Skip to main content
Log in

DEM modelling of unsaturated seepage flows through porous media

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

A new hybrid discrete–continuum numerical approach that explores the key advantages of both discrete and continuum approaches is proposed to model unsaturated seepage flows through porous media. In contrast to existing approaches where a porous medium is often represented by a continuum medium or required a background mesh, the proposed approach explicitly exploits the discrete contact network formed by an assembly of discrete solid particles. Each solid particle is assumed to occupy an equivalent-continuum space, over which the governing equations for unsaturated seepage flow are derived. These governing equations are then discretised and solved on the discrete contact network through a new numerical procedure that links micro-diffusivity to the macro-one. Thanks to this concept, the proposed approach is capable of describing the nature of flow in unsaturated porous media at the microscale level. This unique feature also enables the proposed approach to naturally simulate the water flow through the heterogeneous porous media without any ad hoc treatments. In this paper, the mathematical concept of the proposed approach together with its implementation features and performances for a rigid porous media is presented and discussed. The focus is placed on its application to the discrete element method (DEM), although the proposed concept, in general, can be applied to any other methods possessing similar features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Bui HH, Nguyen GD (2017) A coupled fluid-solid SPH approach to modelling flow through deformable porous media. Int J Solids Struct 125:244–264. https://doi.org/10.1016/j.ijsolstr.2017.06.022

    Article  Google Scholar 

  2. Tran KM, Bui HH, Kodikara J, Sanchez M (2019) Soil curling process and its influencing factors. Can Geotech J. https://doi.org/10.1139/cgj-2018-0489

    Article  Google Scholar 

  3. Tran KM, Bui HH, Sánchez M, Kodikara J (2020) A DEM approach to study desiccation processes in slurry soils. Comput Geotech 120:103448. https://doi.org/10.1016/j.compgeo.2020.103448

    Article  Google Scholar 

  4. Teodosio B, Baduge KSK, Mendis P (2020) Simulating reactive soil and substructure interaction using a simplified hydro-mechanical finite element model dependent on soil saturation, suction and moisture-swelling relationship. Comput Geotech 119:103359. https://doi.org/10.1016/j.compgeo.2019.103359

    Article  Google Scholar 

  5. Hillel D (2003) Introduction to Environmental Soil Physics. Academic Press, Burlington

    Google Scholar 

  6. Teodosio B, Baduge KSK, Mendis P (2020) Relationship between reactive soil movement and footing deflection: A coupled hydro-mechanical finite element modelling perspective. Comput Geotech 126:103720. https://doi.org/10.1016/j.compgeo.2020.103720

    Article  Google Scholar 

  7. Zhou ZQ, Ranjith PG, Yang WM, Shi SS, Wei CC, Li ZH (2019) A new set of scaling relationships for DEM-CFD simulations of fluid–solid coupling problems in saturated and cohesiveless granular soils. Comp Part Mech 6(4):657–669. https://doi.org/10.1007/s40571-019-00246-z

    Article  Google Scholar 

  8. Feddes RA, Kabat P, Van Bakel PJT, Bronswijk JJB, Halbertsma J (1988) Modelling soil water dynamics in the unsaturated zone — State of the art. J Hydrol 100(1):69–111. https://doi.org/10.1016/0022-1694(88)90182-5

    Article  Google Scholar 

  9. Eymard R, Gutnic M, Hilhorst D (1999) The finite volume method for Richards equation. Comput Geosci 3(3):259–294. https://doi.org/10.1023/a:1011547513583

    Article  MathSciNet  MATH  Google Scholar 

  10. Yamaguchi Y, Takase S, Moriguchi S, Terada K (2020) Solid–liquid coupled material point method for simulation of ground collapse with fluidization. Comp Part Mech 7(2):209–223. https://doi.org/10.1007/s40571-019-00249-w

    Article  Google Scholar 

  11. Song Y, Liu Y, Zhang X (2020) A transport point method for complex flow problems with free surface. Comp Part Mech 7(2):377–391. https://doi.org/10.1007/s40571-019-00282-9

    Article  Google Scholar 

  12. Le TMH, Gallipoli D, Sanchez M, Wheeler SJ (2012) Stochastic analysis of unsaturated seepage through randomly heterogeneous earth embankments. Int J Numer Anal Methods Geomech 36(8):1056–1076. https://doi.org/10.1002/nag.1047

    Article  Google Scholar 

  13. Le TMH, Sanchez M, Gallipoli D, Wheeler S (2019) Probabilistic Study of Rainfall-Triggered Instabilities in Randomly Heterogeneous Unsaturated Finite Slopes. Transp Porous Media 126(1):199–222. https://doi.org/10.1007/s11242-018-1140-0

    Article  MathSciNet  Google Scholar 

  14. Zhang D (1998) Numerical solutions to statistical moment equations of groundwater flow in nonstationary, bounded, heterogeneous media. Water Resour Res 34(3):529–538. https://doi.org/10.1029/97wr03607

    Article  Google Scholar 

  15. Dagan G (1993) Higher-order correction of effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution. Transp Porous Media 12(3):279–290. https://doi.org/10.1007/bf00624462

    Article  Google Scholar 

  16. Amir O, Neuman SP (2001) Gaussian Closure of One-Dimensional Unsaturated Flow in Randomly Heterogeneous Soils. Transp Porous Media 44(2):355–383. https://doi.org/10.1023/a:1010706223350

    Article  MathSciNet  Google Scholar 

  17. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  18. Tran MK, Shin H, Byun Y-H, Lee J-S (2012) Mineral dissolution effects on mechanical strength. Eng Geol 125:26–34. https://doi.org/10.1016/j.enggeo.2011.10.014

    Article  Google Scholar 

  19. Lee J-S, Tran MK, Lee C (2012) Evolution of layered physical properties in soluble mixture: experimental and numerical approaches. Eng Geol 143–144:37–42. https://doi.org/10.1016/j.enggeo.2012.06.008

    Article  Google Scholar 

  20. Tran MK, Byun Y-H, Shin H-S, Lee J-S (2011) Behaviors of soluble granular media during particle dissolution. Int J Geo-Eng 3(2):39–49

    Google Scholar 

  21. Vo T-T (2020) Erosion dynamics of wet particle agglomerates. Comp Part Mech. https://doi.org/10.1007/s40571-020-00357-y

    Article  Google Scholar 

  22. Bayesteh H, Ghasempour T (2019) Role of the location and size of soluble particles in the mechanical behavior of collapsible granular soil: a DEM simulation. Comp Part Mech 6(3):327–341. https://doi.org/10.1007/s40571-018-00216-x

    Article  Google Scholar 

  23. Gan Y, Maggi F, Buscarnera G, Einav I (2013) A particle–water based model for water retention hysteresis. Géotech Lett 3(4):152–161. https://doi.org/10.1680/geolett.13.00046

    Article  Google Scholar 

  24. Zhu F, Zhao J (2020) Multiscale modeling of continuous crushing of granular media: the role of grain microstructure. Comp Part Mech. https://doi.org/10.1007/s40571-020-00355-0

    Article  Google Scholar 

  25. Feng Y, Yuan Z (2020) Discrete element method modeling of granular flow characteristics transition in mixed flow. Comp Part Mech. https://doi.org/10.1007/s40571-019-00309-1

    Article  Google Scholar 

  26. Yang P, Zang M, Zeng H (2020) DEM–FEM simulation of tire–sand interaction based on improved contact model. Comp Part Mech 7(4):629–643. https://doi.org/10.1007/s40571-019-00293-6

    Article  Google Scholar 

  27. Wang J-P, Zeng G-H, Yu H-S (2019) A DEM investigation of water-bridged granular materials at the critical state. Comp Part Mech 6(4):637–655. https://doi.org/10.1007/s40571-019-00243-2

    Article  Google Scholar 

  28. Vo T-T (2020) Rheology and granular texture of viscoinertial simple shear flows. J Rheol 64(5):1133–1145. https://doi.org/10.1122/8.0000033

    Article  Google Scholar 

  29. Tran KM, Bui HH, Kodikara J, Sánchez M (2018) Numerical simulation of soil curling during desiccation process. Paper presented at the the 7th international conference on unsaturated soils, Hong Kong

  30. Gui YL, Hu W, Zhao ZY, Zhu X (2018) Numerical modelling of a field soil desiccation test using a cohesive fracture model with Voronoi tessellations. Acta Geotech 13(1):87–102. https://doi.org/10.1007/s11440-017-0558-9

    Article  Google Scholar 

  31. Zhao G-F (2015) High performance computing and the discrete element model. Elsevier, Amsterdam. https://doi.org/10.1016/B978-1-78548-031-7.50009-6

    Book  Google Scholar 

  32. Itasca (2008) PFC 2D&3D user's manual. Itasca, Minneapolis

  33. Duan K, Kwok CY, Wu W, Jing L (2018) DEM modeling of hydraulic fracturing in permeable rock: influence of viscosity, injection rate and in situ states. Acta Geotech 13(5):1187–1202. https://doi.org/10.1007/s11440-018-0627-8

    Article  Google Scholar 

  34. Shimizu H, Murata S, Ishida T (2011) The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution. Int J Rock Mech Min Sci 48(5):712–727. https://doi.org/10.1016/j.ijrmms.2011.04.013

    Article  Google Scholar 

  35. Prat M (2002) Recent advances in pore-scale models for drying of porous media. Chem Eng J 86(1):153–164. https://doi.org/10.1016/S1385-8947(01)00283-2

    Article  MathSciNet  Google Scholar 

  36. Kharaghani A, Metzger T, Tsotsas E (2012) An irregular pore network model for convective drying and resulting damage of particle aggregates. Chem Eng Sci 75:267–278. https://doi.org/10.1016/j.ces.2012.03.038

    Article  Google Scholar 

  37. Yuan C, Chareyre B, Darve F (2018) Deformation and stresses upon drainage of an idealized granular material. Acta Geotech 13(4):961–972. https://doi.org/10.1007/s11440-017-0601-x

    Article  Google Scholar 

  38. Wang H, Anderson M (1995) Introduction to groundwater modeling: finite difference and finite element methods, 1st edn. Academic Press, London

    Google Scholar 

  39. Gili JA, Alonso EE (2002) Microstructural deformation mechanisms of unsaturated granular soils. Int J Numer Anal Methods Geomech 26(5):433–468. https://doi.org/10.1002/nag.206

    Article  MATH  Google Scholar 

  40. Mohamed A-MO, Antia HE, Gosine RG (2002) Water flow in unsaturated soils in microgravity environment. J Geotech Geoenviron Eng 128(10):814–823. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(814)

    Article  Google Scholar 

  41. Zaidel J, Russo D (1992) Estimation of finite difference interblock conductivities for simulation of infiltration into initially dry soils. Water Resour Res 28(9):2285–2295. https://doi.org/10.1029/92wr00914

    Article  Google Scholar 

  42. Haverkamp R, Vauclin M (1979) A note on estimating finite difference interblock hydraulic conductivity values for transient unsaturated flow problems. Water Resour Res 15(1):181–187. https://doi.org/10.1029/WR015i001p00181

    Article  Google Scholar 

  43. Berg P (1999) Long-term simulation of water movement in soils using mass-conserving procedures. Adv Water Resour 22(5):419–430. https://doi.org/10.1016/S0309-1708(98)00032-3

    Article  Google Scholar 

  44. Lam L, Fredlund DG, Barbour SL (1987) Transient seepage model for saturated–unsaturated soil systems: a geotechnical engineering approach. Can Geotech J 24(4):565–580. https://doi.org/10.1139/t87-071

    Article  Google Scholar 

  45. El-Kadi AI, Ling G (1993) The Courant and Peclet Number criteria for the numerical solution of the Richards Equation. Water Resour Res 29(10):3485–3494. https://doi.org/10.1029/93wr00929

    Article  Google Scholar 

  46. Haverkamp R, Vauclin M, Touma J, Wierenga PJ, Vachaud G (1977) A comparison of numerical simulation models for one-dimensional infiltration. Soil Sci Soc Am J 41(2):285–294. https://doi.org/10.2136/sssaj1977.03615995004100020024x

    Article  Google Scholar 

  47. Zaradny H (1978) Boundary conditions in modelling water flow in unsaturated soils. Soil Sci 125(2):75–82

    Article  Google Scholar 

  48. Celia MA, Bouloutas ET, Zarba RL (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26(7):1483–1496. https://doi.org/10.1029/WR026i007p01483

    Article  Google Scholar 

  49. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44(5):892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  50. Liu K, Vardon PJ, Hicks MA, Arnold P (2017) Combined effect of hysteresis and heterogeneity on the stability of an embankment under transient seepage. Eng Geol 219:140–150. https://doi.org/10.1016/j.enggeo.2016.11.011

    Article  Google Scholar 

  51. Le TMH, Gallipoli D, Sanchez M, Wheeler S (2013) Rainfall-induced differential settlements of foundations on heterogeneous unsaturated soils. Géotechnique 63(15):1346–1355. https://doi.org/10.1680/geot.12.P.181

    Article  Google Scholar 

  52. Parlange J-Y (1971) Theory of water-movement in soils: 2. One-dimensional infiltration. Soil Sci 111(3):170–174

    Article  Google Scholar 

  53. Philip JR (1957) The theory of infiltraiont: 1. The infiltration equation and its solution. Soil Sci 83(5):345–358

    Article  Google Scholar 

  54. Gottardi G, Venutelli M (1993) Richards: Computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil. Comput Geosci 19(9):1239–1266. https://doi.org/10.1016/0098-3004(93)90028-4

    Article  Google Scholar 

  55. Wilson GW, Fredlund DG, Barbour SL (1994) Coupled soil-atmosphere modelling for soil evaporation. Can Geotech J 31(2):151–161. https://doi.org/10.1139/t94-021

    Article  Google Scholar 

  56. Song W-K, Cui Y-J, Tang AM, Ding W-Q, Tran TD (2013) Experimental study on water evaporation from sand using environmental chamber. Can Geotech J 51(2):115–128. https://doi.org/10.1139/cgj-2013-0155

    Article  Google Scholar 

Download references

Acknowledgements

Funding support from the Australian Research Council via projects DP160100775 (Ha H. Bui) and DP170103793 & DP190102779 (Ha H. Bui & Giang D. Nguyen) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khoa M. Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, K.M., Bui, H.H. & Nguyen, G.D. DEM modelling of unsaturated seepage flows through porous media. Comp. Part. Mech. 9, 135–152 (2022). https://doi.org/10.1007/s40571-021-00398-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-021-00398-x

Keywords

Navigation