Skip to main content

Advertisement

Log in

Development of Solid-State Anaerobic Digestion and Aerobic Composting Hybrid Processes for Organic Solid Waste Treatment and Resource Recovery: a Review

  • Biology and Pollution (R Boopathy and Y Hong, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Organic solid wastes (OSWs) have great potential for resourceful applications. However, individual treatment technologies are difficult to effectively recover their resources. This review aims to describe the development of solid-state anaerobic digestion (SS-AD), digestate aerobic composting, and their hybrid technology (SSADAC) for OSWs treatment to maximize resource recovery from OSWs.

Recent Findings

SSADAC exhibits high potential for OSW treatment in energy and nutrient recovery. As individual treatment technologies, SS-AD and digestate composting recover energy and nutrients in terms of methane and compost, respectively. However, some deficiencies of these individual treatment technologies are hard to be ignored, such as energy loss and liquid digestate/leaching discharge. SSADAC can alleviate these issues with fully synergizing the characteristics of two treatment units for multi-target products. Thus, recent studies have proposed that the regulation of digestion duration can improve SSADAC performance, and other potential methods can also improve the value of SSADAC, such as raw material regulation and exogenous additives, to achieve zero waste discharge and maximum resource recovery.

Summary

This review presents the applications of SS-AD and digestate composting for OSW treatment and illustrates the development and potential improvements of SSADAC as an integrated process. Key issues and their potential counter-measurements were displayed to provide the further development of SSADAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lin L, Xu FQ, Ge XM, Li YB. Improving the sustainability of organic waste management practices in the food-energy-water nexus: a comparative review of anaerobic digestion and composting. Renew Sust Energ Rev. 2018;89:151–67.

    Article  CAS  Google Scholar 

  2. Troschinetz AM, Mihelcic JR. Sustainable recycling of municipal solid waste in developing countries. Waste Manag. 2009;29:915–23.

    Article  CAS  Google Scholar 

  3. Khalid A, Arshad M, Anjum M, et al. The anaerobic digestion of solid organic waste. Waste Manag. 2011;31:1737–44.

    Article  CAS  Google Scholar 

  4. Lim SL, Lee LH, Wu TY. Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: recent overview, greenhouse gases emissions and economic analysis. J Clean Prod. 2016;111:262–78.

    Article  Google Scholar 

  5. Li Y, Park SY, Zhu J. Solid-state anaerobic digestion for methane production from organic waste. Renew Sust Energ Rev. 2011;15:821–6.

    Article  CAS  Google Scholar 

  6. Yang L, Xu F, Ge X, Li Y. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sust Energ Rev. 2015;44:824–34.

    Article  CAS  Google Scholar 

  7. Ge X, Xu F, Li Y. Solid-state anaerobic digestion of lignocellulosic biomass: recent progress and perspectives. Bioresour Technol. 2016;205:239–49.

    Article  CAS  Google Scholar 

  8. Carlos-Pinedo S, Wang Z, Eriksson O. Methane yield from SS-AD: experiences to learn by a full spectrum analysis at laboratory-, pilot- and full-scale. Biomass Bioenergy. 2019;127:105270.

    Article  CAS  Google Scholar 

  9. Ajay KJ, Jianzheng L, Loring N, Liguo Z. Research advances in dry anaerobic digestion process of solid organic wastes. Afr J Biotechnol. 2011;10:14242–53.

    Article  Google Scholar 

  10. Momayez F, Karimi K, Taherzadeh MJ. Energy recovery from industrial crop wastes by dry anaerobic digestion: a review. Ind Crops Prod. 2019;129:673–87.

    Article  CAS  Google Scholar 

  11. Qi C, Zhang Y, Jia S, et al. Effects of digestion duration on energy efficiency, compost quality, and carbon flow during solid state anaerobic digestion and composting hybrid process. Sci Total Environ. 2021;811:151363.

    Article  CAS  Google Scholar 

  12. Monlau F, Sambusiti C, Ficara E, et al. New opportunities for agricultural digestate valorization: current situation and perspectives. Energy Environ. 2015;8:2600–21.

    Article  CAS  Google Scholar 

  13. Teglia C, Tremier A, Martel JL. Characterization of solid digestates: part 2, assessment of the quality and suitability for composting of six digested products. Waste Biomass Valorization. 2011;2:113–26.

    Article  CAS  Google Scholar 

  14. Gao X, Xu Z, Li Y, et al. Bacterial dynamics for gaseous emission and humification in bio-augmented composting of kitchen waste. Sci Total Environ. 2021;801:149640.

    Article  CAS  Google Scholar 

  15. Xu Z, Xu W, Zhang L, et al. Bacterial dynamics and functions driven by bulking agents to mitigate gaseous emissions in kitchen waste composting. Bioresour Technol. 2021;332:125028.

    Article  CAS  Google Scholar 

  16. Xu Z, Li G, Huda N, et al. Effects of moisture and carbon/nitrogen ratio on gaseous emissions and maturity during direct composting of cornstalks used for filtration of anaerobically digested manure centrate. Bioresour Technol. 2020;298:122503.

    Article  CAS  Google Scholar 

  17. •• Li Y, Luo W, Lu J, et al. Effects of digestion time in anaerobic digestion on subsequent digestate composting. Bioresour Technol. 2018;267:117–25. This study showed that the digestion time of the SS-AD unit significantly affects the performance of the composting unit. Hence, we need to pay attention to the coordination between the two treatment units.

  18. Rincon CA, De Guardia A, Couvert A, et al. Odor generation patterns during different operational composting stages of anaerobically digested sewage sludge. Waste Manag. 2019;95:661–73.

    Article  CAS  Google Scholar 

  19. Manu MK, Li D, Liwen L, et al. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresour Technol. 2021;334:125032.

    Article  CAS  Google Scholar 

  20. Li Z, Lu H, Ren L, He L. Experimental and modeling approaches for food waste composting: a review. Chemosphere. 2013;93:1247–57.

    Article  CAS  Google Scholar 

  21. Paritosh K, Yadav M, Kesharwani N, et al. Strategies to improve solid state anaerobic bioconversion of lignocellulosic biomass: an overview. Bioresour Technol. 2021;331:125036.

    Article  CAS  Google Scholar 

  22. Li Y, Qi C, Zhang Y, et al. Anaerobic digestion of agricultural wastes from liquid to solid state: performance and environ-economic comparison. Bioresour Technol. 2021;332:125080.

    Article  CAS  Google Scholar 

  23. Su L, Sun X, Liu C, et al. Thermophilic solid-state anaerobic digestion of corn straw, cattle manure, and vegetable waste: effect of temperature, total solid content, and C/N ratio. Archaea. 2020;2020:8841490.

    Article  CAS  Google Scholar 

  24. Wang ZZ, Jiang Y, Wang S, et al. Impact of total solids content on anaerobic co-digestion of pig manure and food waste: insights into shifting of the methanogenic pathway. Waste Manag. 2020;114:96–106.

    Article  CAS  Google Scholar 

  25. Lin L, Xu F, Ge X, Li Y. Improving the sustainability of organic waste management practices in the food-energy-water nexus: a comparative review of anaerobic digestion and composting. Renew Sust Energ Rev. 2018;89:151–67.

    Article  CAS  Google Scholar 

  26. Karthikeyan OP, Visvanathan C. Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ. 2013;12:257–84.

    CAS  Google Scholar 

  27. Fagbohungbe MO, Dodd IC, Herbert BMJ, et al. High solid anaerobic digestion: operational challenges and possibilities. Environ Technol Innovation. 2015;4:268–84.

    Article  Google Scholar 

  28. Andre L, Pauss A, Ribeiro T. Solid anaerobic digestion: state-of-art, scientific and technological hurdles. Bioresour Technol. 2018;247:1027–37.

    Article  CAS  Google Scholar 

  29. Zhou Y, Li C, Nges IA, Liu J. The effects of pre-aeration and inoculation on solid-state anaerobic digestion of rice straw. Bioresour Technol. 2017;224:78–86.

    Article  CAS  Google Scholar 

  30. Shah FA, Mahmood Q, Rashid N, et al. Co-digestion, pretreatment and digester design for enhanced methanogenesis. Renew Sust Energ Rev. 2015;42:627–42.

    Article  CAS  Google Scholar 

  31. Xue S, Wang Y, Lyu X, et al. Interactive effects of carbohydrate, lipid, protein composition and carbon/nitrogen ratio on biogas production of different food wastes. Bioresour Technol. 2020;312:123566.

    Article  CAS  Google Scholar 

  32. Yang L, Huang Y, Zhao M, et al. Enhancing biogas generation performance from food wastes by high-solids thermophilic anaerobic digestion: effect of pH adjustment. Int Biodeterior Biodegrad. 2015;105:153–9.

    Article  CAS  Google Scholar 

  33. Zhang W, Lang Q, Pan Z, et al. Performance evaluation of a novel anaerobic digestion operation process for treating high-solids content chicken manure: effect of reduction of the hydraulic retention time at a constant organic loading rate. Waste Manag. 2017;64:340–7.

    Article  CAS  Google Scholar 

  34. Brown D, Shi J, Li Y. Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol. 2012;124:379–86.

    Article  CAS  Google Scholar 

  35. Xu F, Shi J, Lv W, et al. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Manag. 2013;33:26–32.

    Article  CAS  Google Scholar 

  36. Nielfa A, Cano R, Fdz-Polanco M. Theoretical methane production generated by the co-digestion of organic fraction municipal solid waste and biological sludge. Biotechnol Rep. 2015;5:14–21.

    Article  CAS  Google Scholar 

  37. Nugraha WD, Wafiroh H, et al. The effect of amylase and cellulase enzymes on biogas production from rice husk waste using solid-state anaerobic digestion (SS-AD) method. In: 2nd International Conference on Environment, Sustainability Issues and Community Development (INCRID). Electr Network; 2020.

    Google Scholar 

  38. Chandra R, Takeuchi H, Hasegawa T. Hydrothermal pretreatment of rice straw biomass: a potential and promising method for enhanced methane production. Appl Energy. 2012;94:129–40.

    Article  CAS  Google Scholar 

  39. Song Z, Yang G, Guo Y, Zhang T. Comparison of two chemical pretreatments of rice straw for biogas production by anaerobic digestion. BioResources. 2012;7:3223–36.

    Google Scholar 

  40. Badshah M, Duong Minh L, Liu J, Mattiasson B. Use of an Automatic Methane Potential Test System for evaluating the biomethane potential of sugarcane bagasse after different treatments. Bioresour Technol. 2012;114:262–9.

    Article  CAS  Google Scholar 

  41. Dixon PJ, Ergas SJ, Mihelcic JR, Hobbs SR. Effect of substrate to inoculum ratio on bioenergy recovery from food waste, yard waste, and biosolids by high solids anaerobic digestion. Environ Eng Sci. 2019;36:1459–65.

    Article  CAS  Google Scholar 

  42. Wei S, Guo Y. Comparative study of reactor performance and microbial community in psychrophilic and mesophilic biogas digesters under solid state condition. J Biosci Bioeng. 2018;125:543–51.

    Article  CAS  Google Scholar 

  43. Negi S, Dhar H, Hussain A, Kumar S. Biomethanation potential for co-digestion of municipal solid waste and rice straw: a batch study. Bioresour Technol. 2018;254:139–44.

    Article  CAS  Google Scholar 

  44. Arelli V, Mamindlapelli NK, Juntupally S, et al. Solid-state anaerobic digestion of sugarcane bagasse at different solid concentrations: impact of bio augmented cellulolytic bacteria on methane yield and insights on microbial diversity. Bioresour Technol. 2021;340:125675.

    Article  CAS  Google Scholar 

  45. Paritosh K, Vivekanand V. Biochar enabled syntrophic action: solid state anaerobic digestion of agricultural stubble for enhanced methane production. Bioresour Technol. 2019;289:121712.

    Article  CAS  Google Scholar 

  46. Narra M, Balasubramanian V, Kurchania A, et al. Enhanced biogas production from rice straw by selective micronutrients under solid state anaerobic digestion. Bioresour Technol. 2016;220:666–71.

    Article  CAS  Google Scholar 

  47. Jee KM, Hun KS. Evaluation of biogas production performance during the anaerobic digestion of lipids with four or more double bonds. Biosyst Eng. 2019;44:37–40.

    Article  Google Scholar 

  48. Wang Y, Zhang J, Li Y, et al. Methane production from the co-digestion of pig manure and corn stover with the addition of cucumber residue: role of the total solids content and feedstock-to-inoculum ratio. Bioresour Technol. 2020;306:123172.

    Article  CAS  Google Scholar 

  49. Pohl M, Mumme J, Heeg K, Nettmann E. Thermo- and mesophilic anaerobic digestion of wheat straw by the upflow anaerobic solid-state (UASS) process. Bioresour Technol. 2012;124:321–7.

    Article  CAS  Google Scholar 

  50. Fernandez-Rodriguez J, Perez M, Romero LI. Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: kinetic analysis. Chem Eng J. 2013;232:59–64.

    Article  CAS  Google Scholar 

  51. Liu Y, Fang J, Tong X, et al. Change to biogas production in solid-state anaerobic digestion using rice straw as substrates at different temperatures. Bioresour Technol. 2019;293:122066.

    Article  CAS  Google Scholar 

  52. Liew LN, Shi J, Li Y. Methane production from solid-state anaerobic digestion of lignocellulosic biomass. Biomass Bioenergy. 2012;46:125–32.

    Article  CAS  Google Scholar 

  53. Zhu J, Zheng Y, Xu F, Li Y. Solid-state anaerobic co-digestion of hay and soybean processing waste for biogas production. Bioresour Technol. 2014;154:240–7.

    Article  CAS  Google Scholar 

  54. Qi C, Wang R, Jia S, et al. Biochar amendment to advance contaminant removal in anaerobic digestion of organic solid wastes: a review. Bioresour Technol. 2021;341:125827.

    Article  CAS  Google Scholar 

  55. Liu G, Liu X, Li Y, et al. Influence of pH adjustment and inoculum on anaerobic digestion of kitchen waste for biogas producing. J Biobased Mater Bioenergy. 2011;5:390–5.

    Article  CAS  Google Scholar 

  56. Neves L, Oliveira R, Alves MM. Influence of inoculum activity on the bio-methanization of a kitchen waste under different waste/inoculum ratios. Process Biochem. 2004;39:2019–24.

    Article  CAS  Google Scholar 

  57. Li Y, Li Y, Zhang D, et al. Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production. Bioresour Technol. 2016;217:50–5.

    Article  CAS  Google Scholar 

  58. Ma X, Jiang T, Chang J, et al. Effect of substrate to inoculum ratio on biogas production and microbial community during hemi-solid-state batch anaerobic co-digestion of rape straw and dairy manure. Appl Biochem. 2019;189:884–902.

    Article  CAS  Google Scholar 

  59. Rabii A, Koupaie EH, Aldin S, et al. Methods of pretreatment and their impacts on anaerobic codigestion of multifeedstocks: a review. Water Environ Res. 2021;93:2834–52.

    Article  CAS  Google Scholar 

  60. Chaitanoo N, Aggarangsi P, Nitayavardhana S. Improvement of solid-state anaerobic digestion of broiler farm-derived waste via fungal pretreatment. Bioresour Technol. 2021;332:125146.

    Article  CAS  Google Scholar 

  61. Tian J-H, Pourcher A-M, Bureau C, Peu P. Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw. Bioresour Technol. 2017;223:192–201.

    Article  CAS  Google Scholar 

  62. Chen L, Qin Y, Chen B, et al. Enhancing degradation and biogas production during anaerobic digestion of food waste using alkali pretreatment. Environ Res. 2020;188:109743.

    Article  CAS  Google Scholar 

  63. Qi C, Wang R, Jia S, et al. Biochar amendment to advance contaminant removal in anaerobic digestion of organic solid wastes: a review. Bioresour Technol. 2021;341:125827.

    Article  CAS  Google Scholar 

  64. Terhoeven-Urselmans T, Scheller E, Raubuch M, et al. CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley. Appl Soil Ecol. 2009;42:297–302.

    Article  Google Scholar 

  65. Nkoa R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev. 2014;34:473–92.

    Article  Google Scholar 

  66. Du X, Li B, Chen K, et al. Rice straw addition and biological inoculation promote the maturation of aerobic compost of rice straw biogas residue. Biomass Convers. 2021;11:1885–96.

    Article  CAS  Google Scholar 

  67. Bai L, Deng Y, Li J, et al. Role of the proportion of cattle manure and biogas residue on the degradation of lignocellulose and humification during composting. Bioresour Technol. 2020;307:122941.

    Article  CAS  Google Scholar 

  68. Tan W, Liu P, Zhang X, Xi B. Effect of matured compost and exogenous microbial inoculants on the composting process of digestate eluted from dry anaerobic digestion. In: 3rd International Workshop on Environment and Geoscience (IWEG). Electr Network; 2020.

    Google Scholar 

  69. Opatokun SA, Kan T, Al Shoaibi A, et al. Characterization of food waste and its digestate as feedstock for thermochemical processing. Energy Fuels. 2016;30:1589–97.

    Article  CAS  Google Scholar 

  70. Li Y, Han Y, Zhang Y, et al. Factors affecting gaseous emissions, maturity, and energy efficiency in composting of livestock manure digestate. Sci Total Environ. 2020;731:139157.

    Article  CAS  Google Scholar 

  71. Wang T-T, Wang S-P, Zhong X-Z, et al. Converting digested residue eluted from dry anaerobic digestion of distilled grain waste into value-added fertilizer by aerobic composting. J Clean Prod. 2017;166:530–6.

    Article  CAS  Google Scholar 

  72. Xu Z, Qi C, Zhang L, et al. Regulating bacterial dynamics by lime addition to enhance kitchen waste composting. Bioresour Technol. 2021;341:125749.

    Article  CAS  Google Scholar 

  73. Arab G, McCartney D. Benefits to decomposition rates when using digestate as compost co-feedstock: part I - focus on physicochemical parameters. Waste Manag. 2017;68:74–84.

    Article  CAS  Google Scholar 

  74. Zhao S, Schmidt S, Qin W, et al. Towards the circular nitrogen economy - a global meta-analysis of composting technologies reveals much potential for mitigating nitrogen losses. Sci Total Environ. 2020;704:135401.

    Article  CAS  Google Scholar 

  75. Manu MK, Wang C, Li D, et al. Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment. Bioresour Technol. 2021;341:125871.

    Article  CAS  Google Scholar 

  76. Pan CN, Zhao Y, Zhao L, et al. Modified montmorillonite and illite adjusted the preference of biotic and abiotic pathways of humus formation during chicken manure composting. Bioresour Technol. 2021;319:124121.

    Article  CAS  Google Scholar 

  77. Zhang J, Lu F, Shao L, He P. The use of biochar-amended composting to improve the humification and degradation of sewage sludge. Bioresour Technol. 2014;168:252–8.

    Article  CAS  Google Scholar 

  78. Xu Z, Qi C, Zhang L, et al. Bacterial dynamics and functions for gaseous emissions and humification in response to aeration intensities during kitchen waste composting. Bioresour Technol. 2021;337:125369.

    Article  CAS  Google Scholar 

  79. Nguyen Hong D, Rene ER, Luu TL. Removal of nutrients from anaerobically digested swine wastewater using an intermittent cycle extended aeration system. Front. 2020;11:576438.

    Google Scholar 

  80. Chang HH, Lee YB, Kim TY, et al. Evaluation of ammonia emission from liquid pig manure composting system with forced aeration. Korean J Environ. 2013;32:366–8.

    Article  Google Scholar 

  81. Moitzi G, Amon B, Amon T, et al. Emissions of NH3, CH4 and N2O during storage and after application of untreated and anaerobically digested slurry. Bull Univ Agric Sci Vet Med Cluj-Napoca Agric. 2007;63(64):368–73.

    Google Scholar 

  82. Zhagn L, Liu H, Sheng J, et al. Influence of anaerobic fermentation periods, storage time and filtration on the changes of nutrients and physical and chemical properties of biogas slurry. J Agr Resour Econ. 2018;35:32–9.

    Google Scholar 

  83. • Li Y, Manandhar A, Li G, Shah A. Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment. Waste Manag. 2018;76:294–305. This study demonstrates the environmental advantages of SSADAC technology compared to SSAD and digestate composting alone.

  84. Provenzano MR, Malerba AD, Pezzolla D, Gigliotti G. Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Manag. 2014;34:653–60.

    Article  CAS  Google Scholar 

  85. Cucina M, Zadra C, Marcotullio MC, et al. Recovery of energy and plant nutrients from a pharmaceutical organic waste derived from a fermentative biomass: integration of anaerobic digestion and composting. J Environ Chem Eng. 2017;5:3051–7.

    Article  CAS  Google Scholar 

  86. Li Y, Han Y, Zhang Y, et al. Factors affecting gaseous emissions, maturity, and energy efficiency in composting of livestock manure digestate. Sci Total Environ. 2020;731:139157.

    Article  CAS  Google Scholar 

  87. Bolzonella D, Pavan P, Mace S, Cecchi F. Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience. Water Sci Technol. 2006;53:23–32.

    Article  CAS  Google Scholar 

  88. Shi J, Wang Z, Stiverson JA, et al. Reactor performance and microbial community dynamics during solid-state anaerobic digestion of corn stover at mesophilic and thermophilic conditions. Bioresour Technol. 2013;136:574–81.

    Article  CAS  Google Scholar 

  89. Puspitaloka H, Mimoto H, Tran QNM, et al. Effect of aeration methods on the organic matter degradation, microbial community and their catabolic function during composting. Waste Biomass Valorization. 2022;13:1195–205.

    Article  CAS  Google Scholar 

  90. Shan G, Li W, Gao Y, et al. Additives for reducing nitrogen loss during composting: a review. J Clean Prod. 2021;307:127308.

    Article  CAS  Google Scholar 

  91. Meng L, Xie L, Suenaga T, et al. Eco-compatible biochar mitigates volatile fatty acids stress in high load thermophilic solid-state anaerobic reactors treating agricultural waste. Bioresour Technol. 2020;309:123366.

    Article  CAS  Google Scholar 

  92. Huang Y, Ma Y, Wan J, Wang Y. Mathematical modelling of the internal circulation anaerobic reactor by Anaerobic Digestion Model No. 1, simultaneously combined with hydrodynamics. Sci Rep. 2019;9:6249.

    Article  CAS  Google Scholar 

  93. Xu F, Li Y, Wang Z-W. Mathematical modeling of solid-state anaerobic digestion. Progr Energy Combust Sci. 2015;51:49–66.

    Article  Google Scholar 

  94. Mason IG. Mathematical modelling of the composting process: a review. Waste Manag. 2006;26:3–21.

    Article  CAS  Google Scholar 

Download references

Funding

This review was supported under the China Postdoctoral Science Foundation (2019TQ0349) and Research Innovation Fund for Graduate Students of China Agricultural University (No. 2020XYZC11A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangyang Li.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human and animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Biology and Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, C., Yin, R., Gao, X. et al. Development of Solid-State Anaerobic Digestion and Aerobic Composting Hybrid Processes for Organic Solid Waste Treatment and Resource Recovery: a Review. Curr Pollution Rep 8, 221–233 (2022). https://doi.org/10.1007/s40726-022-00223-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-022-00223-w

Keywords

Navigation