Skip to main content
Log in

Deformation and stresses upon drainage of an idealized granular material

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

A pore-scale numerical model is employed to simulate the primary drainage of a deformable assembly of spherical grains. The model combines the discrete element method and a pore-scale method, respectively, for the solid phase and the fluid phases. The evolution of strain along the simulated drainage in oedometer conditions is reported. The combined actions of phase pressures and surface tension lead the solid skeleton to first shrink and then to swell at the approach of residual saturation. The effective stress is examined through the Bishop’s coefficient \(\chi\), obtained by a back analysis of the simulated strain. It is found that \(\chi\) is relatively close to the degree of saturation, with an exception at very low saturation. Further, a contact stress obtained by averaging micromechanical quantities is found nearly exactly equal to the effective stress deduced directly from the strain, in contrast to previous findings. A detailed analysis of the heterogeneous fields of effective stress, saturation and pressure is offered, suggesting a unique relationship between \(\chi\) and saturation at a mesoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alonso EE, Gens A, Josa A (1990) A constitutive model for partially saturated soils. Géotechnique 40(3):405–430

    Article  Google Scholar 

  2. Bagi K (1996) Stress and strain in granular assemblies. Mech Mater 22(3):165–177

    Article  Google Scholar 

  3. Biot MA (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  MATH  Google Scholar 

  4. Bishop AW, Alpan I, Blight G, Donald I (1960) Factors controlling the strength of partly saturated cohesive soils. In: Conference shear strength cohesive soils, American society of civil engineers, New York, pp 503–532

  5. Bishop AW (1960) The principles of effective stress. Norges Geotekniske Institute, Oslo

    Google Scholar 

  6. Bishop AW, Blight G (1963) Some aspects of effective stress in saturated and partly saturated soils. Géotechnique 13(3):177–197

    Article  Google Scholar 

  7. Bolzon G, Schrefler B, Zienkiewicz O (1996) Elastoplastic soil constitutive laws generalized to partially saturated states. Géotechnique 46(2):279–289

    Article  Google Scholar 

  8. Catalano E, Chareyre B, Barthélémy E (2014) Pore-scale modeling of fluid-particles interaction and emerging poromechanical effects. Int J Numer Anal Methods Geomech 38(1):51–71. doi:10.1002/nag.2198

    Article  Google Scholar 

  9. Chalak C, Chareyre B, Nikooee E, Darve F (2017) Partially saturated media: from dem simulation to thermodynamic interpretation. Eur J Environ Civil Eng 21(7–8):798–820

    Article  Google Scholar 

  10. Chandler R, Koplik J, Lerman K, Willemsen JF (1982) Capillary displacement and percolation in porous media. J Fluid Mech 119:249–267. doi:10.1017/S0022112082001335. http://journals.cambridge.org/article_S0022112082001335

  11. Chareyre B, Cortis A, Catalano E, Barthélemy E (2012) Pore-scale modeling of viscous flow and induced forces in dense sphere packings. Transp Porous Media 92(2):473–493. doi:10.1007/s11242-011-9915-6

    Article  MathSciNet  Google Scholar 

  12. Culligan KA, Wildenschild D, Christensen BSB, Gray WG, Rivers ML, Tompson AFB (2004) Interfacial area measurements for unsaturated flow through a porous medium. Water Resour Res 40(12):w12413. doi:10.1029/2004WR003278

    Article  Google Scholar 

  13. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  14. Di Mariano A, Vaunat J, Romero E (2002) Insights into the elastic behavior of unsaturated soils. In: Balkema R (ed.), Proceedings of 3rd international conference on unsaturated soils, Recife, Brésil, pp 90–5809

  15. Donald IB (1961) The mechanical properties of saturated and partly saturated soils, with special reference to the influence of negative pore water pressures, Ph.D. thesis, Imperial College London

  16. Drescher A, De Jong GDJ (1972) Photoelastic verification of a mechanical model for the flow of a granular material. J Mech Phys Solids 20(5):337–340

    Article  Google Scholar 

  17. Fredlund D, Morgenstern N, Widger R (1978) The shear strength of unsaturated soils. Can Geotech J 15(3):313–321

    Article  Google Scholar 

  18. Jain A K, Juanes R (2009) Preferential mode of gas invasion in sediments: grain-scale mechanistic model of coupled multiphase fluid flow and sediment mechanics. J Geophys Res Solid Earth 114(B8):b08101. doi:10.1029/2008JB006002

    Article  Google Scholar 

  19. Jamin C, Pion S, Teillaud M (2017) 3D triangulations. In: CGAL user and reference manual, 4.10.1 edition, CGAL Editorial Board. http://doc.cgal.org/4.10.1/Manual/packages.html#PkgTriangulation3Summary

  20. Jennings JE (1961) A revised effective stress law for use in the prediction of the behaviour of unsaturated soils. In: Proceedings of the conference on pore pressure and suction in soils, Butterworths, London, UK, pp 26–30

  21. Jiang M, Leroueil S, Konrad J (2004) Insight into shear strength functions of unsaturated granulates by DEM analyses. Comput Geotech 31(6):473–489

    Article  Google Scholar 

  22. Khalili N, Khabbaz MH (1998) A unique relationship for \(\chi\) for the determination of the shear strength of unsaturated soils. Géotechnique 48(5):681–687

    Article  Google Scholar 

  23. Kharaghani A, Metzger T, Tsotsas E (2012) An irregular pore network model for convective drying and resulting damage of particle aggregates. Chem Eng Sci 75:267–278. doi:10.1016/j.ces.2012.03.038. http://www.sciencedirect.com/science/article/pii/S0009250912002084

  24. Lu N, Godt JW, Wu DT (2010) A closed-form equation for effective stress in unsaturated soil. Water Resour Res 46(5)

  25. Ma X, Zoback MD (2017) Laboratory experiments simulating poroelastic stress changes associated with depletion and injection in low-porosity sedimentary rocks. J Geophys Res Solid Earth 122(4):2478–2503

    Article  Google Scholar 

  26. Mahmoodlu M, Raoof A, Sweijen T, van Genuchten MT (2016) Effects of sand compaction and mixing on pore structure and the unsaturated soil hydraulic properties. Vadose Zone. doi:10.2136/vzj2015.10.0136

    Google Scholar 

  27. Mayer RP, Stowe RA (1965) Mercury porosimetrybreakthrough pressure for penetration between packed spheres. J Colloid Sci 20(8):893–911. doi:10.1016/0095-8522(65)90061-9. http://www.sciencedirect.com/science/article/pii/0095852265900619

  28. Melnikov K, Mani R, Wittel FK, Thielmann M, Herrmann HJ (2015) Grain-scale modeling of arbitrary fluid saturation in random packings. Phys. Rev. E 92:022206. doi:10.1103/PhysRevE.92.022206. http://link.aps.org/doi/10.1103/PhysRevE.92.022206

  29. Nowamooz H, Jahangir E, Masrouri F, Tisot J-P (2016) Effective stress in swelling soils during wetting drying cycles. Eng Geol 210(Supplement C):33–44

    Article  Google Scholar 

  30. Princen H (1969) Capillary phenomena in assemblies of parallel cylinders: Ii. capillary rise in systems with more than two cylinders. J Colloid Interface Sci 30(3):359–371. doi:10.1016/0021-9797(69)90403-2. http://www.sciencedirect.com/science/article/pii/0021979769904032

  31. Richefeu V, El Youssoufi MS, Radjai F (2006) Shear strength properties of wet granular materials. Phys Rev E 73(5):051304

    Article  Google Scholar 

  32. Scholtès L, Hicher P-Y, Nicot F, Chareyre B, Darve F (2009) On the capillary stress tensor in wet granular materials. Int J Numer Anal Methods Geomech 33(10):1289–1313. doi:10.1002/nag.767

    Article  MATH  Google Scholar 

  33. Scholtès L, Nicot F, Chareyre B, Darve F (2009) Discrete modelling of capillary mechanisms in multi-phase granular media. Comput Model Eng Sci 52(3):297–318

    MATH  Google Scholar 

  34. Scholtès L, Chareyre B, Michallet H, Catalano E, Marzougui D (2015) Modeling wave-induced pore pressure and effective stress in a granular seabed. Contin Mech Thermodyn 27(1–2):305–323. doi:10.1007/s00161-014-0377-2

    Article  Google Scholar 

  35. Šmilauer V et al (2015) Yade documentation 2nd ed, The Yade Project, http://yade-dem.org/doc/. doi:10.5281/zenodo.34073

  36. Sweijen T, Nikooee E, Hassanizadeh SM, Chareyre B (2016) The effects of swelling and porosity change on capillarity: DEM coupled with a pore-unit assembly method. Transp Porous Media 113(1):207–226

    Article  MathSciNet  Google Scholar 

  37. Sweijen T, Chareyre B, Hassanizadeh S, Karadimitriou N (2017) Grain-scale modelling of swelling granular materials; application to super absorbent polymers. Powder Technol 318:411–422

    Article  Google Scholar 

  38. Sweijen T, Aslannejad H, Hassanizadeh S (2017) Capillary pressure-saturation relationships for porous granular materials: pore morphology method vs. pore unit assembly method. Adv Water Resour 107:22–31. doi:10.1016/j.advwatres.2017.06.001

    Article  Google Scholar 

  39. Terzaghi K (1943) Theoretical soil mechanics. Wiley, Hoboken

    Book  Google Scholar 

  40. Wilkinson D, Willemsen JF (1983) Invasion percolation: a new form of percolation theory. J Phys A Math Gen 16(14):3365. doi:10.1088/0305-4470/16/14/028. http://stacks.iop.org/0305-4470/16/i=14/a=028

  41. Yuan C, Chareyre B (2017) A pore-scale method for hydromechanical coupling in deformable granular media. Comput Methods Appl Mech Eng 318:1066–1079

    Article  MathSciNet  Google Scholar 

  42. Yuan C, Chareyre B, Darve F (2016) Pore-scale simulations of drainage in granular materials: finite size effects and the representative elementary volume. Adv Water Resour 95:109–124

    Article  Google Scholar 

  43. Yuan C, Chareyre B, Darve F (2015) A pore-scale approach of two-phase flow in granular porous media. In: Onate E, Bischoff M, Owen DRJ, Wriggers P, Zohdi T (eds) Particles 2015 IV international conference on particle-based methods, Barcelona (2015)

  44. Zerhouni M (1991) Rôle de la pression interstitielle négative dans le comportement des sols: application au calcul des routes, Ph.D. thesis, Châtenay-Malabry, Ecole Centrale Paris

Download references

Acknowledgements

The first author acknowledges support by the China Scholarship Council (CSC). The first and second authors acknowledge support by the PHC Van Gogh No. 35530VM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Chareyre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, C., Chareyre, B. & Darve, F. Deformation and stresses upon drainage of an idealized granular material. Acta Geotech. 13, 961–972 (2018). https://doi.org/10.1007/s11440-017-0601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-017-0601-x

Keywords

Navigation