Skip to main content
Log in

State of the Art of Biodegradable Nanofluids Application in Machining Processes

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing-Green Technology Aims and scope Submit manuscript

Abstract

For ecological and health issues of those involved in the manufacturing, usage, handling, and disposal of cutting fluids, research has been developed for scientific and technological advances in biodegradable cutting fluids, application methods, and solid nanolubricants. Using a minimum quantity of lubricant (MQL) in machining processes proved to be a viable alternative to replacing low-pressure jet machining. Nanoparticles from 5 to 100 nm in size are usually dispersed in vegetable-based cutting fluid; this combination improves the tribological properties of the nanofluid and the machinability of metal alloys like steel, titanium, nickel, and aluminum alloys, with reduced cutting forces, cutting temperature, tool wear and workpiece surface roughness. This work aims to present an updated summary of the lubrication and cooling action provided by using the MQL technique, biodegradable cutting fluids applied by MQL, the use of nanoparticles added to the cutting fluids, and the physical properties of nanoparticles, tribological characteristics, and the behavior of the nanofluids. The changes in machining force, cutting temperature, surface integrity, and wear of cutting tools with biodegradable nano-cutting fluids are also focused on. The use of nanoparticles in cutting fluids associated with MQL application has shown an increase in the lubricating and coolant properties of cutting fluids, which contribute to the reduction of machining force, cutting temperature, workpiece surface roughness, coefficient of friction, and wear of cutting tools. Thus, the results of this summary can provide theoretical support and experimental guidance for exploring the lubricating and cooling properties and the mechanism present in film formation with nanofluids at the chip-too-workpiece interfaces. Knowledge of such phenomena helps to popularize an eco-friendly practice in metal-mechanic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Akmal, M., Layegh, K. S. E., Lazoglu, I., Akgün, A., & Yavaş, Ç. (2017). Friction coefficients on surface finish of AlTiN coated tools in the milling of Ti6Al4V. Procedia CIRP, 58, 596–600. https://doi.org/10.1016/j.procir.2017.03.231

    Article  Google Scholar 

  2. Ali, M. K. A., Xianjun, H., Mai, L., Qingping, C., Turkson, R. F., & Bicheng, C. (2016). Improving the tribological characteristics of piston ring assembly in automotive engines using Al2O3 and TiO2 nanomaterials as nano-lubricant additives. Tribology International, 103, 540–554. https://doi.org/10.1016/j.triboint.2016.08.011

    Article  Google Scholar 

  3. Andersson, S., & Backstrom, G. (1987). Thermal conductivity and heat capacity of single-crystal LiF and CaF2 under hydrostatic pressure. Journal of Physics C: Solid State Physics, 20, 5951–5952. https://doi.org/10.1088/0022-3719/20/35/011

    Article  Google Scholar 

  4. Araújo Junior, A. S., Sales, W. F., da Silva, R. B., Costa, E. S., & Rocha Machado, Á. (2017). Lubri-cooling and tribological behavior of vegetable oils during milling of AISI 1045 steel focusing on sustainable manufacturing. Journal of Cleaner Production, 156, 635–647. https://doi.org/10.1016/j.jclepro.2017.04.061

    Article  Google Scholar 

  5. Arul, K., Mohanavel, V., Kumar, S. R., Maridurai, T., Kumar, K. M., & Ravichandran, M. (2021). Investigation of machining attributes on machining of alloys under nano fluid MQL environment: A review. Materials Today Proceedings, 59, 1312–1318. https://doi.org/10.1016/j.matpr.2021.11.525

    Article  Google Scholar 

  6. Azman, S. S. N., Zulkifli, N. W. M., Masjuki, H., Gulzar, M., & Zahid, R. (2016). Study of tribological properties of lubricating oil blend added with graphene nanoplatelets. Journal of Materials Research, 31, 1932–1938. https://doi.org/10.1557/jmr.2016.24

    Article  Google Scholar 

  7. Babu, M. N., Anandan, V., Yıldırım, Ç. V., Babu, M. D., & Sarıkaya, M. (2022). Investigation of the characteristic properties of graphene-based nanofluid and its effect on the turning performance of Hastelloy C276 alloy. Wear, 510, 204495. https://doi.org/10.1016/j.wear.2022.204495.

    Article  Google Scholar 

  8. Bai, X., Li, C., Dong, L., & Yin, Q. (2019). Experimental evaluation of the lubrication performances of different nanofluids for minimum quantity lubrication (MQL) in milling Ti-6Al-4V. The International Journal of Advanced Manufacturing Technology, 101, 2621–2632. https://doi.org/10.1007/s00170-018-3100-9

    Article  Google Scholar 

  9. Baldin, V., da Silva, L. R. R., Gelamo, R. V., Iglesias, A. B., da Silva, R. B., Khanna, N., & Machado, A. R. (2022). Influence of graphene nanosheets on thermo-physical and tribological properties of sustainable cutting fluids for MQL application in machining processes. Lubricants, 10, 193. https://doi.org/10.3390/lubricants10080193

    Article  Google Scholar 

  10. Berman, D., Erdemir, A., & Sumant, A. V. (2014). Graphene: A new emerging lubricant. Materials Today, 17, 31–42. https://doi.org/10.1016/j.mattod.2013.12.003

    Article  Google Scholar 

  11. Bertolini, R., Ghiotti, A., & Bruschi, S. (2021). Graphene nanoplatelets as additives to MQL for improving tool life in machining Inconel 718 alloy. Wear, 476, 203656. https://doi.org/10.1016/j.wear.2021.203656

    Article  Google Scholar 

  12. Bevara, S., Amrita, M., Kumar, S., Kamesh, B., 2020. Effect of Graphene Nanofluid on Machining Inconel 718, In: Lecture Notes in Mechanical Engineering. Springer, pp. 913–920. https://doi.org/10.1007/978-981-15-1201-8_97

  13. Bonfá, M. M., Costa, É. S., Sales, W. F., Amorim, F. L., Maia, L. H. A., & Machado, Á. R. (2019). Evaluation of tool life and workpiece surface roughness in turning of AISI D6 hardened steel using PCBN tools and minimum quantity of lubricant (MQL) applied at different directions. The International Journal of Advanced Manufacturing Technology, 103, 971–984. https://doi.org/10.1007/s00170-019-03619-z

    Article  Google Scholar 

  14. Bunch, J. S., Verbridge, S. S., Alden, J. S., Zande, A. M., Parpia, J. M., Craighead, H. G., & Mceuen, P. L. (2008). Impermeable atomic membranes. Nano Letters, 8(8), 2458–2462. https://doi.org/10.1021/nl801457b

    Article  Google Scholar 

  15. Çamlı, K. Y., Demirsöz, R., Boy, M., Korkmaz, M. E., Yaşar, N., Giasin, K., et al. (2022). Performance of MQL and Nano-MQL lubrication in machining ER7 steel for train wheel applications. Lubricants, 10(4), 48. https://doi.org/10.3390/lubricants10040048.

    Article  Google Scholar 

  16. Chetan, B. B. C., Ghosh, S., & Rao, P. V. (2016). Application of nanofluids during minimum quantity lubrication: A case study in turning process. Tribology International, 101, 234–246. https://doi.org/10.1016/j.triboint.2016.04.019

    Article  Google Scholar 

  17. Chinchanikar, S., Kore, S. S., & Hujare, P. (2021). A review on nanofluids in minimum quantity lubrication machining. Journal of Manufacturing Processes, 68, 56–70. https://doi.org/10.1016/j.jmapro.2021.05.028

    Article  Google Scholar 

  18. Chinnam, J., Das, D., Vajjha, R., & Satti, J. (2015). Measurements of the contact angle of nanofluids and development of a new correlation. International Communications in Heat and Mass Transfer, 62, 1–12. https://doi.org/10.1016/j.icheatmasstransfer.2014.12.009

    Article  Google Scholar 

  19. Chua Abdullah, M. I. H., Abdollah, M. F. B., Tamaldin, N., Amiruddin, H., & Nuri, N. R. M. (2016). Effect of hexagonal boron nitride nanoparticles as an additive on the extreme pressure properties of engine oil. Industrial Lubrication and Tribology, 68, 441–445. https://doi.org/10.1108/ILT-10-2015-0157

    Article  Google Scholar 

  20. Cui, X., Li, C., Zhang, Y., Jia, D., Zhao, Y., Li, R., & Cao, H. (2019). Tribological properties under the grinding wheel and workpiece interface by using graphene nanofluid lubricant. International Journal of Advanced Manufacturing Technology, 104, 3943–3958. https://doi.org/10.1007/s00170-019-04129-8

    Article  Google Scholar 

  21. Cyprowski, M., Piotrowska, M., Zakowska, Z., & Szadkowska-Stańczyk, I. (2007). Microbial and endotoxin contamination of water-soluble metalworking fluids. International Journal of Occupational Medicine and Environmental Health, 20, 365–371. https://doi.org/10.2478/v10001-007-0036-y

    Article  Google Scholar 

  22. Das, A., Patel, S. K., Biswal, B. B., Sahoo, N., & Pradhan, A. (2020). Performance evaluation of various cutting fluids using MQL technique in hard turning of AISI 4340 alloy steel. Measurement: Journal of the International Measurement Confederation, 150, 107079. https://doi.org/10.1016/j.measurement.2019.107079

    Article  Google Scholar 

  23. De Oliveira, D., Da Silva, R. B., & Gelamo, R. V. (2019). Influence of multilayer graphene platelet concentration dispersed in semi-synthetic oil on the grinding performance of Inconel 718 alloy under various machining conditions. Wear, 426–427, 1371–1383. https://doi.org/10.1016/j.wear.2019.01.114

    Article  Google Scholar 

  24. De Paiva, R. L., de Souza Ruzzi, R., de Oliveira, L. R., Bandarra Filho, E. P., Gonçalves Neto, L. M., Gelamo, R. V., & da Silva, R. B. (2020). Experimental study of the influence of graphene platelets on the performance of grinding of SAE 52100 steel. International Journal of Advanced Manufacturing Technology, 110, 1–12. https://doi.org/10.1007/s00170-020-05866-x

    Article  Google Scholar 

  25. Dhar, N. R., Ahmed, M. T., & Islam, S. (2007). An experimental investigation on effect of minimum quantity lubrication in machining AISI 1040 steel. International Journal of Machine Tools and Manufacture, 47, 748–753. https://doi.org/10.1016/j.ijmachtools.2006.09.017

    Article  Google Scholar 

  26. Dhar, N. R., Kamruzzaman, M., & Ahmed, M. (2006). Effect of minimum quantity lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. Journal of Materials Processing Technology, 172, 299–304. https://doi.org/10.1016/j.jmatprotec.2005.09.022

    Article  Google Scholar 

  27. Diniz, A. E., Marcondes, F. C., & Coppini, N. L. (2013). Tecnologia da Usinagem dos Materiais (8th ed.). Artliber Editora Ltda.

    Google Scholar 

  28. Ezugwu, E. O., da Silva, R. B., Bonney, J., Costa, E. S., Sales, W. F., & Machado, A. R. (2019). Evaluation of performance of various coolant grades when turning Ti-6Al-4V alloy with uncoated carbide tools under high-pressure coolant supplies. Journal of Manufacturing Science and Engineering, 141, 014503. https://doi.org/10.1115/1.4041778

    Article  Google Scholar 

  29. Dubey, V., Sharma, A. K., Vats, P., Pimenov, D. Y., Giasin, K., & Chuchala, D. (2021). Study of a multicriterion decision-making approach to the mql turning of aisi 304 steel using hybrid nanocutting fluid. Materials, 14(23), 7207. https://doi.org/10.3390/ma14237207

    Article  Google Scholar 

  30. Gajrani, K. K., Suvin, P. S., Kailas, S. V., & Mamilla, R. S. (2019). Thermal, rheological, wettability and hard machining performance of MoS2 and CaF2 based minimum quantity hybrid nano-green cutting fluids. Journal of Materials Processing Technology, 266, 125–139. https://doi.org/10.1016/j.jmatprotec.2018.10.036

    Article  Google Scholar 

  31. Gilbert, Y., Veillette, M., & Duchaine, C. (2010). Metalworking fluids biodiversity characterization. Journal of Applied Microbiology, 108, 437–449. https://doi.org/10.1111/j.1365-2672.2009.04433.x

    Article  Google Scholar 

  32. Goindi, G. S., Sarkar, P., Jayal, A. D., Chavan, S. N., & Mandal, D. (2018). Investigation of ionic liquids as additives to canola oil in minimum quantity lubrication milling of plain medium carbon steel. The International Journal of Advanced Manufacturing Technology, 94, 881–896. https://doi.org/10.1007/s00170-017-0970-1

    Article  Google Scholar 

  33. Gong, L., Bertolini, R., Ghiotti, A., He, N., & Bruschi, S. (2020). Sustainable turning of Inconel 718 nickel alloy using MQL strategy based on graphene nanofluids. International Journal of Advanced Manufacturing Technology, 108, 3159–3174. https://doi.org/10.1007/s00170-020-05626-x

    Article  Google Scholar 

  34. Gulzar, M., Masjuki, H. H., Kalam, M. A., Varman, M., Zulkifli, N. W. M., Mufti, R. A., & Zahid, R. (2016). Tribological performance of nanoparticles as lubricating oil additives. Journal of Nanoparticle Research, 18, 223. https://doi.org/10.1007/s11051-016-3537-4

    Article  Google Scholar 

  35. Gupta, M. K., Song, Q., Liu, Z., Sarikaya, M., Jamil, M., Mia, M., Singla, A. K., Khan, A. M., Khanna, N., & Pimenov, D. Y. (2021). Environment and economic burden of sustainable cooling/lubrication methods in machining of Inconel-800. Journal of Cleaner Production, 287, 125074. https://doi.org/10.1016/j.jclepro.2020.125074

    Article  Google Scholar 

  36. Gupta, M. K., Sood, P. K., & Sharma, V. S. (2016). Optimization of machining parameters and cutting fluids during nano-fluid based minimum quantity lubrication turning of titanium alloy by using evolutionary techniques. Journal of Cleaner Production, 135, 1276–1288. https://doi.org/10.1016/j.jclepro.2016.06.184

    Article  Google Scholar 

  37. Hadad, M., & Sadeghi, B. (2013). Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. Journal of Cleaner Production, 54, 332–343. https://doi.org/10.1016/j.jclepro.2013.05.011

    Article  Google Scholar 

  38. Heisel, U., Schaal, M., & Wolf, G. (2009). Burr Formation in milling with minimum quantity lubrication. Production Engineering, 3, 23–30. https://doi.org/10.1007/s11740-008-0138-9

    Article  Google Scholar 

  39. Hoon, S., Won, S., Han, S., & Kim, S. (2019). Numerical investigation of thermal characteristics of spray cooling with minimum quantity lubrication in milling process. Applied Mathematical Modelling, 65, 137–147. https://doi.org/10.1016/j.apm.2018.08.011

    Article  MathSciNet  MATH  Google Scholar 

  40. Huesmann-Cordes, A. G., Meyer, D., Brinksmeier, E., & Schulz, J. (2014). Influence of additives in metalworking fluids on the wear resistance of steels. Procedia CIRP, 13, 108–113. https://doi.org/10.1016/j.procir.2014.04.019

    Article  Google Scholar 

  41. Khandekar, S., Sankar, M. R., Agnihotri, V., & Ramkumar, J. (2012). Nano-cutting fluid for enhancement of metal cutting performance. Materials and Manufacturing Processes, 27, 963–967. https://doi.org/10.1080/10426914.2011.610078

    Article  Google Scholar 

  42. Kıvak, T., Sarıkaya, M., Yıldırım, Ç. V., & Şirin, Ş. (2020). Study on turning performance of PVD TiN coated Al2O3+TiCN ceramic tool under cutting fluid reinforced by nano-sized solid particles. Journal of Manufacturing Processes, 56, 522–539. https://doi.org/10.1016/j.jmapro.2020.05.017

    Article  Google Scholar 

  43. Koca, H. D., Doganay, S., Turgut, A., Tavman, I. H., Saidur, R., & Mahbubul, I. M. (2018). Effect of particle size on the viscosity of nanofluids: A review. Renewable and Sustainable Energy Reviews, 82, 1664–1674. https://doi.org/10.1016/j.rser.2017.07.016

    Article  Google Scholar 

  44. Kramar, D., Krajnik, P., & Kopac, J. (2010). Capability of high pressure cooling in the turning of surface hardened piston rods. Journal of Materials Processing Technology, 210, 212–218. https://doi.org/10.1016/j.jmatprotec.2009.09.002

    Article  Google Scholar 

  45. Kursuncu, B., & Yaras, A. (2018). Assessment of the effect of borax and boric acid additives in cutting fluids on milling of AISI O2 using MQL system. International Journal of Advanced Manufacturing Technology, 95, 2005–2013. https://doi.org/10.1007/s00170-017-1301-2

    Article  Google Scholar 

  46. La Monaca, A., Liao, Z., & Axinte, D. (2020). A digital approach to automatically assess the machining-induced microstructural surface integrity. Journal of Materials Processing Technology, 282, 116703. https://doi.org/10.1016/j.jmatprotec.2020.116703

    Article  Google Scholar 

  47. La Monaca, A., Murray, J. W., Liao, Z., Speidel, A., Robles-Linares, L., Axinte, D. A., Hardy, M., & Clare, A. T. (2021). Surface integrity in metal machining - Part II: Functional performance. International Journal of Machine Tools and Manufacture, 164, 103718. https://doi.org/10.1016/j.ijmachtools.2021.103718

    Article  Google Scholar 

  48. Lawal, S. A., Choudhury, I. A., & Nukman, Y. (2013). A critical assessment of lubrication techniques in machining processes: A case for minimum quantity lubrication using vegetable oil-based lubricant. Journal of Cleaner Production, 41, 210–221. https://doi.org/10.1016/j.jclepro.2012.10.016

    Article  Google Scholar 

  49. Lee, C. G., Hwang, Y. J., Choi, Y. M., Lee, J. K., Choi, C., & Oh, J. M. (2009). A study on the tribological characteristics of graphite nano lubricants. International Journal of Precision Engineering and Manufacturing, 10, 85–90. https://doi.org/10.1007/s12541-009-0013-4

    Article  Google Scholar 

  50. Lee, H., Lee, N., Seo, Y., Eom, J., & Lee, S. (2009). Comparison of frictional forces on graphene and graphite. Nanotechnology, 20(32), 325701. https://doi.org/10.1088/0957-4484/20/32/325701

    Article  Google Scholar 

  51. Lee, K., Hwang, Y., Cheong, S., Choi, Y., Kwon, L., Lee, J., & Kim, S. H. (2009). Understanding the role of nanoparticles in nano-oil lubrication. Tribology Letters, 35, 127–131. https://doi.org/10.1007/s11249-009-9441-7

    Article  Google Scholar 

  52. Li, B., Li, C., Zhang, Y., Wang, Y., Jia, D., Yang, M., Zhang, N., Wu, Q., Han, Z., & Sun, K. (2017). Heat transfer performance of MQL grinding with different nanofluids for Ni-based alloys using vegetable oil. Journal of Cleaner Production, 154, 1–11. https://doi.org/10.1016/j.jclepro.2017.03.213

    Article  Google Scholar 

  53. Li, M., Yu, T., Yang, L., Li, H., Zhang, R., & Wang, W. (2019). Parameter optimization during minimum quantity lubrication milling of TC4 alloy with graphene-dispersed vegetable-oil-based cutting fluid. Journal of Cleaner Production, 209, 1508–1522. https://doi.org/10.1016/j.jclepro.2018.11.147

    Article  Google Scholar 

  54. Li, M., Yu, T., Zhang, R., Yang, L., Li, H., & Wang, W. (2018). MQL milling of TC4 alloy by dispersing graphene into vegetable oil-based cutting fluid. International Journal of Advanced Manufacturing Technology, 99, 1735–1753. https://doi.org/10.1007/s00170-018-2576-7

    Article  Google Scholar 

  55. Li, M., Yu, T., Zhang, R., Yang, L., Ma, Z., Li, B., Wang, X. Z., Wang, W., & Zhao, J. (2020). Experimental evaluation of an eco-friendly grinding process combining minimum quantity lubrication and graphene-enhanced plant-oil-based cutting fluid. Journal of Cleaner Production, 244, 118747. https://doi.org/10.1016/j.jclepro.2019.118747

    Article  Google Scholar 

  56. López De Lacalle, L. N., Angulo, C., Lamikiz, A., & Sánchez, J. A. (2006). Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling. Journal of Materials Processing Technology, 172, 11–15. https://doi.org/10.1016/j.jmatprotec.2005.08.014

    Article  Google Scholar 

  57. Lu, T., Gupta, A., Jayal, A. D., Badurdeen, F., Feng, S. C., Dillon, O. W., & Jawahir, I. S. (2011). Advances in Sustainable Manufacturing. Advances in Sustainable Manufacturing. https://doi.org/10.1007/978-3-642-20183-7

    Article  Google Scholar 

  58. Luo, T., Wei, X., Huang, X., Huang, L., & Yang, F. (2014). Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceramics International, 40, 7143–7149. https://doi.org/10.1016/j.ceramint.2013.12.050

    Article  Google Scholar 

  59. Lv, T., Huang, S., Liu, E., Ma, Y., & Xu, X. (2018). Tribological and machining characteristics of a minimum quantity lubrication (MQL) technology using GO/SiO2 hybrid nanoparticle water-based lubricants as cutting fluids. Journal of Manufacturing Processes, 34, 225–237. https://doi.org/10.1016/j.jmapro.2018.06.016

    Article  Google Scholar 

  60. Lv, T., Huang, S., Liu, E., Ma, Y., & Xu, X. (2018). Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nano-lubricants as cutting fluids. Journal of Manufacturing Processes, 34, 225–237. https://doi.org/10.1016/j.jmapro.2018.06.016

    Article  Google Scholar 

  61. Machado, A. R., Abrão, A. M., Coelho, R. T., & Silva, M. B. D. (2015). Teoria da Usinagem dos Materiais (3rd ed.). Editora Edgard Blucher.

    Google Scholar 

  62. Machado, Á. R., & Wallbank, J. (1997). The effect of extremely low lubricant volumes in machining. Wear, 210, 76–82. https://doi.org/10.1016/S0043-1648(97)00059-8

    Article  Google Scholar 

  63. Mahboob Ali, M. A., Azmi, A. I., Mohd Khalil, A. N., & Leong, K. W. (2017). Experimental study on minimal nanolubrication with surfactant in the turning of titanium alloys. International Journal of Advanced Manufacturing Technology, 92, 117–127. https://doi.org/10.1007/s00170-017-0133-4

    Article  Google Scholar 

  64. Makhesana, M. A., Patel, K. M., & Khanna, N. (2022). Analysis of vegetable oil-based nano-lubricant technique for improving machinability of Inconel 690. Journal of Manufacturing Processes, 77, 708–721. https://doi.org/10.1016/j.jmapro.2022.03.060

    Article  Google Scholar 

  65. Mannekote, J. K., Kailas, S. V., Venkatesh, K., & Kathyayini, N. (2018). Environmentally friendly functional fluids from renewable and sustainable sources-A review. Renewable and Sustainable Energy Reviews, 81, 1787–1801. https://doi.org/10.1016/j.rser.2017.05.274

    Article  Google Scholar 

  66. Maruda, R. W., Krolczyk, G. M., Feldshtein, E., Nieslony, P., Tyliszczak, B., & Pusavec, F. (2017). Tool wear characterizations in finish turning of AISI 1045 carbon steel for MQCL conditions. Wear, 372–373, 54–67. https://doi.org/10.1016/j.wear.2016.12.006

    Article  Google Scholar 

  67. Maruda, R. W., Krolczyk, G. M., Feldshtein, E., Pusavec, F., Szydlowski, M., Legutko, S., & Sobczak-Kupiec, A. (2016). A study on droplets sizes, their distribution and heat exchange for minimum quantity cooling lubrication (MQCL). International Journal of Machine Tools and Manufacture, 100, 81–92. https://doi.org/10.1016/j.ijmachtools.2015.10.008

    Article  Google Scholar 

  68. Muaz, M., & Choudhury, S. K. (2019). Experimental investigations and multi-objective optimization of MQL-assisted milling process for finishing of AISI 4340 steel. Measurement: Journal of the International Measurement Confederation, 138, 557–569. https://doi.org/10.1016/j.measurement.2019.02.048

    Article  Google Scholar 

  69. Murshed, S. M. S. (2011). Determination of effective specific heat of nanofluids. Journal of Experimental Nanoscience, 6, 539–546. https://doi.org/10.1080/17458080.2010.498838

    Article  Google Scholar 

  70. Najiha, M. S., Rahman, M. M., & Kadirgama, K. (2016). Performance of water-based TiO2 nanofluid during the minimum quantity lubrication machining of aluminium alloy, AA6061-T6. Journal of Cleaner Production, 135, 1623–1636. https://doi.org/10.1016/j.jclepro.2015.12.015

    Article  Google Scholar 

  71. Najiha, M. S., Rahman, M. M., & Yusoff, A. R. (2015). Flank wear characterization in aluminum alloy (6061 T6) with nanofluid minimum quantity lubrication environment using an uncoated carbide tool. Journal of Manufacturing Science and Engineering, 137, 061004. https://doi.org/10.1115/1.4030060

    Article  Google Scholar 

  72. Nam, J. S., Lee, P. H., & Lee, S. W. (2011). Experimental characterization of micro-drilling process using nanofluid minimum quantity lubrication. International Journal of Machine Tools and Manufacture, 51, 649–652. https://doi.org/10.1016/j.ijmachtools.2011.04.005

    Article  Google Scholar 

  73. Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., & Angue Mintsa, H. (2007). Temperature and particle-size dependent viscosity data for water-based nanofluids - Hysteresis phenomenon. International Journal of Heat and Fluid Flow, 28, 1492–1506. https://doi.org/10.1016/j.ijheatfluidflow.2007.02.004

    Article  Google Scholar 

  74. Nguyen, T. K., Do, I., & Kwon, P. (2012). A tribological study of vegetable oil enhanced by nano-platelets and implication in MQL machining. International Journal of Precision Engineering and Manufacturing, 13, 1077–1083. https://doi.org/10.1007/s12541-012-0141-0

    Article  Google Scholar 

  75. Obikawa, T., Kamata, Y., & Shinozuka, J. (2006). High-speed grooving with applying MQL. International Journal of Machine Tools and Manufacture, 46, 1854–1861. https://doi.org/10.1016/j.ijmachtools.2005.11.007

    Article  Google Scholar 

  76. O’Hanley, H., Buongiorno, J., McKrell, T., & Hu, L. W. (2012). Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Advances in Mechanical Engineering. https://doi.org/10.1155/2012/181079

    Article  Google Scholar 

  77. Ouyang, T., Tang, W., Pan, M., Tang, J., & Huang, H. (2022). Friction-reducing and anti-wear properties of 3D hierarchical porous graphene/multi-walled carbon nanotube in castor oil under severe condition: Experimental investigation and mechanism study. Wear, 498–499, 204302. https://doi.org/10.1016/j.wear.2022.204302

    Article  Google Scholar 

  78. Omrani, A. N., Esmaeilzadeh, E., Jafari, M., & Behzadmehr, A. (2019). Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diamond and Related Materials, 93, 96–104. https://doi.org/10.1016/j.diamond.2019.02.002

    Article  Google Scholar 

  79. Park, K.-H., Ewald, B., & Kwon, P. Y. (2011). Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling. Journal of Tribology, 133, 031803. https://doi.org/10.1115/1.4004339

    Article  Google Scholar 

  80. Park, K. H., Suhaimi, M. A., Yang, G. D., Lee, D. Y., Lee, S. W., & Kwon, P. (2017). Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). International Journal of Precision Engineering and Manufacturing, 18, 5–14. https://doi.org/10.1007/s12541-017-0001-z

    Article  Google Scholar 

  81. Patole, P. B., & Kulkarni, V. V. (2018). Optimization of process parameters based on surface roughness and cutting force in MQL turning of AISI 4340 using nano fluid. Materials Today: Proceedings, 5, 104–112. https://doi.org/10.1016/j.matpr.2017.11.060

    Article  Google Scholar 

  82. Patole, P. B., Kulkarni, V. V., & Bhatwadekar, S. G. (2021). MQL Machining with nano fluid: A review. Manufacturing Review, 8, 13. https://doi.org/10.1051/mfreview/2021011

    Article  Google Scholar 

  83. Paturi, U. M. R., Maddu, Y. R., Maruri, R. R., & Narala, S. K. R. (2016). Measurement and analysis of surface roughness in WS2 solid lubricant assisted minimum quantity lubrication (MQL) turning of Inconel 718. Procedia CIRP., 40, 138–143. https://doi.org/10.1016/j.procir.2016.01.082

    Article  Google Scholar 

  84. Pavan, R. B., Venu Gopal, A., Amrita, M., & Goriparthi, B. K. (2019). Experimental investigation of graphene nanoplatelets–based minimum quantity lubrication in grinding Inconel 718. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233, 400–410. https://doi.org/10.1177/0954405417728311

    Article  Google Scholar 

  85. Peña-Parás, L., Rodríguez-Villalobos, M., Maldonado-Cortés, D., eGuajardo, M., Rico-Medina, C. S., Elizondo, G., & Quintanilla, D. (2021). Study of hybrid nanofluids of TiO2 and montmorillonite clay nanoparticles for milling of AISI 4340 steel. Wear, 477, 203805. https://doi.org/10.1016/j.wear.2021.203805

    Article  Google Scholar 

  86. Perkins, S. D., & Angenent, L. T. (2010). Potential pathogenic bacteria in metalworking fluids and aerosols from a machining facility. FEMS Microbiology Ecology, 74, 643–654. https://doi.org/10.1111/j.1574-6941.2010.00976.x

    Article  Google Scholar 

  87. Pimenov, D. Y., Mia, M., Gupta, M. K., Machado, A. R., Tomaz, I. V., Sarikaya, M., Wojciechowski, S., Mikolajczyk, T., & Kaplonek, W. (2021). Improvement of machinability of Ti and its alloys using cooling-lubrication techniques: A review and future prospect. Journal of Materials Research and Technology, 11, 719–753. https://doi.org/10.1016/j.jmrt.2021.01.031

    Article  Google Scholar 

  88. Pimenov, D. Y., Mia, M., Gupta, M. K., Machado, A. R., Pintaude, G., Unune, D. R., Khanna, N., Khan, A. M., Tomaz, I., Wojciechowski, S., & Kuntoglu, M. (2022). Resource saving by optimization and machining environments for sustainable manufacturing: A review and future prospects. Renew. Renewable and Sustainable Energy Reviews, 166, 112660. https://doi.org/10.1016/j.rser.2022.112660

    Article  Google Scholar 

  89. Prasher, R., Song, D., Wang, J., & Phelan, P. (2006). Measurements of nanofluid viscosity and its implications for thermal applications. Applied Physics Letters, 89, 67–70. https://doi.org/10.1063/1.2356113

    Article  Google Scholar 

  90. Puls, H., Klocke, F., & Lung, D. (2014). Experimental investigation on friction under metal cutting conditions. Wear, 310, 63–71. https://doi.org/10.1016/j.wear.2013.12.020

    Article  Google Scholar 

  91. Rahman, M., Senthil Kumar, A., & Salam, M. U. (2002). Experimental evaluation on the effect of minimal quantities of lubricant in milling. International Journal of Machine Tools and Manufacture, 42, 539–547. https://doi.org/10.1016/S0890-6955(01)00160-2

    Article  Google Scholar 

  92. Rahman, S. S., Ashraf, M. Z. I., Amin, A. N., Bashar, M. S., Ashik, M. F. K., & Kamruzzaman, M. (2019). Tuning nanofluids for improved lubrication performance in turning biomedical grade titanium alloy. Journal of Cleaner Production, 206, 180–196. https://doi.org/10.1016/j.jclepro.2018.09.150

    Article  Google Scholar 

  93. Rahmati, B., Sarhan, A. A. D., & Sayuti, M. (2014). Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. International Journal of Advanced Manufacturing Technology, 70, 1143–1155. https://doi.org/10.1007/s00170-013-5334-x

    Article  Google Scholar 

  94. Rahmati, B., Sarhan, A. A. D., & Sayuti, M. (2014). Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. Journal of Cleaner Production, 66, 685–691. https://doi.org/10.1016/j.jclepro.2013.10.048

    Article  Google Scholar 

  95. Rifat, M., Rahman, Md. H., & Das, D. (2017). A review on application of nanofluid MQL in machining. AIP Conference Proceedings. https://doi.org/10.1063/1.5018533

    Article  Google Scholar 

  96. Ruggiero, A., D’Amato, R., Merola, M., Valašek, P., & Müller, M. (2017). Tribological characterization of vegetal lubricants: Comparative experimental investigation on Jatropha curcas L. oil, Rapeseed Methyl Ester oil Hydrotreated Rapeseed oil. Tribology International, 109, 529–540. https://doi.org/10.1016/j.triboint.2017.01.030

    Article  Google Scholar 

  97. Sahare, S., Kamble, P., & Dubey, D. N. (2013). Experimental Investigation of machining operation under minimum quantity lubrication. International Journal of Innovations in Engineering and Technology (IJIET), 3, 180–184.

    Google Scholar 

  98. Sahoo, B. C., Vajjha, R. S., Ganguli, R., Chukwu, G. A., & Das, D. K. (2009). Determination of rheological behavior of aluminum oxide nanofluid and development of new viscosity correlations. Petroleum Science and Technology, 27, 1757–1770. https://doi.org/10.1080/10916460802640241

    Article  Google Scholar 

  99. Saleem, M. Q., & Mehmood, A. (2022). Eco-friendly precision turning of superalloy Inconel 718 using MQL based vegetable oils: Tool wear and surface integrity evaluation. Journal of Manufacturing Processes, 73, 112–127. https://doi.org/10.1016/j.jmapro.2021.10.059

    Article  Google Scholar 

  100. Samuel, J., Rafiee, J., Dhiman, P., & Koratkar, N. (2010). Graphene colloidal suspensions as high performance semi-synthetic. The Journal of Physical Chemistry C, 115, 3410–3415. https://doi.org/10.1021/jp110885n

    Article  Google Scholar 

  101. Sankaranarayanan, R., Hynes, N. R. J., Kumar, J. S., & Krolczyk, G. M. (2021). A comprehensive review on research developments of vegetable-oil based cutting fluids for sustainable machining challenges. Journal of Manufacturing Processes, 67, 286–313. https://doi.org/10.1016/j.jmapro.2021.05.002

    Article  Google Scholar 

  102. Sayuti, M., Sarhan, A. A. D., & Hamdi, M. (2013). An investigation of optimum SiO2 nanolubrication parameters in end milling of aerospace Al6061-T6 alloy. International Journal of Advanced Manufacturing Technology, 67, 833–849. https://doi.org/10.1007/s00170-012-4527-z

    Article  Google Scholar 

  103. Sen, B., Mia, M., Krolczyk, G. M., Mandal, U. K., & Mondal, S. P. (2019). Eco-Friendly cutting fluids in minimum quantity lubrication assisted machining: A review on the perception of sustainable manufacturing. International Journal of Precision Engineering and Manufacturing - Green Technology Korean Society for Precision Engineering, 8, 249–280. https://doi.org/10.1007/s40684-019-00158-6

    Article  Google Scholar 

  104. Senevirathne, S.W.M.A.I., Punchihewa, H.K.G., Kosgahakumbura, K.N.M.D.S.K., Dissanayake, D.M.P.P., Sahathevan, T., 2016. Tool wear in machining AISI D2 steel with minimum quantity lubrication using alternative cutting fluids, In: 2016 Manufacturing & Industrial Engineering Symposium (MIES). IEEE, pp. 1–6. https://doi.org/10.1109/mies.2016.7780253

  105. Setti, D., Ghosh, S., & Rao, P. V. (2012). Application of nano cutting fluid under minimum quantity lubrication (MQL) technique to improve grinding of Ti – 6Al – 4V Alloy. World Academy of Science, Engineering and Technology, International Science Index 70. International Journal of Mechanical Aerospace Industrial Mechatronic and Manufacturing Engineering. https://doi.org/10.5281/zenodo.1082495

  106. Şirin, Ş, & Kıvak, T. (2021). Effects of hybrid nanofluids on machining performance in MQL-milling of Inconel X-750 superalloy. Journal of Manufacturing Processes, 70, 163–176. https://doi.org/10.1016/j.jmapro.2021.08.038

    Article  Google Scholar 

  107. Şirin, Ş, & Kivak, T. (2019). Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy. Tribology International, 137, 180–192. https://doi.org/10.1016/j.triboint.2019.04.042

    Article  Google Scholar 

  108. Sikdar, S., Rahman, M. H., & Menezes, P. L. (2022). Synergistic study of solid lubricant nano-additives incorporated in canola oil for enhancing energy efficiency and sustainability. Sustainability, 14, 290. https://doi.org/10.3390/su14010290

    Article  Google Scholar 

  109. Sharma, A. K., Tiwari, A. K., Dixit, A. R., & Singh, R. K. (2020). Measurement of machining forces and surface roughness in turning of AISI 304 steel using alumina-MWCNT hybrid nanoparticles enriched cutting fluid. Measurement, 150, 107078. https://doi.org/10.1016/j.measurement.2019.107078

    Article  Google Scholar 

  110. Sharma, A. K., Singh, R. K., Dixit, A. R., & Tiwari, A. K. (2017). Novel uses of alumina-MoS2 hybrid nanoparticle enriched cutting fluid in hard turning of AISI 304 steel. Journal of Manufacturing Processes, 30, 467–482. https://doi.org/10.1016/j.jmapro.2017.10.016

    Article  Google Scholar 

  111. Sharma, A. K., Singh, R. K., Dixit, A. R., & Tiwari, A. K. (2016). Characterization and experimental investigation of Al2O3 nanoparticle based cutting fluid in turning of AISI 1040 steel under minimum quantity lubrication (MQL). Materials Today: Proceedings, 3, 1899–1906. https://doi.org/10.1016/j.matpr.2016.04.090

    Article  Google Scholar 

  112. Sharma, A. K., Tiwari, A. K., & Dixit, A. R. (2016). Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. Journal of Cleaner Production, 127, 1–18. https://doi.org/10.1016/j.jclepro.2016.03.146

    Article  Google Scholar 

  113. Sharma, A. K., Tiwari, A. K., Dixit, A. R., & Singh, R. K. (2017). Investigation into performance of SiO2 nanoparticle based cutting fluid in machining process. Materials Today: Proceedings, 4, 133–141. https://doi.org/10.1016/j.matpr.2017.01.006

    Article  Google Scholar 

  114. Sharma, A. K., Tiwari, A. K., Dixit, A. R., Singh, R. K., & Singh, M. (2018). Novel uses of alumina/graphene hybrid nanoparticle additives for improved tribological properties of lubricant in turning operation. Tribology International, 119, 99–111. https://doi.org/10.1016/j.triboint.2017.10.036

    Article  Google Scholar 

  115. Sharma, A. K., Tiwari, A. K., Singh, R. K., & Dixit, A. R. (2016). Tribological investigation of TiO2 nanoparticle based cutting fluid in machining under minimum quantity lubrication (MQL). Materials Today: Proceedings, 3, 2155–2162. https://doi.org/10.1016/j.matpr.2016.04.121

    Article  Google Scholar 

  116. Sharma, P., Sidhu, B. S., & Sharma, J. (2015). Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication. Journal of Cleaner Production, 108, 72–79. https://doi.org/10.1016/j.jclepro.2015.07.122

    Article  Google Scholar 

  117. Sidik, N. A. C., Samion, S., Ghaderian, J., & Yazid, M. N. A. W. M. (2017). Recent progress on the application of nanofluids in minimum quantity lubrication machining: A review. International Journal of Heat and Mass Transfer, 108, 79–89. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.105

    Article  Google Scholar 

  118. Singh, H., Sharma, V. S., & Dogra, M. (2020). Exploration of graphene assisted vegetables oil based minimum quantity lubrication for surface grinding of TI-6AL-4V-ELI. Tribology International, 144, 106113. https://doi.org/10.1016/j.triboint.2019.106113

    Article  Google Scholar 

  119. Singh, H., Sharma, V. S., Singh, S., & Dogra, M. (2019). Nanofluids assisted environmental friendly lubricating strategies for the surface grinding of titanium alloy: Ti6Al4V-ELI. Journal of Manufacturing Processes, 39, 241–249. https://doi.org/10.1016/j.jmapro.2019.02.004

    Article  Google Scholar 

  120. Singh, R., Dureja, J. S., Dogra, M., Gupta, M. K., & Mia, M. (2019). Influence of graphene-enriched nanofluids and textured tool on machining behavior of Ti-6Al-4V alloy. International Journal of Advanced Manufacturing Technology, 105, 1685–1697. https://doi.org/10.1007/s00170-019-04377-8

    Article  Google Scholar 

  121. Singh, R., Dureja, J. S., Dogra, M., Gupta, M. K., Mia, M., & Song, Q. (2020). Wear behavior of textured tools under graphene-assisted minimum quantity lubrication system in machining Ti-6Al-4V alloy. Tribology International, 145, 106183. https://doi.org/10.1016/j.triboint.2020.106183

    Article  Google Scholar 

  122. Singh, R. K., Sharma, A. K., Bishwajeet, M. V., Gaurav, K., Nag, A., Kumar, A., Dixit, A. R., Mandal, A., & Kumar Das, A. (2018). Influence of graphene-based nanofluid with minimum quantity lubrication on surface roughness and cutting temperature in turning operation. Materials Today: Proceedings, 5, 24578–24586. https://doi.org/10.1016/j.matpr.2018.10.255

    Article  Google Scholar 

  123. Singh, R. K., Sharma, A. K., Dixit, A. R., Tiwari, A. K., Pramanik, A., & Mandal, A. (2017). Performance evaluation of alumina-graphene hybrid nano-cutting fluid in hard turning. Journal of Cleaner Production, 162, 830–845. https://doi.org/10.1016/j.jclepro.2017.06.104

    Article  Google Scholar 

  124. Şirin, Ş, & Kıvak, T. (2019). Performances of different eco-friendly nanofluid lubricants in the milling of Inconel X-750 superalloy. Tribology International, 137, 180–192. https://doi.org/10.1016/j.triboint.2019.04.042

    Article  Google Scholar 

  125. Skerlos, S. J., Zhao, F., Sutherland, J. W., Haapala, K. R., Camelio, J., Dornfeld, D. A., Jawahir, I. S., Clarens, A. F., & Rickli, J. L. (2013). A review of engineering research in sustainable manufacturing. Journal of Manufacturing Science and Engineering, 135, 041013. https://doi.org/10.1115/1.4024040

    Article  Google Scholar 

  126. Su, Y., Gong, L., & Chen, D. (2016). Dispersion stability and thermophysical properties of environmentally friendly graphite oil-based nanofluids used in machining. Advances in Mechanical Engineering, 8, 1–11. https://doi.org/10.1177/1687814015627978

    Article  Google Scholar 

  127. Su, Y., Gong, L., Li, B., Liu, Z., & Chen, D. (2016). Performance evaluation of nanofluid MQL with vegetable-based oil and ester oil as base fluids in turning. The International Journal of Advanced Manufacturing Technology, 83, 2083–2089. https://doi.org/10.1007/s00170-015-7730-x

    Article  Google Scholar 

  128. Talib, N., Nasir, R. M., & Rahim, E. A. (2017). Tribological behaviour of modified jatropha oil by mixing hexagonal boron nitride nanoparticles as a bio-based lubricant for machining processes. Journal of Cleaner Production, 147, 360–378. https://doi.org/10.1016/j.jclepro.2017.01.086

    Article  Google Scholar 

  129. Talib, N., & Rahim, E. A. (2018). Performance of modified jatropha oil in combination with hexagonal boron nitride particles as a bio-based lubricant for green machining. Tribology International, 118, 89–104. https://doi.org/10.1016/j.triboint.2017.09.016

    Article  Google Scholar 

  130. Tebaldo, V., di Confiengo, G. G., & Faga, M. G. (2017). Sustainability in machining: “Eco-friendly” turning of Inconel 718. Surface characterisation and economic analysis. Journal of Cleaner Production., 140, 1567–1577. https://doi.org/10.1016/j.jclepro.2016.09.216

    Article  Google Scholar 

  131. Teng, T.-P., Fang, Y.-B., Hsu, Y.-C., & Lin, L. (2014). Evaluating stability of aqueous multiwalled carbon nanotube nanofluids by using different stabilizers. Journal of Nanomaterials, 2014, 1–15. https://doi.org/10.1155/2014/693459

    Article  Google Scholar 

  132. Thomas, T. R. (1999). Rough Surfaces (2nd ed.). Imperial College Press.

    Google Scholar 

  133. Timofeeva, E. V., Smith, D. S., Yu, W., France, D. M., Singh, D., & Routbort, J. L. (2010). Particle size and interfacial effects on thermo-physical and heat transfer characteristics of water-based α-SiC nanofluids. Nanotechnology. https://doi.org/10.1088/0957-4484/21/21/215703

    Article  Google Scholar 

  134. Trivedi, K. (2021). Analyzing lubrication properties of magnetic lubricant synthesized in two lubricating oils. Wear, 477, 203861. https://doi.org/10.1016/j.wear.2021.203861

    Article  Google Scholar 

  135. Upadhyay, V., Jain, P. K., & Mehta, N. K. (2013). Machining with minimum quantity lubrication: A step towards green manufacturing. International Journal of Machining and Machinability of Materials, 3, 349–371. https://doi.org/10.1504/ijmmm.2013.054277

    Article  Google Scholar 

  136. Uysal, A. (2018). An experimental study on cutting temperature and burr in milling of ferritic stainless steel under MQL using nano graphene reinforced cutting fluid. Advanced Materials Proceedings, 2, 560–563. https://doi.org/10.5185/amp/038

    Article  Google Scholar 

  137. Uysal, A. (2016). Investigation of flank wear in mql milling of ferritic stainless steel by using nano graphene reinforced vegetable cutting fluid. Industrial Lubrication and Tribology, 68, 446–451. https://doi.org/10.1108/ilt-10-2015-0141

    Article  Google Scholar 

  138. Krishna, P. V., Srikant, R. R., & Rao, D. N. (2010). Experimental investigation on the performance of nanoboric acid suspensions in SAE-40 and coconut oil during turning of AISI 1040 steel. International Journal of Machine Tools and Manufacture, 50(10), 911–916. https://doi.org/10.1016/j.ijmachtools.2010.06.001

    Article  Google Scholar 

  139. Vilar, E. O., & Segundo, J. E. D. V. (2016). Grafeno: Uma revisão sobre propriedades, mecanismos de produção e potenciais aplicações em sistemas energéticos. Revista Eletrônica de Materiais e Processos, 11(2), 54–57.

    Google Scholar 

  140. Wang, X., Li, C., Zhang, Y., Ding, W., Yang, M., Gao, T., Cao, H., Xu, X., Wang, D., Said, Z., Debnath, S., Jamil, M., & Ali, H. M. (2020). Vegetable oil-based nanofluid minimum quantity lubrication turning: Academic review and perspectives. Journal of Manufacturing Processes, 59, 76–97. https://doi.org/10.1016/j.jmapro.2020.09.044

    Article  Google Scholar 

  141. Wang, X.J., Wang, Z.F., Li, Z.Z. (2017). Experimental Investigation on Viscosity of Nanofluids. International conference on Advances in Thermal Systems, Materials and Design Engineering (ATSMDE2017) 650, 134–138. https://doi.org/10.4028/www.scientific.net/amr.650.134

  142. Wang, Y., Li, C., Zhang, Y., Li, B., Yang, M., Zhang, X., Guo, S., & Liu, G. (2016). Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids. Tribology International, 99, 198–210. https://doi.org/10.1016/j.triboint.2016.03.023

    Article  Google Scholar 

  143. Wang, Y., Li, C., Zhang, Y., Li, B., Yang, M., Zhang, X., Guo, S., Liu, G., & Zhai, M. (2017). Comparative evaluation of the lubricating properties of vegetable-oil-based nanofluids between frictional test and grinding experiment. Journal of Manufacturing Processes, 26, 94–104. https://doi.org/10.1016/j.jmapro.2017.02.001

    Article  Google Scholar 

  144. Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Jia, D., Hou, Y., & Mao, C. (2016). Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils. Journal of Cleaner Production, 127, 487–499. https://doi.org/10.1016/j.jclepro.2016.03.121

    Article  Google Scholar 

  145. Wickramasinghe, K. C., Sasahara, H., Rahim, E. A., & Perera, G. I. P. (2020). Green Metalworking Fluids for sustainable machining applications: A review. Journal of Cleaner Production, 257, 120552. https://doi.org/10.1016/j.jclepro.2020.120552

    Article  Google Scholar 

  146. Wusatowska-Sarnek, A. M., Dubiel, B., Czyrska-Filemonowicz, A., Bhowal, P. R., Salah, N. B., & Klemberg-Sapieha, J. E. (2011). Microstructural characterization of the white etching layer in nickel-based superalloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science., 42, 3813–3825. https://doi.org/10.1007/s11661-011-0779-8

    Article  Google Scholar 

  147. Xie, H. M., Jiang, B., Wang, Q. H., Xia, X. S., & Pan, F. S. (2016). Effects of combined additions of SiO2 and MoS2 nanoparticles as lubricant additive on the tribological properties of AZ31 magnesium alloy. Science China Technological Sciences, 59, 689–698. https://doi.org/10.1007/s11431-015-5990-1

    Article  Google Scholar 

  148. Yan, J., Zhang, Z., & Kuriyagawa, T. (2011). Effect of nanoparticle lubrication in diamond turning of reaction-bonded SiC. International Journal of Automation Technology, 5, 307–312.

    Article  Google Scholar 

  149. Yan, R., Simpson, J. R., Bertolazzi, S., Brivio, J., Watson, M., Wu, X., Kis, A., Luo, T., Hight Walker, A. R., & Xing, H. G. (2014). Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. ACS Nano, 8, 986–993. https://doi.org/10.1021/nn405826k

    Article  Google Scholar 

  150. Yıldırım, Ç. V. (2020). Investigation of hard turning performance of eco-friendly cooling strategies: Cryogenic cooling and nanofluid based MQL. Tribology International, 144, 106127. https://doi.org/10.1016/j.triboint.2019.106127

    Article  Google Scholar 

  151. Yıldırım, Ç. V., Kıvak, T., & Erzincanlı, F. (2019). Tool wear and surface roughness analysis in milling with ceramic tools of Waspaloy: A comparison of machining performance with different cooling methods. Journal of the Brazilian Society of Mechanical Sciences and Engineering. https://doi.org/10.1007/s40430-019-1582-5

    Article  Google Scholar 

  152. Yıldırım, Ç. V., Kıvak, T., Sarıkaya, M., & Erzincanlı, F. (2017). Determination of MQL parameters contributing to sustainable machining in the milling of nickel-base Superalloy Waspaloy. Arabian Journal for Science and Engineering, 42, 4667–4681. https://doi.org/10.1007/s13369-017-2594-z

    Article  Google Scholar 

  153. Yıldırım, Ç. V., Sarıkaya, M., Kıvak, T., & Şirin, Ş. (2019). The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel. Tribiology International, 134, 443–456. https://doi.org/10.1016/j.triboint.2019.02.027

    Article  Google Scholar 

  154. Yuan, S., Hou, X., Wang, L., & Chen, B. (2018). Experimental investigation on the compatibility of nanoparticles with vegetable oils for nanofluid minimum quantity lubrication machining. Tribology Letters, 66, 106. https://doi.org/10.1007/s11249-018-1059-1

    Article  Google Scholar 

  155. Zhang, Y., Li, C., Jia, D., Li, B., Wang, Y., Yang, M., Hou, Y., & Zhang, X. (2016). Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 232, 100–115. https://doi.org/10.1016/j.jmatprotec.2016.01.031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Rosa Ribeiro da Silva.

Ethics declarations

Conflict of Interest

We wish to confirm that there are no known conflicts of interest associated with this publication, and there has been no significant financial support for this work that could have influenced its outcome. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that all have approved the order of authors listed in our manuscript. We confirm that we have given due consideration to the protection of intellectual property associated with this work and that there are no impediments to publication, including the timing of publication, concerning intellectual property. In so doing, we confirm that we have followed the regulations of our institutions concerning intellectual property. We understand that the Corresponding Author is the sole contact for the Editorial process (including Editorial Manager and direct communications with the office). He is responsible for communicating with the other authors about progress, submissions of revisions, and final approval of proofs. We confirm that we have provided a current, correct email address accessible by the Corresponding Author and configured to accept email from leorrs@ufu.br.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baldin, V., da Silva, L.R.R., Machado, A.R. et al. State of the Art of Biodegradable Nanofluids Application in Machining Processes. Int. J. of Precis. Eng. and Manuf.-Green Tech. 10, 1299–1336 (2023). https://doi.org/10.1007/s40684-022-00486-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40684-022-00486-0

Keywords

Navigation