transf. Eng. 38 853 (2016)

  39. N Shukla, P Rana and O A Beg Nonlinear Eng. 8 630 (2019)

  40. S Jain and P Gupta Int. J. Heat Technol. 37, 131 (2019)

    Article  Google Scholar 

  41. S Ahmad, T Hayat and A Alsaedi Int. Commun. Heat Mass Transf. 117 104772 (2020)

  42. H Berrehal, F Mabood and O D Makinde Eur. Phys. J. Plus 135 535 (2020)

  43. S Shaw, A S Dogonchi, M K Nayak and O D Makinde Arab. J. Sci. Eng. 45 5471 (2020)

  44. A Kumar, R K Ray and M A Sheremet Indian J. Phys. (2021). https://doi.org/10.1007/s12648-021-02015-2

  45. S Anuradha and K Sasikala Glob. J. Pure Appl. Math. 13 6483 (2017)

    Google Scholar 

  46. M Ramzan, N Ullah, J D Chung, D Lu and U Farooq Sci. Rep. 7 12901 (2017)

  47. C J Etwire, I Y Seini, R Musah and O D Makinde Eng. Trans. 67 387 (2019)

  48. M Dhlamini, P K Kameswaran, P Sibanda, S Motsa and H Mondal J. Comput. Des. Eng. 6 149 (2019)

  49. N S Khan, P Kumam and P Thounthong Sci. Rep. 10 1226 (2020)

  50. R Nandkeolyar, S S Motsa and P Sibanda J. Nanotechnol. Eng. Med. 4 041002 (2013)

  51. M H M Yasin, A Ishak and I Pop Sci. Rep. 5 17848 (2015)

  52. S P Goqo, S D Oloniiju, H Mondal, P Sibanda and S S Motsa Case Stud. Therm. Eng. 12 774 (2018)

  53. H Sithole, H Mondal and P Sibanda Results Phys. 9 1077 (2018)

  54. T Hayat, M Kanwal, S Qayyum and A Alsaedi Physica A 544 123437 (2020)

  55. S Nandi, B Kumbhakar, G S Seth, A J Chamkha Phys. Scr. 96 065206 (2021)

  56. T Fang, J Zhang and Y Zhong Appl. Math. Comput. 218 7241 (2012)

  57. M M Khader and A M Megahed Eur. Phys. J. Plus128 100 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the National Institute of Technology Meghalaya for providing financial support and resources for carrying out the present analysis. Further, the authors would like to thank all the reviewers for their valuable comments and suggestions for improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Kumbhakar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nandi, S., Kumbhakar, B. Entropy generation in MHD nanofluid flow induced by a slendering stretching sheet with activation energy, viscous dissipation and Joule heating impacts. Indian J Phys 96, 2873–2892 (2022). https://doi.org/10.1007/s12648-021-02206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02206-x

Keywords

Navigation