Skip to main content
Log in

Green Tribology: A Review of Biodegradable Lubricants—Properties, Current Status, and Future Improvement Trends

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

The use of lubricants to lower friction and wear in mechanical systems has been established for centuries. Growing concerns about the hazardous effects of conventional mineral lubricants on the environment have motivated scientists to search for biodegradable substitutes. This threat is particularly at a critical level in ecologically sensitive regions. Despite their lower eco-toxicity, the inherent shortcomings of biodegradable lubricants (e.g., high pour point, and poor oxidative and thermal stability, etc.) have prevented their full application in different industries. This review intends to (1) introduce various sources of biodegradable lubricants, their properties, and applications; (2) discuss the current state and most recent advances from the tribology perspective; and (3) discuss future trends regarding improving the tribological properties and overall performance of biodegradable lubricants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Credits: The figure was adapted from reference [40] with permission from Elsevier

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Chand, R., & Kumar, B. (2017). Environmental hazards of oil and lubricants. International Journal of Innovative Science, Engineering & Technology, 4(4), 315–322.

    Google Scholar 

  2. Tesic, S., Cica, D., Borojevic, S., Sredanovic, B., Zeljkovic, M., Kramar, D., & Pusavec, F. (2022). Optimization and prediction of specific energy consumption in ball-end milling of Ti-6Al-4V alloy under MQL and cryogenic cooling/lubrication coditions. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 1427–1437. https://doi.org/10.1007/s40684-021-00413-9.

    Article  Google Scholar 

  3. Elisabet, B., Eva, M. R., Laurent, A., & Maria, A. S. N. (2023). Sustainable lubrication/cooling systems for efficient turning operations of γ-TiAl parts from the aeronautic industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 10, 709–728. https://doi.org/10.1007/s40684-022-00435-x.

    Article  Google Scholar 

  4. He, L., Shi, J., Ni, J., & Feng, K. (2022). Investigation on cutting force reduction of eco-friendly cutting fluids with castor oil and additives in broaching. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 369–381. https://doi.org/10.1007/s40684-021-00376-x.

    Article  Google Scholar 

  5. Wu, M. M., Ho, S. C., & Forbus, T. R. (2006). Synthetic lubricant base stock processes and products. In C. S. Hsu & Robinson, P. R. (Eds.), Practical advances in petroleum processing (pp. 553–577). Springer. https://doi.org/10.1007/978-0-387-25789-1_17.

  6. Department of ecology, state of Washington. (2019). Spill prevention, preparedness, and response program. Focus on: Environmental harm from oil spills. https://apps.ecology.wa.gov/publications/documents/1008001.pdf.

  7. Aluyor, E. O., & Ori-Jesu, M. (2009). Biodegradation of mineral oils—A review. African Journal of Biotechnology, 8(6), 915–920.

    CAS  Google Scholar 

  8. Nowak, P., Kucharska, K., & Kamiński, M. (2019). Ecological and health effects of lubricant oils emitted into the environment. International Journal of Environmental Research and Public Health, 16(16), 3002. https://doi.org/10.3390/ijerph16163002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Organization for Economic Co-operation and Development. (2006) OECD Guidelines for the Testing of Chemical. Organization for Economic Co-operation and Development.

  10. Darminesh, S. P., Sidik, N. A. C., Najafi, G., Mamat, R., Ken, T. L., & Asako, Y. (2017). Recent development on biodegradable nanolubricant: A review. International Communications in Heat and Mass Transfer, 86, 159–165. https://doi.org/10.1016/j.icheatmasstransfer.2017.05.022.

    Article  CAS  Google Scholar 

  11. Kalin, M., & Vižintin, J. (2005). The tribological performance of DLC-coated gears lubricated with biodegradable oil in various pinion/gear material combinations. Wear, 259(7–12), 1270–1280. https://doi.org/10.1016/j.wear.2005.02.028.

    Article  CAS  Google Scholar 

  12. Maleque, M. A., Masjuki, H. H., & Sapuan, S. M. (2003). Vegetable-based biodegradable lubricating oil additives. Industrial lubrication and Tribology, 55(3), 137–143. https://doi.org/10.1108/00368790310470976.

    Article  Google Scholar 

  13. Cohen, M. A. (2010). A taxonomy of oil spill costs—What are the likely costs of the deepwater horizon spill? Resources for the Future. Retrieved Jun 12, 2023, from https://policycommons.net/artifacts/1947722/a-taxonomy-of-oil-spill-costs/2699491/.

  14. Carson, R. T., Robert, C. M., Michael, H., Raymond, J. K., Stanley, P., & Paul, A. R. (2003). Contingent valuation and lost passive use: Damages from the Exxon Valdez oil spill. Environmental and Resource Economics, 25, 257–286. https://doi.org/10.1023/A:1024486702104.

    Article  Google Scholar 

  15. Padgurskas, J., Rukuiža, R., Meškinis, A., Kreivaitis, R., & Spruogis, B. (2016). Influence of manufacturing methods on the tribological properties of rapeseed oil lubricants. Transport, 31(1), 56–62. https://doi.org/10.3846/16484142.2015.1048525.

    Article  Google Scholar 

  16. Vitor, B., Leonardo, R. R. S., Alisson, R. M., & Celso, F. H. (2022). State of the art of biodegradable nanofluids application in machining processes. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-022-00486-0.

    Article  Google Scholar 

  17. Amrit, P., Sukhpal, S. C., & Hazzor, S. S. (2021). Performance evaluation of various vegetable oils and distilled water as base fluids using eco-friendly MQL technique in drilling of AISI 321 stainless steel. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 745–764. https://doi.org/10.1007/s40684-021-00355-2.

    Article  Google Scholar 

  18. Nadine, M., Sabrina, Z., Marius, W., Frederik, F., Georg, G., & Christoph, H. (2019). Investigation on the effects of nanoparticles on cutting fluid properties and tribological characteristics. International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 433–447. https://doi.org/10.1007/s40684-019-00053-0.

    Article  Google Scholar 

  19. Hsien, W. L. Y. (2015). Towards green lubrication in machining (p. 7). Springer.

    Google Scholar 

  20. Ghazani, S. M., & Marangoni, A. G. (2016). Encyclopedia of food grains. Academic Press.

    Google Scholar 

  21. U.S. Canola Association. (2022). Biodiesel. Retrieved June 13, 2023, from https://www.uscanola.com/biodiesel/biodiesel/#:~:text=Biodiesel%20is%20an%20alternative%20fuel,modification%2C%20even%20in%20jet%20fuel.

  22. Shalwan, A., Yousif, B. F., Alajmi, F. H., & Alajmi, M. (2021). Tribological behavior of mild steel under canola biolubricant conditions. Advances in Tribology. https://doi.org/10.1155/2021/3795831.

    Article  Google Scholar 

  23. Sook, C. C. (2020). Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality. Food Research International, 131, 108997. https://doi.org/10.1016/j.foodres.2020.108997.

    Article  CAS  Google Scholar 

  24. Stanciu, I. (2020). A study of rheological behavior for refined rapeseed oil. Technium: Romanian Journal of Applied Sciences and Technology, 2(2), 20–24.

    Article  Google Scholar 

  25. Mubofu, E. B. (2016). Castor oil as a potential renewable resource for the production of functional materials. Sustainable Chemical Processes, 4(1), 1–12. https://doi.org/10.1186/s40508-016-0055-8.

    Article  CAS  Google Scholar 

  26. Zeng, Q. (2021). The lubrication performance and viscosity behavior of castor oil under high temperature. Green Materials, 10(2), 51–58. https://doi.org/10.1680/jgrma.20.00068.

    Article  Google Scholar 

  27. Kumar, A. S., & Kumar, T. S. (2018). Air and fuel flow interaction in combustion for various injector locations. IOP Conference Series Materials Science and Engineering, 455(1), 012028. https://doi.org/10.1088/1757-899X/455/1/012028.

    Article  Google Scholar 

  28. Kerni, L., Raina, A., & Haq, M. I. U. (2019). Friction and wear performance of olive oil containing nanoparticles in boundary and mixed lubrication regimes. Wear, 426, 819–827. https://doi.org/10.1016/j.wear.2019.01.022.

    Article  CAS  Google Scholar 

  29. Rani, S., Joy, M. L., & Nair, K. P. (2015). Evaluation of physiochemical and tribological properties of rice bran oil–biodegradable and potential base stoke for industrial lubricants. Industrial Crops and Products, 65, 328–333. https://doi.org/10.1016/j.indcrop.2014.12.020.

    Article  CAS  Google Scholar 

  30. Nierat, T. H., Musameh, S. M., & Abdel-Raziq, I. R. (2014). Temperature-dependence of olive oil viscosity. Materials Science, 11(7), 233–238.

    CAS  Google Scholar 

  31. Zamiri, R., Zakaria, A., Ahangar, H. A., Sadrolhosseini, A. R., & Mahdi, M. A. (2010). Fabrication of silver nanoparticles dispersed in palm oil using laser ablation. International Journal of Molecular Sciences, 11(11), 4764–4770. https://doi.org/10.3390/ijms11114764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reddy, K. S. V. K., Kabra, N., Kunchum, U., & Vijayakumar, T. (2014). Experimental investigation on usage of palm oil as a lubricant to substitute mineral oil in CI engines. Chinese Journal of Engineering, 2014, 1–5. https://doi.org/10.1155/2014/643521.

    Article  Google Scholar 

  33. Savariraj, S., Ganapathy, T., & Saravanan, C. G. (2012). Performance and emission characteristics of diesel engine using high-viscous vegetable oil. International Journal of Ambient Energy, 33(4), 193–203. https://doi.org/10.1080/01430750.2012.709356.

    Article  CAS  Google Scholar 

  34. Endo, T. (2012) Polymer science: A comprehensive reference. In M. Krzysztof, & M. Martin (Eds.), Radical ring-opening polymerization (pp. 507–522).

  35. Honary, L. A. (1996). An investigation of the use of soybean oil in hydraulic systems. Bioresource Technology, 56(1), 41–47. https://doi.org/10.1016/0960-8524(95)00184-0.

    Article  CAS  Google Scholar 

  36. Akkaya, M. R. (2018). Prediction of fatty acid composition of sunflower seeds by near-infrared reflectance spectroscopy. Journal of Food Science and Technology, 55(6), 2318–2325. https://doi.org/10.1007/s13197-018-3150-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ibrahim, A., Ishak, S. S. M., & Kamaruddin, M. F. (2015). Comparison between sunflower oil and soybean oil as gear lubricant. Applied Mechanics and Materials, 699, 443–448. https://doi.org/10.4028/www.scientific.net/AMM.699.443.

    Article  CAS  Google Scholar 

  38. Asadauskas, S., Perez, J. M., & Duda, J. L. (1996). Oxidative stability and antiwear properties of high oleic vegetable oils. Lubrication Engineering, 52(12), 877–882. http://www.scopus.com/inward/record.url?scp=0030431722&partnerID=8YFLogxK.

  39. Lal, K., & Carrick, V. (1994). Performance testing of lubricants based on high oleic vegetable oils. Journal of synthetic lubrication, 11(3), 189–206. https://doi.org/10.1002/jsl.3000110304.

    Article  CAS  Google Scholar 

  40. Reeves, C. J., Menezes, P. L., Jen, T. C., & Lovell, M. R. (2015). The influence of fatty acids on tribological and thermal properties of natural oils as sustainable biolubricants. Tribology International, 90, 123–134. https://doi.org/10.1016/j.triboint.2015.04.021.

    Article  CAS  Google Scholar 

  41. Lundgren, S. M., Persson, K., Mueller, G., Kronberg, B., Clarke, J., Chtaib, M., & Claesson, P. M. (2007). Unsaturated fatty acids in alkane solution: Adsorption to steel surfaces. Langmuir, 23(21), 10598–10602. https://doi.org/10.1021/la700909v.

    Article  CAS  PubMed  Google Scholar 

  42. Fox, N. J., Tyrer, B., & Stachowiak, G. W. (2004). Boundary lubrication performance of free fatty acids in sunflower oil. Tribology Letters, 16(4), 275–281. https://doi.org/10.1023/B:TRIL.0000015203.08570.82.

    Article  CAS  Google Scholar 

  43. Shalwan, A., Yousif, B. F., Alajmi, F. H., Alrashdana, K. R., & Alajmi, M. (2020). Tribological investigation of frictional behaviour of mild steel under canola bio-lubricant conditions. Tribology in Industry, 42(3), 481–493. https://doi.org/10.24874/ti.895.05.20.09.

    Article  Google Scholar 

  44. Ortega-Álvarez, R., Hernández-Sierra, M. T., Aguilera-Camacho, L. D., Bravo-Sánchez, M. G., Moreno, K. J., & García-Miranda, J. S. (2022). Tribological performance of 100Cr6/8620 steel bearing system under green oil lubrication. Metals, 12(2), 362. https://doi.org/10.3390/met12020362.

    Article  CAS  Google Scholar 

  45. Azhari, M. A., Saroji, M. F. H. M., & Latif, M. A. (2016). Comparison of tribological properties between canola oil+ZDDP and SAE40 lubricants. Journal of Engineering and Applied Science, 100, 2126–2129.

    Google Scholar 

  46. Kumar, G., & Garg, H. C. (2022). Influence of a halogen free ionic liquid on the rheological and tribological characteristics of canola oil. Industrial Lubrication and Tribology, 74(8), 914–921. https://doi.org/10.1108/ILT-12-2021-0487.

    Article  Google Scholar 

  47. Mobarak, H. & Chowdhury, M. (2014). Tribological performance of hydrogenated amorphous carbon (aC: H) DLC coating when lubricated with biodegradable vegetal canola oil. Tribology in Industry, 163–171.

  48. Cao, Y., Yu, L., & Liu, W. (2000). Study of the tribological behavior of sulfurized fatty acids as additives in rapeseed oil. Wear, 244(1–2), 126–131.

    Article  CAS  Google Scholar 

  49. Yan, J., Zeng, X., van der Heide, E., & Ren, T. (2014). The tribological performance and tribochemical analysis of novel borate esters as lubricant additives in rapeseed oil. Tribology International, 71, 149–157.

    Article  CAS  Google Scholar 

  50. Gu, K., Chen, B., Wang, X., Wang, J., Fang, J., Wu, J., & Yang, X. (2014). Preparation, friction, and wear behaviors of cerium-doped anatase nanophases in rapeseed oil. Industrial & Engineering Chemistry Research, 53(15), 6249–6254.

    Article  CAS  Google Scholar 

  51. Gu, K., Lin, W., Yuan, X., Peng, H., Wang, S., Lv, J., & Zhu, Z. (2022). Tribological performance and mechanism of 2D calcium borate nanoslice capped with stearic acid in rapeseed oil. Journal of Dispersion Science and Technology, 43(4), 540–550.

    Article  CAS  Google Scholar 

  52. Wang, Z., Ren, R., Song, H., & Jia, X. (2018). Improved tribological properties of the synthesized copper/carbon nanotube nanocomposites for rapeseed oil-based additives. Applied Surface Science, 428, 630–639.

    Article  CAS  ADS  Google Scholar 

  53. Opia, A. C., Kameil, A. H. M., Syahrullail, S., Johnson, C. A., Izmi, M. I., Mamah, S. C., & Veza, I. (2022). Tribological behavior of organic formulated anti-wear additive under high frequency reciprocating rig and unidirectional orientations: Particles transport behavior and film formation mechanism. Tribology International, 167, 107415.

    Article  CAS  Google Scholar 

  54. Arumugam, S., & Sriram, G. (2013). Preliminary study of nano-and microscale TiO2 additives on tribological behavior of chemically modified rapeseed oil. Tribology Transactions, 56(5), 797–805.

    Article  CAS  Google Scholar 

  55. Qian, S., Wang, H., Huang, C., & Zhao, Y. (2018). Experimental investigation on the tribological properties of modified carbon nanotubes as the additive in castor oil. Industrial Lubrication and Tribology, 70(3), 499–505. https://doi.org/10.1108/ILT-05-2017-0138.

    Article  Google Scholar 

  56. Asadauskas, S., Perez, J. H., & Duda, J. L. (1997). Lubrication properties of castor oil–potential basestock for biodegradable lubricants. Tribology & Lubrication Technology, 53(12), 35.

    CAS  Google Scholar 

  57. Bhaumik, S., & Pathak, S. D. (2016). A comparative experimental analysis of tribological properties between commercial mineral oil and neat castor oil using Taguchi method in boundary lubrication regime. Tribology in Industry, 38(1), 33.

    Google Scholar 

  58. Hussain, A., Mehdi, S., Ali, A., Adeel, M., Jabal, M., & Ani, F. (2018). Investigation of tribological characteristics of castor oil with mineral oil blends. Journal of Engineering and Applied Sciences, 37(1), 6.

    Google Scholar 

  59. Ouyang, T., Tang, W., Pan, M., Tang, J., & Huang, H. (2022). Friction-reducing and anti-wear properties of 3D hierarchical porous graphene/multi-walled carbon nanotube in castor oil under severe condition: Experimental investigation and mechanism study. Wear, 498, 204302. https://doi.org/10.1016/j.wear.2022.204302.

    Article  CAS  Google Scholar 

  60. Wang, Y., Wan, Z., Lu, L., Zhang, Z., & Tang, Y. (2018). Friction and wear mechanisms of castor oil with addition of hexagonal boron nitride nanoparticles. Tribology International, 124, 10–22. https://doi.org/10.1016/j.triboint.2018.03.035.

    Article  CAS  Google Scholar 

  61. Singh, Y., Chaudhary, V., & Pal, V. (2020). Friction and wear characteristics of the castor oil with TiO2 as an additives. Materials Today: Proceedings, 26, 2972–2976. https://doi.org/10.1016/j.matpr.2020.02.612.

    Article  CAS  Google Scholar 

  62. Kalam, M. A., Masjuki, H. H., Cho, H. M., Mosarof, M. H., Mahmud, M. I., Chowdhury, M. A., & Zulkifli, N. W. M. (2017). Influences of thermal stability, and lubrication performance of biodegradable oil as an engine oil for improving the efficiency of heavy duty diesel engine. Fuel, 196, 36–46. https://doi.org/10.1016/j.fuel.2017.01.071.

    Article  CAS  Google Scholar 

  63. Murakami, T., & Sakamoto, H. (2008). Elucidation of lubrication mechanism of vegetable oils and their effective application. Japanese Society of Tribologies, 3(5), 274–279. https://doi.org/10.2474/trol.3.274.

    Article  Google Scholar 

  64. Solea, L. C., Deleanu, L., & Georgescu, C. (2013). Evaluation of olive oil as lubricant with the help of four-ball tester. Mechanical Testing and Diagnosis, 3(3), 40–48. https://www.gup.ugal.ro/ugaljournals/index.php/mtd/article/view/2417.

  65. Carcel, A. C., Palomares, D., Rodilla, E., & Pulg, M. A. P. (2005). Evaluation of vegetable oils as pre-lube oils for stamping. Materials and Design, 26(7), 587–593. https://doi.org/10.1016/j.matdes.2004.08.010.

    Article  CAS  Google Scholar 

  66. Cesiulis, H., Zilinskas, A., Padgurskas, J., Kreivaitis, R., & Rubuiza, R. (2018). Chemical, electrochemical and tribological study of various olive oils and their behavior on steel. Chemija, 29(1), 17–28. https://doi.org/10.6001/chemija.v29i1.3640.

    Article  CAS  Google Scholar 

  67. Giraldo, G. D., Hernandez, C. Z., Santa, J. F., & Slerra, R. B. (2022). Palm oil as a biolubricant: Literature review of processing parameters and tribological performance. Journal of Industrial and Engineering Chemistry, 107, 31–44. https://doi.org/10.1016/j.jiec.2021.12.018.

    Article  CAS  Google Scholar 

  68. Mannekote, J. K., & Kailas, S. V. (2011). Experimental investigation of coconut and palm oil as lubricants in four-stroke engine. Japanese Society of Tribologies, 6(1), 76–82. https://doi.org/10.2474/trol.6.76.

    Article  Google Scholar 

  69. Rahim, E. A., & Sasahara, H. (2011). A study of the effect of palm oil as MQL lubricant on high speed drilling of titanium alloys. Tribology International, 44, 309–317. https://doi.org/10.1016/j.triboint.2010.10.032.

    Article  CAS  Google Scholar 

  70. Haseeb, A. S. M. A., Sia, S. Y., Fazal, M. A., & Masjuki, H. H. (2010). Effect of temperature on tribological properties of palm biodiesel. Energy, 35, 1460–1464. https://doi.org/10.1016/j.energy.2009.12.001.

    Article  CAS  Google Scholar 

  71. Razak, D. M., Syahrullail, S., Yahya, A., Mahnud, N., Hashim, N. L. S., & Nugroho, K. (2013). Lubrication on the curve surface structure using palm oil and mineral oil. Procedia Engineering, 68, 607–612. https://doi.org/10.1016/j.proeng.2013.12.228.

    Article  CAS  Google Scholar 

  72. Syahrullail, S., Zubil, B. M., Azwadi, C. S. N., & Ridzuan, M. J. M. (2011). Experimental evaluation of palm oil as lubricant in cold forward extrusion process. International Journal of Mechanical Sciences, 53, 549–555. https://doi.org/10.1016/j.ijmecsci.2011.05.002.

    Article  Google Scholar 

  73. Hameed, H. S. A., Saeed, S. M. E., Ahmed, N. S., Nassar, A. M., Kafrawy, A. F. E., & Hashem, A. I. (2022). Chemical transformation of jojoba oil and soybean oil and study of their uses as bio-lubricants. Industrial Crops & Products, 187, 115256. https://doi.org/10.1016/j.indcrop.2022.115256.

    Article  CAS  Google Scholar 

  74. Peng, D. X. (2016). Room temperature tribological performance of biodiesel (soybean oil). Industrial Lubrication and Tribology, 68(6), 617–623. https://doi.org/10.1108/ILT-10-2015-0143.

    Article  Google Scholar 

  75. Bahari, A., Lewis, R., & Slatter, T. (2016). Hardness characterization of grey cast iron and its tribological performance in a contact lubricated with soybean oil. Journal of Mechanical Engineering Science, 232(1), 190–203. https://doi.org/10.1177/0954406216675895.

    Article  CAS  Google Scholar 

  76. Guo, S., Li, C., Zhang, Y., Yang, M., Jia, D., Zhang, X., Liu, G., Li, R., Bing, Z., & Ji, H. (2018). Analysis of volume ratio of castor/soybean oil mixture on minimum quantity lubrication grinding performance and microstructure evaluation by fractal dimension. Industrial Crops & Products, 111, 494–505. https://doi.org/10.1016/j.indcrop.2017.11.024.

    Article  CAS  Google Scholar 

  77. Siniawski, M. T., Saniei, N., & Stoyanov, P. (2011). Influence of humidity on the tribological performance of unmodified soybean and sunflower oils. Lubrication Science, 23(7), 299–346. https://doi.org/10.1002/ls.157.

    Article  CAS  Google Scholar 

  78. Radulescu, I., Valentin, R. A., Georgescu, C., & Deleanu, L. (2017). Rapeseed oil versus soybean oil—Rheological and tribological properties. In Proceedings of IX international scientific conference (pp. 96–103). https://doi.org/10.15544/balttrib.2017.19.

  79. Iyappan, S. K., & Ghosh, A. (2020). Small quantity lubrication assisted end milling of aluminum using sunflower oil. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 337–345. https://doi.org/10.1007/s40684-019-00081-w.

    Article  Google Scholar 

  80. Siniawski, M. T., Saniei, N., Adhikari, B., & Doezema, L. A. (2007). Influence of fatty acid composition on the tribological performance of two vegetable-based lubricants. Journal of Synthetic Lubrication, 24, 101–110. https://doi.org/10.1002/jsl.32.

    Article  CAS  Google Scholar 

  81. Anand, K. N., & Mathew, J. (2020). Evaluation of size effect and improvement in surface characteristics using sunflower oil-based MQL for sustainable micro-endmilling of Inconel 718. Journal of the Brazilian Society of Mechanical Sciences and Engineering. https://doi.org/10.1007/s40430-020-2239-0.

    Article  Google Scholar 

  82. Fox, N. J., & Stachowlak, G. W. (2003). Boundary lubrication properties of oxidized sunflower oil. Lubrication Engineering, 59(2), 15–20.

    CAS  Google Scholar 

  83. Jabal, M. H., Abdulmunem, A. R., & Abd, H. S. (2019). Experimental investigation of tribological characteristics and emissions with nonedible sunflower oil as a biolubricant. Journal of the Air & Waste Management Association, 69(1), 109–118. https://doi.org/10.1080/10962247.2018.1523070.

    Article  Google Scholar 

  84. Farrington, A., & Slater, J. (1997). Monitoring of engine oil degradation by voltammetric methods utilizing disposable solid wire microelectrodes. The Analyst, 122(6), 593–596. https://doi.org/10.1039/A608022G.

    Article  CAS  ADS  Google Scholar 

  85. Tang, Z., & Li, S. (2014). A review of recent developments of friction modifiers for liquid lubricants (2007–present). Current Opinion in Solid State and Materials Science, 18(3), 119–139. https://doi.org/10.1016/j.cossms.2014.02.002.

    Article  CAS  ADS  Google Scholar 

  86. Khadem, M., Penkov, O. V., Pukha, V. E., Maleyev, M. V., & Kim, D. E. (2016). Ultra-thin carbon-based nanocomposite coatings for superior wear resistance under lubrication with nano-diamond additives. RSC advances, 6(62), 56918–56929. https://doi.org/10.1039/C6RA06413B.

    Article  CAS  ADS  Google Scholar 

  87. Zhu, Y., Wu, J., Chen, M., Liu, X., Xiong, Y., Wang, Y., & Wang, X. (2019). Recent advances in the biotoxicity of metal oxide nanoparticles: Impacts on plants, animals and microorganisms. Chemosphere, 237, 124403. https://doi.org/10.1016/j.chemosphere.2019.124403.

    Article  CAS  PubMed  Google Scholar 

  88. Chen, M., Qin, X., & Zeng, G. (2017). Biodegradation of carbon nanotubes, graphene, and their derivatives. Trends in Biotechnology, 35(9), 836–846. https://doi.org/10.1016/j.tibtech.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  89. Yang, M., & Zhang, M. (2019). Biodegradation of carbon nanotubes by macrophages. Frontiers in Materials, 6, 225. https://doi.org/10.3389/fmats.2019.00225.

    Article  ADS  Google Scholar 

  90. Bianco, A., Kostarelos, K., & Prato, M. (2011). Making carbon nanotubes biocompatible and biodegradable. Chemical Communications, 47(37), 10182–10188. https://doi.org/10.1039/C1CC13011K.

    Article  CAS  PubMed  Google Scholar 

  91. Omrani, E., Menezes, P. L., & Rohatgi, P. K. (2019). Effect of micro-and nano-sized carbonous solid lubricants as oil additives in nanofluid on tribological properties. Lubricants, 7(3), 25. https://doi.org/10.3390/lubricants7030025.

    Article  Google Scholar 

  92. Kumar, V., Dhanola, A., Garg, H. C., & Kumar, G. (2020). Improving the tribological performance of canola oil by adding CuO nanoadditives for steel/steel contact. Materials Today: Proceedings, 28, 1392–1396.

    CAS  Google Scholar 

  93. Sikdar, S., Rahman, M. H., & Menezes, P. L. (2021). Synergistic study of solid lubricant nano-additives incorporated in canola oil for enhancing energy efficiency and sustainability. Sustainability, 14(1), 290. https://doi.org/10.3390/su14010290.

    Article  CAS  Google Scholar 

  94. Reeves, C. J., & Menezes, P. L. (2017). Evaluation of boron nitride particles on the tribological performance of avocado and canola oil for energy conservation and sustainability. The International Journal of Advanced Manufacturing Technology, 89, 3475–3486.

    Article  Google Scholar 

  95. Xu, Z. Y., Hu, K. H., Han, C. L., Hu, X. G., & Xu, Y. F. (2013). Morphological influence of molybdenum disulfide on the tribological properties of rapeseed oil. Tribology Letters, 49, 513–524.

    Article  CAS  Google Scholar 

  96. Bhaumik, S., Maggirwar, R., Datta, S., & Pathak, S. D. (2018). Analyses of anti-wear and extreme pressure properties of castor oil with zinc oxide nano friction modifiers. Applied Surface Science, 449, 277–286.

    Article  CAS  ADS  Google Scholar 

  97. Yu, R., Liu, J., & Zhou, Y. (2019). Experimental study on tribological property of MoS2 nanoparticle in castor oil. Journal of Tribology, 141(10), 102001.

    Article  CAS  Google Scholar 

  98. Karthikeyan, K. M. B., Vijayanand, J., Arun, K., & Rao, V. S. (2021). Thermophysical and wear properties of eco-friendly nano lubricants. Materials Today: Proceedings, 39, 285–291. https://doi.org/10.1016/j.matpr.2020.07.128.

    Article  CAS  Google Scholar 

  99. Laura, R., Archana, L., Benjamin, B., & Arvind, A. (2016). Effect of 2D Boron nitride nanoplate additive on tribological properties of natural oils. Tribology Letters. https://doi.org/10.1007/s11249-016-0778-4.

    Article  Google Scholar 

  100. Nallasamy, P., Saravanakumar, N., Rajaram, G., & Kumar, R. K. R. (2018). Experimental study on the tribological properties of CuO-based biodegradable nanolubricants for machine tool slideways. International Journal of Surface Science and Engineering, 12(3), 194–206. https://doi.org/10.1504/IJSURFSE.2018.094771.

    Article  CAS  Google Scholar 

  101. Shaari, M. Z., Roselina, N. R. N., Kasolang, S., Hyie, K. M., Murad, M. C., & Bakar, M. A. A. (2015). Investigation of tribological properties of palm oil biolubricant modified nanoparticles. Journal Teknologi, 79(9), 69–73. https://doi.org/10.11113/jt.v76.5654.

    Article  Google Scholar 

  102. Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., & Yunus, R. (2013). Experimental analysis of tribological properties of biolubricant with nanoparticle additive. Procedia Engineering, 68, 152–157. https://doi.org/10.1016/j.proeng.2013.12.161.

    Article  CAS  Google Scholar 

  103. Wang, Y., Li, C., Zhang, Y., Li, B., Yang, M., Zhang, X., Guo, S., Liu, G., & Zhai, M. (2017). Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. Journal of Manufacturing Processes, 26, 94–104. https://doi.org/10.1016/j.jmapro.2017.02.001.

    Article  CAS  Google Scholar 

  104. Bahari, A., Lewis, R., & Slatter, T. (2018). Friction and wear phenomena of vegetable oil-based lubricants with additives at severe sliding wear conditions. Tribology Transactions, 61(2), 207–219. https://doi.org/10.1080/10402004.2017.1290858.

    Article  CAS  Google Scholar 

  105. Farhanah, A. N., Syahrullail, S., Musa, M. N., & Bahak, M. Z. (2015). Modification of RBD palm kernel and RBD palm stearin oil with ZDDP additive addition. Jurnal Teknologi, 74(10), 121–126. https://doi.org/10.11113/jt.v74.4842.

    Article  Google Scholar 

  106. Gourav, G., Mir, I. U. H., Ankush, R., & Wani, K. S. (2021). Rheological and tribological behavior of sunflower oil: Effect of chemical modification and tungsten disulfide nanoparticles. Journal of Bio- and Tribo-Corrosion. https://doi.org/10.1007/s40735-021-00593-6.

    Article  Google Scholar 

  107. Zhao, C., Jiao, Y., Chen, Y. K., & Ren, G. (2014). The tribological properties of Zinc Borate ultrafine powder as a lubricant additive in sunflower oil. Tribology Transactions, 57, 425–434. https://doi.org/10.1080/10402004.2013.878776.

    Article  CAS  Google Scholar 

  108. Cortes, V., Sanchez, K., Gonzalez, R., Alcoutlabi, M., & Ortega, J. A. (2020). The performance of SiO2 and TiO2 nanoparticles as lubricant additives in sunflower oil. Lubricants. https://doi.org/10.3390/lubricants8010010.

    Article  Google Scholar 

  109. Jaime, T. T., Karla, A., & Jose, M. D. (2019). Tribological and thermal transport performance of SiO2-based natural lubricants. Lubricants. https://doi.org/10.3390/lubricants7080071.

    Article  Google Scholar 

  110. Kalita, P., Malshe, A. P., Jiang, W., & Shih, A. J. (2010). Tribological study of nano lubricant integrated soybean oil for minimum quantity lubrication (MQL) grinding. Transactions of NAMRI/SME, 38(313), 137–144.

    Google Scholar 

  111. Sukhpal, S. C., Amrit, P., & Tarjeet, S. (2016). Performance evaluation of aluminum 6063 drilling under the influence of nanofluid minimum quantity lubrication. Journal of Cleaner Production, 137, 537–545. https://doi.org/10.1016/j.jclepro.2016.07.139.

    Article  CAS  Google Scholar 

  112. Ge, X., Chai, Z., Shi, Q., Li, J., Tang, J., Liu, Y., & Wang, W. (2023). Functionalized graphene-oxide nanosheets with amino groups facilitate macroscale superlubricity. Friction, 11(2), 187–200.

    Article  CAS  Google Scholar 

  113. Cui, L. J., Geng, H. Z., Wang, W. Y., Chen, L. T., & Gao, J. (2013). Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon, 54, 277–282.

    Article  CAS  Google Scholar 

  114. Cui, J., Zhao, J., Wang, S., Wang, Y., & Li, Y. (2021). Effects of carbon nanotubes functionalization on mechanical and tribological properties of nitrile rubber nanocomposites: Molecular dynamics simulations. Computational Materials Science, 196, 110556.

    Article  CAS  Google Scholar 

  115. Mannekote, J. K., Kailas, S. V., Venkatesh, K., & Kathyayini, N. (2018). Environmentally friendly functional fluids from renewable and sustainable sources-A review. Renewable and Sustainable Energy Reviews, 81, 1787–1801. https://doi.org/10.1016/j.rser.2017.05.274.

    Article  CAS  Google Scholar 

  116. Kumar, V., Wani, M. F., Mannekote, J. K., & Kailas, S. V. (2019). Tribological properties of some fatty acids. Journal of Physics: Conference Series, 1240, 012133. https://doi.org/10.1088/1742-6596/1240/1/012133.

    Article  CAS  Google Scholar 

  117. Salimon, J., Salih, N., & Yousif, E. (2010). Biolubricants: Raw materials, chemical modifications and environmental benefits. European Journal of Lipid Science and Technology, 112(5), 517–613. https://doi.org/10.1002/ejlt.200900205.

    Article  CAS  Google Scholar 

  118. Talib, N., Nasir, R. M., & Rahim, E. A. (2017). Tribological behavior of modified jatropha oil by mixing hexagonal boron nitride nanoparticles as a bio-based lubricant for machining processes. Journal of Cleaner Production, 147, 360–378. https://doi.org/10.1016/j.jclepro.2017.01.086.

    Article  CAS  Google Scholar 

  119. Thampi, A. D., John, A. R., Rani, S., & Arif, M. M. (2021). Chemical modification and tribological evaluation of pure rice bran oil as base stocks for biodegradable lubricants. Journal of the Institution of Engineers (India): Series E, 102(1), 11–16. https://doi.org/10.1007/s40034-020-00174-1.

    Article  CAS  ADS  Google Scholar 

  120. Jumat, S., Bashar, M. A., & Nadia, S. (2011). Optimization of the oxirane ring opening reaction in biolubricant base oil production. Arabian Journal of Chemistry, 9, S1053–S1058. https://doi.org/10.1016/j.arabjc.2011.11.002.

    Article  CAS  Google Scholar 

  121. Arumugam, S., Sriram, G., & Subadhra, L. (2012). Synthesis, chemical modification and tribological evaluation of plant oil as bio-degradable low temperature lubricant. International Conference on Modeling Optimisation and Computing, 38, 1508–1517. https://doi.org/10.1016/j.proeng.2012.06.186.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1A2C2004714). This research was also financially supported by the Ministry of Trade, Industry, and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the International Cooperative R&D Program (Project ID: P0019808).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Eun Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadem, M., Kang, WB. & Kim, DE. Green Tribology: A Review of Biodegradable Lubricants—Properties, Current Status, and Future Improvement Trends. Int. J. of Precis. Eng. and Manuf.-Green Tech. 11, 565–583 (2024). https://doi.org/10.1007/s40684-023-00556-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-023-00556-x

Keywords

Navigation