Skip to main content
Log in

Effect of Substrate to Inoculum Ratio on Biogas Production and Microbial Community During Hemi-Solid-State Batch Anaerobic Co-digestion of Rape Straw and Dairy Manure

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The substrate to inoculum (S/I) ratio is crucial for the rapid start-up of solid-state anaerobic digestion (SS-AD) systems. In this study, the performance of methane production and microbial community structure were evaluated during co-digestion of rape straw (RS) and dairy manure (DM) at different S/I ratios (2:3, 1:1, 2:1, 3:1, and 4:1) in batch hemi-solid-state anaerobic digestion (HSS-AD) tests. The highest methane yield of 209.1 mL/g VSadded and highest volumetric methane production of 0.4 L/(L·d) were achieved at S/I ratios of 2:3 and 2:1, respectively. Lower S/I ratios (1:2, 1:1, and 2:1) steadily produced biogas throughout the AD period, while higher S/I ratios (3:1 and 4:1) failed to produce biogas during the initial stage of AD because of excess accumulation of volatile fatty acids and low pH. The predominant bacteria and archaea in stable digesters were Firmicutes and acetoclastic Methanosaeta, respectively, while Bacteroidetes predominated and the relative abundance of hydrogenotrophic Methanobacterium increased significantly in acidic digesters. Amounts of bacteria and archaea were inhibited in acidic digesters. Our results provide useful information for enhancing efficient methane production and advancing the understanding of the microbiome in HSS-AD of RS and DM at different S/I ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khalid, A., Arshad, M., Anjum, M., Mahmood, T., & Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Management, 31(8), 1737–1744.

    CAS  PubMed  Google Scholar 

  2. Li, Y. Q., Zhang, R. H., Chang, C., Liu, G. Q., He, Y. F., & Liu, X. Y. (2013). Biogas production from co-digestion of corn Stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions. Bioresource Technology, 149, 406–412.

    CAS  PubMed  Google Scholar 

  3. Xu, F., & Li, Y. (2012). Solid-state co-digestion of expired dog food and corn Stover for methane production. Bioresource Technology, 118, 219–226.

    CAS  PubMed  Google Scholar 

  4. Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresource Technology, 178, 178–186.

    CAS  PubMed  Google Scholar 

  5. Ge, X., Xu, F., & Li, Y. (2016). Solid-state anaerobic digestion of lignocellulosic biomass: recent progress and perspectives. Bioresource Technology, 205, 239–249.

    CAS  PubMed  Google Scholar 

  6. Min, H. E., Wang, X. R., Han, L., Feng, X. Q., & Mao, X. (2015). Emission inventory of crop residues field burning and its temporal and spatial distribution in Sichuan Province. Environmental Science, 36, 1208–1216.

    Google Scholar 

  7. Xu, F., Shi, J., Lv, W., Yu, Z., & Li, Y. (2013). Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Management, 33(1), 26–32.

    CAS  PubMed  Google Scholar 

  8. Lin, Y., Ge, X., & Li, Y. (2014). Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production. Bioresource Technology, 169, 468–474.

    CAS  PubMed  Google Scholar 

  9. Li, L., Li, D., Sun, Y., Ma, L., Yuan, Z., & Kong, X. (2010). Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. International Journal of Hydrogen Energy, 35, 7261–7266.

    CAS  Google Scholar 

  10. Peu, P., Picard, S., Diara, A., Girault, R., Béline, F., Bridoux, G., & Dabert, P. (2012). Prediction of hydrogen sulphide production during anaerobic digestion of organic substrates. Bioresource Technology, 121, 419–424.

    CAS  PubMed  Google Scholar 

  11. Vivekanand, V., Ryden, P., Horn, S. J., Tapp, H. S., Wellner, N., Eijsink, V. G. H., & Waldron, K. W. (2012). Impact of steam explosion on biogas production from rape straw in relation to changes in chemical composition. Bioresource Technology, 123, 608–615.

    CAS  PubMed  Google Scholar 

  12. Chandra, R., Takeuchi, H., & Hasegawa, T. (2012). Methane production from lignocellulosic agricultural crop wastes: a review in context to second generation of biofuel production. Renewable & Sustainable Energy Reviews, 16(3), 1462–1476.

    CAS  Google Scholar 

  13. Tian, J. H., Pourcher, A. M., Bureau, C., & Peu, P. (2017). Cellulose accessibility and microbial community in solid state anaerobic digestion of rape straw. Bioresource Technology, 223, 192–201.

    CAS  PubMed  Google Scholar 

  14. Mata-Alvarez, J., Dosta, J., Romero-Guiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable & Sustainable Energy Reviews, 36, 412–427.

    CAS  Google Scholar 

  15. Lin, L., Yang, L., Xu, F., Michel, F. C., & Li, Y. (2014). Comparison of solid-state anaerobic digestion and composting of yard trimmings with effluent from liquid anaerobic digestion. Bioresource Technology, 169, 439–446.

    CAS  PubMed  Google Scholar 

  16. Xu, F., Wang, F., Lin, L., & Li, Y. (2016). Comparison of digestate from solid anaerobic digesters and dewatered effluent from liquid anaerobic digesters as inocula for solid state anaerobic digestion of yard trimmings. Bioresource Technology, 200, 753–760.

    CAS  PubMed  Google Scholar 

  17. Zhou, Y., Li, C., Nges, I. A., & Liu, J. (2017). The effects of pre-aeration and inoculation on solid-state anaerobic digestion of rice straw. Bioresource Technology, 224, 78–86.

    CAS  PubMed  Google Scholar 

  18. Li, Y., Zhu, J., Wan, C., & Park, S. Y. (2011). Solid-state anaerobic digestion of corn stover for biogas production. Transactions of the ASABE, 54(4), 1415–1421.

    CAS  Google Scholar 

  19. Motte, J.-C., Escudié, R., Bernet, N., Delgenes, J.-P., Steyer, J.-P., & Dumas, C. (2013). Dynamic effect of total solid content, low substrate/inoculum ratio and particle size on solid-state anaerobic digestion. Bioresource Technology, 144, 141–148.

    CAS  PubMed  Google Scholar 

  20. Ma, X., Li, C., Yuan, X., Zhu, W., Wang, X., Cheng, X., & Cui, J. (2014). Fermentation technology for methane production using high solid content materials with straw and dairy manure. Transactions of the Chinese Society of Agricultural Engineering, 30, 227–235.

    CAS  Google Scholar 

  21. Suksong, W., Kongjan, P., Prasertsan, P., Imai, T., & O-Thong, S. (2016). Optimization and microbial community analysis for production of biogas from solid waste residues of palm oil mill industry by solid-state anaerobic digestion. Bioresource Technology, 214, 166–174.

    CAS  PubMed  Google Scholar 

  22. Xu, F., Wang, Z. W., Tang, L., & Li, Y. (2014). A mass diffusion-based interpretation of the effect of total solids content on solid-state anaerobic digestion of cellulosic biomass. Bioresource Technology, 167, 178–185.

    CAS  PubMed  Google Scholar 

  23. Zhu, J., Yang, L., & Li, Y. (2015). Comparison of premixing methods for solid-state anaerobic digestion of corn stover. Bioresource Technology, 175, 430–435.

    CAS  PubMed  Google Scholar 

  24. Ma, X., Jiang, T., Tang, Q., & Yang, J. (2016). Effects of dairy manure addition from methane production under semi-solid state condition. Transactions of the Chinese Society of Agricultural Engineering, 32, 323–330.

    Google Scholar 

  25. Walter, W. G. (2005). Standard methods for the examination of water and wastewater (21th ed.). Washington DC: APHA.

    Google Scholar 

  26. Zhao, Y., Yu, J., Liu, J., Yang, H., Gao, L., Yuan, X., Cui, Z., & Wang, X. (2016). Material and microbial changes during corn stalk silage and their effects on methane fermentation. Bioresource Technology, 222, 89–99.

    CAS  PubMed  Google Scholar 

  27. Nelson, M. C., Morrison, H. G., Benjamino, J., Grim, S. L., & Graf, J. (2014). Analysis, optimization and verification of illumina-generated 16s rRNA gene amplicon surveys. Plos One., 9, e94249.

    PubMed  PubMed Central  Google Scholar 

  28. Castillo, M., Martin-Orue, S. M., Manzanilla, E. G., Badiola, I., Martin, M., & Gasa, J. (2006). Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Veterinary Microbiology, 114, 165–170.

    CAS  PubMed  Google Scholar 

  29. Zheng, Z. H., Liu, J. H., Yuan, X. F., Wang, X. F., Wan, Z., & Yang, F. Y. (2015). Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion. Applied Energy, 151, 249–257.

    CAS  Google Scholar 

  30. Hua, B., Lü, Y., Wang, J., Wen, B., Cao, Y., Wang, X., & Cui, Z. (2014). Dynamic changes in the composite microbial system MC1 during and following its rapid degradation of lignocellulose. Applied Biochemistry and Biotechnology, 172(2), 951–962.

    CAS  PubMed  Google Scholar 

  31. Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 89(6), 670–679.

    CAS  PubMed  Google Scholar 

  32. Ren, J., Yuan, X., Li, J., Ma, X., Zhao, Y., Zhu, W., Wang, X., & Cui, Z. (2014). Performance and microbial community dynamics in a two-phase anaerobic co-digestion system using cassava dregs and pig manure. Bioresource Technology, 155, 342–351.

    CAS  PubMed  Google Scholar 

  33. Li, L., Kong, X., Yang, F., Li, D., Yuan, Z., & Sun, Y. (2012). Biogas production potential and kinetics of microwave and conventional thermal pretreatment of grass. Applied Biochemistry and Biotechnology, 166(5), 1183–1191.

    CAS  PubMed  Google Scholar 

  34. Yang, L., Ge, X., & Li, Y. (2016). Recovery of failed solid-state anaerobic digesters. Bioresource Technology, 214, 866–870.

    CAS  PubMed  Google Scholar 

  35. Neves, L., Gonçalo, E., Oliveira, R., & Alves, M. M. (2008). Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste Management, 28(6), 965–972.

    CAS  PubMed  Google Scholar 

  36. Yang, L., Xu, F., Ge, X., & Li, Y. (2015). Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renewable & Sustainable Energy Reviews, 44, 824–834.

    CAS  Google Scholar 

  37. Brown, D., & Li, Y. (2013). Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Bioresource Technology, 127, 275–280.

    CAS  PubMed  Google Scholar 

  38. Lee, D. H., Behera, S. K., Kim, J., & Park, H. S. (2009). Methane production potential of leachate generated from Korean food waste recycling facilities: a lab scale study. Waste Management, 29(2), 876–882.

    CAS  PubMed  Google Scholar 

  39. Amani, T., Nosrati, M., & Sreekrishnan, T. R. (2010). Anaerobic digestion from the viewpoint of microbiological, chemical, and operational aspects-a review. Environmental Research, 18, 255–278.

    CAS  Google Scholar 

  40. Mclnerney, M. J., & Gieg, L. M. (2004). In M. M. Nakano & P. Zuber (eds.), In horizon bioscience: an overview of anaerobic metabolism (p. 27). Norfolk.

  41. Ward, A. J., Hobbs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology, 99(17), 7928–7940.

    CAS  PubMed  Google Scholar 

  42. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.

    CAS  PubMed  Google Scholar 

  43. Li, Y. F., Shi, J., Nelson, M. C., Chen, P. H., Graf, J., Li, Y., & Yu, Z. (2016). Impact of different ratios of feedstock to liquid anaerobic digestion effluent on the performance and microbiome of solid-state anaerobic digesters digesting corn stover. Bioresource Technology, 200, 744–752.

    CAS  PubMed  Google Scholar 

  44. Li, Y. F., Nelson, M. C., Chen, P. H., Graf, J., Li, Y., & Yu, Z. (2015). Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures. Applied Microbiology and Biotechnology, 99(2), 969–980.

    CAS  PubMed  Google Scholar 

  45. Blume, F., Bergmann, I., Nettmann, E., Schelle, H., Rehde, G., Mundt, K., & Klocke, M. (2010). Methanogenic population dynamics during semi-continuous biogas fermentation and acidification by overloading. Journal of Applied Microbiology, 109(2), 441–450.

    CAS  PubMed  Google Scholar 

  46. McMahon, K. D., Zheng, D. D., Stams, A. J. M., Mackie, R. I., & Raskin, L. (2004). Microbial population dynamics during start-up and overload conditions of anaerobic digesters treating municipal solid waste and sewage sludge. Biotechnology and Bioengineering, 87(7), 823–834.

    CAS  PubMed  Google Scholar 

  47. Kotsyurbenko, O. R., Chin, K. J., Glagolev, M. V., Stubner, S., Simankova, M. V., Nozhevnikova, A. N., & Conrad, R. (2004). Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environmental Microbiology, 6(11), 1159–1173.

    CAS  PubMed  Google Scholar 

  48. Leclerc, M., Delgenes, J. P., & Godon, J. J. (2004). Diversity of the archaeal community in 44 anaerobic digesters as determined by single strand conformation polymorphism analysis and 16S rDNA sequencing. Environmental Microbiology, 6(8), 809–819.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51508258), the Sichuan Science and Technology Department Program of China (No. 2017JY0175), the Key Laboratory of Development and Application of Rural Renewable Energy Program, Ministry of Agriculture, China (No. 2015012), and the Scientific Research Foundation of Leshan Normal University (No. Z1410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuguang Ma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Jiang, T., Chang, J. et al. Effect of Substrate to Inoculum Ratio on Biogas Production and Microbial Community During Hemi-Solid-State Batch Anaerobic Co-digestion of Rape Straw and Dairy Manure. Appl Biochem Biotechnol 189, 884–902 (2019). https://doi.org/10.1007/s12010-019-03035-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03035-9

Keywords

Navigation