Skip to main content
Log in

Discrete element method modeling of granular flow characteristics transition in mixed flow

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The silos have a complex flow behavior: The lower part presents a “funnel flow” and the upper part presents a “mass flow”. It is necessary to study the flow characteristics of the silos in mixed flow on mesoscale. In this paper, the change in flow characteristics was analyzed in terms of the velocity and angular velocity, to clarify the special effect of the flow pattern transition and time variation during discharge. The results show that the flow characteristics change significantly during the flow pattern transition, the flow characteristics would not variety uniformly with height, and the flow pattern and shear zone have a great influence on them: the flow characteristics change more dramatically in funnel flow; the particles in the shear zone move slowly and rotate sharply with friction couples. The flow transformation can be characterized by more flow characteristics, not only the vertical velocity. Moreover, the profiles of velocity and angular velocity almost would not evolve with time, but only with the particles’ position. The study on the distribution and dynamic evolution of flow characteristics in silos provides theoretical basis for structural optimization design of self-weight discharge silos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Wan JF, Wang FG, Yang GH, Zhang S, Wang MK, Lin P, Yang L (2018) The influence of orifice shape on the flow rate: a DEM and experimental research in 3D hopper granular flows. Powder Technol 335:147–155. https://doi.org/10.1016/j.powtec.2018.03.041

    Article  Google Scholar 

  2. Zhang TF, Gan JQ, Pinson D, Zhou ZY (2018) Size-induced segregation of granular materials during filling a conical hopper. Powder Technol 340:331–343. https://doi.org/10.1016/j.powtec.2018.09.031

    Article  Google Scholar 

  3. Tian T, Su J, Zhan J, Geng S, Xu G, Liu X (2018) Discrete and continuum modeling of granular flow in silo discharge. Particuology 36:127–138. https://doi.org/10.1016/j.partic.2017.04.001

    Article  Google Scholar 

  4. Wang Y, Lu Y, Ooi JY (2013) Numerical modelling of dynamic pressure and flow in hopper discharge using the Arbitrary Lagrangian–Eulerian formulation. Eng Struct 56:1308–1320. https://doi.org/10.1016/j.engstruct.2013.07.006

    Article  Google Scholar 

  5. Wang Y, Lu Y, Ooi JY (2014) Finite element modelling of wall pressures in a cylindrical silo with conical hopper using an Arbitrary Lagrangian–Eulerian formulation. Powder Technol 257:181–190. https://doi.org/10.1016/j.powtec.2014.02.051

    Article  Google Scholar 

  6. Samsu J, Zhou Z, Pinson D, Chew S (2018) Flow and wall stress analysis of granular materials around blocks attached to a wall. Powder Technol 330:431–444. https://doi.org/10.1016/j.powtec.2018.02.049

    Article  Google Scholar 

  7. Kobyłka R, Horabik J, Molenda M (2017) Numerical simulation of the dynamic response due to discharge initiation of the grain silo. Int J Solids Struct 106–107:27–37. https://doi.org/10.1016/j.ijsolstr.2016.12.001

    Article  Google Scholar 

  8. Carlevaro CM, Pugnaloni LAJTEPJE (2012) Arches and contact forces in a granular pile. Eur Phys J E 35(6):44. https://doi.org/10.1140/epje/i2012-12044-7

    Article  Google Scholar 

  9. Theuerkauf J, Witt P, Schwesig D (2006) Analysis of particle porosity distribution in fixed beds using the discrete element method. Powder Technol 165(2):92–99. https://doi.org/10.1016/j.powtec.2006.03.022

    Article  Google Scholar 

  10. Janda A, Zuriguel I, Maza D (2012) Flow rate of particles through apertures obtained from self-similar density and velocity profiles. Phys Rev Lett 108(24):248001. https://doi.org/10.1103/PhysRevLett.108.248001

    Article  Google Scholar 

  11. Mankoc C, Janda A, Arévalo R, Pastor JM, Zuriguel I, Garcimartín A, Maza D (2007) The flow rate of granular materials through an orifice. Granul Matter 9(6):407–414. https://doi.org/10.1007/s10035-007-0062-2

    Article  MATH  Google Scholar 

  12. Couto A, Ruiz A, Aguado PJ (2013) Experimental study of the pressures exerted by wheat stored in slender cylindrical silos, varying the flow rate of material during discharge. Comparison with Eurocode 1 part 4. Powder Technol 237:450–467. https://doi.org/10.1016/j.powtec.2012.12.030

    Article  Google Scholar 

  13. Ding S, Li H, Ooi JY, Rotter JM (2015) Prediction of flow patterns during silo discharges using a finite element approach and its preliminary experimental verification. Particuology 18:42–49. https://doi.org/10.1016/j.partic.2014.04.015

    Article  Google Scholar 

  14. Mankoc C, Garcimartin A, Zuriguel I, Maza D, Pugnaloni LA (2009) Role of vibrations in the jamming and unjamming of grains discharging from a silo. Phys Rev E: Stat, Nonlin, Soft Matter Phys 80(1 Pt 1):011309. https://doi.org/10.1103/PhysRevE.80.011309

    Article  Google Scholar 

  15. Zuriguel I, Garcimartín A, Maza D, Pugnaloni LA, Pastor JM (2005) Jamming during the discharge of granular matter from a silo. Phys Rev E 71(5):051303. https://doi.org/10.1103/PhysRevE.71.051303

    Article  Google Scholar 

  16. Wang P, Zhu L, Zhu X (2016) Flow pattern and normal pressure distribution in flat bottom silo discharged using wall outlet. Powder Technol 295:104–114. https://doi.org/10.1016/j.powtec.2016.03.036

    Article  Google Scholar 

  17. Roberts AW, Wensrich CM (2002) Flow dynamics or ‘quaking’ in gravity discharge from silos. Chem Eng Sci 57:295–305

    Article  Google Scholar 

  18. Weinhart T, Luding S, Labra C, Ooi J (2015) Influence of coarse-graining parameters on the analysis of DEM simulations of silo flow. Powder Technol. https://doi.org/10.1016/j.powtec.2015.11.052

    Article  Google Scholar 

  19. Bertuola D, Volpato S, Canu P, Santomaso AC (2016) Prediction of segregation in funnel and mass flow discharge. Chem Eng Sci 150:16–25. https://doi.org/10.1016/j.ces.2016.04.054

    Article  Google Scholar 

  20. Balevičius R, Kačianauskas R, Mróz Z, Sielamowicz I (2011) Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes. Adv Powder Technol 22(2):226–235. https://doi.org/10.1016/j.apt.2010.12.005

    Article  Google Scholar 

  21. Oldal I, Keppler I, Csizmadia B, Fenyvesi L (2012) Outflow properties of silos: the effect of arching. Adv Powder Technol 23(3):290–297. https://doi.org/10.1016/j.apt.2011.03.013

    Article  Google Scholar 

  22. Zhang YX, Jia FG, Zeng Y, Han YL, Xiao YW (2018) DEM study in the critical height of flow mechanism transition in a conical silo. Powder Technol 331:98–106. https://doi.org/10.1016/j.powtec.2018.03.024

    Article  Google Scholar 

  23. Wójcik M, Sondej M, Rejowski K, Tejchman J (2017) Full-scale experiments on wheat flow in steel silo composed of corrugated walls and columns. Powder Technol 311:537–555. https://doi.org/10.1016/j.powtec.2017.01.066

    Article  Google Scholar 

  24. Yu Y, Saxén H (2011) Discrete element method simulation of properties of a 3D conical hopper with mono-sized spheres. Adv Powder Technol 22(3):324–331. https://doi.org/10.1016/j.apt.2010.04.003

    Article  Google Scholar 

  25. Wu J, Binbo J, Chen J, Yang Y (2009) Multi-scale study of particle flow in silos. Adv Powder Technol 20(1):62–73. https://doi.org/10.1016/j.apt.2008.02.003

    Article  Google Scholar 

  26. Jin B, Tao H, Zhong W (2010) Flow behaviors of non-spherical granules in rectangular hopper. Chin J Chem Eng 18(6):931–939. https://doi.org/10.1016/s1004-9541(09)60150-6

    Article  Google Scholar 

  27. González-Montellano C, Gallego E, Ramírez-Gómez Á, Ayuga F (2012) Three dimensional discrete element models for simulating the filling and emptying of silos: analysis of numerical results. Comput Chem Eng 40:22–32. https://doi.org/10.1016/j.compchemeng.2012.02.007

    Article  Google Scholar 

  28. Chen JF, Rotter JM, Ooi JY, Zhong Z (2005) Flow pattern measurement in a full scale silo containing iron ore. Chem Eng Sci 60(11):3029–3041. https://doi.org/10.1016/j.ces.2004.12.045

    Article  Google Scholar 

  29. Khazeni A, Mansourpour Z (2018) Influence of non-spherical shape approximation on DEM simulation accuracy by multi-sphere method. Powder Technol 332:265–278. https://doi.org/10.1016/j.powtec.2018.03.030

    Article  Google Scholar 

  30. Markauskas D, Ramírez-Gómez Á, Kačianauskas R, Zdancevičius E (2015) Maize grain shape approaches for DEM modelling. Comput Electron Agric 118:247–258. https://doi.org/10.1016/j.compag.2015.09.004

    Article  Google Scholar 

  31. Kobyłka R, Molenda M (2014) DEM simulations of loads on obstruction attached to the wall of a model grain silo and of flow disturbance around the obstruction. Powder Technol 256:210–216. https://doi.org/10.1016/j.powtec.2014.02.030

    Article  Google Scholar 

  32. Coetzee CJ (2016) Calibration of the discrete element method and the effect of particle shape. Powder Technol 297:50–70. https://doi.org/10.1016/j.powtec.2016.04.003

    Article  Google Scholar 

  33. Li Y, Gui N, Yang X, Tu J, Jiang S (2016) Numerical study of gravity-driven dense granular flows on flow behavior characterization. Powder Technol 297:144–152. https://doi.org/10.1016/j.powtec.2016.04.002

    Article  Google Scholar 

  34. Liu SD, Zhou ZY, Zou RP, Pinson D, Yu AB (2014) Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technol 253:70–79. https://doi.org/10.1016/j.powtec.2013.11.001

    Article  Google Scholar 

  35. Gan JQ, Yu AB, Zhou ZY (2016) DEM simulation on the packing of fine ellipsoids. Chem Eng Sci 156:64–76. https://doi.org/10.1016/j.ces.2016.09.017

    Article  Google Scholar 

  36. Tao H, Jin B, Zhong W, Wang X, Ren B, Zhang Y, Xiao R (2010) Discrete element method modeling of non-spherical granular flow in rectangular hopper. Chem Eng Process Process Intensif 49:151–158. https://doi.org/10.1016/j.cep.2010.01.006

    Article  Google Scholar 

  37. Alonso-Marroquín F, Ramírez-Gómez Á, González-Montellano C, Balaam N, Hanaor DAH, Flores-Johnson EA, Gan Y, Chen S, Shen L (2013) Experimental and numerical determination of mechanical properties of polygonal wood particles and their flow analysis in silos. Granul Matter 15(6):811–826. https://doi.org/10.1007/s10035-013-0443-7

    Article  Google Scholar 

  38. González-Montellano C, Ramírez Á, Gallego E, Ayuga F (2011) Validation and experimental calibration of 3D discrete element models for the simulation of the discharge flow in silos. Chem Eng Sci 66(21):5116–5126. https://doi.org/10.1016/j.ces.2011.07.009

    Article  Google Scholar 

  39. Jun C, Lumin W, Qikeng X, Yongchao L, Minmin J (2017) Validation and analysis of calibration method for micro parameters of wheat PFC model. China Powder Sci Technol 4:43–48. https://doi.org/10.13732/j.issn.1008-5548.2017.04.009

    Article  Google Scholar 

  40. Oldal I, Safranyik F (2015) Extension of silo discharge model based on discrete element method. J Mech Sci Technol 29(9):3789–3796. https://doi.org/10.1007/s12206-015-0825-3

    Article  Google Scholar 

  41. González-Montellano C, Ayuga F, Ooi JY (2010) Discrete element modelling of grain flow in a planar silo: influence of simulation parameters. Granul Matter 13(2):149–158. https://doi.org/10.1007/s10035-010-0204-9

    Article  Google Scholar 

  42. Zheng QJ, Yu AB (2015) Finite element investigation of the flow and stress patterns in conical hopper during discharge. Chem Eng Sci 129:49–57. https://doi.org/10.1016/j.ces.2015.02.022

    Article  Google Scholar 

  43. Calderón CA, Villagrán Olivares MC, Uñac RO, Vidales AM (2017) Correlations between flow rate parameters and the shape of the grains in a silo discharge. Powder Technol 320:43–50. https://doi.org/10.1016/j.powtec.2017.07.004

    Article  Google Scholar 

  44. Vivanco F, Rica S, Melo F (2012) Dynamical arching in a two dimensional granular flow. Granul Matter 14(5):563–576. https://doi.org/10.1007/s10035-012-0359-7

    Article  Google Scholar 

  45. Cleary PW, Sawley ML (2002) DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper discharge. Appl Math Model 26:89–111

    Article  Google Scholar 

  46. Kumar R, Patel CM, Jana AK, Gopireddy SR (2018) Prediction of hopper discharge rate using combined discrete element method and artificial neural network. Adv Powder Technol 29(11):2822–2834. https://doi.org/10.1016/j.apt.2018.08.002

    Article  Google Scholar 

  47. Johanson JR (1964) Stress and velocity fields in the gravity flow of bulk solids. J Appl Mech. https://doi.org/10.1115/1.3629668

    Article  Google Scholar 

  48. Jenike AW (1965) Discussion: ``Stress and Velocity Fields in the Gravity Flow of Bulk Solids’’ (Johanson, J. R., 1964, ASME J. Appl. Mech., 31, pp. 499-506). J Appl Mech. https://doi.org/10.1115/1.3625849

    Article  Google Scholar 

  49. Wang C, Mu X, He Y, Li D, Shi Y (2019) A novel potential flow model for granular flow in two-dimensional flat-bottomed packed bed with centric discharge. Powder Technol 342:545–554. https://doi.org/10.1016/j.powtec.2018.10.019

    Article  Google Scholar 

  50. Wang N, Xu J, Guo X, Lu H, Zhao H, Li W, Liu H (2018) Velocity profiles of avalanches during hopper discharge. Fuel 218:350–356. https://doi.org/10.1016/j.fuel.2018.01.053

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Chinese Natural Science Foundation (51708182), the young-backbone teacher project of Henan University of Technology in 2019, and the young-backbone teacher project of Henan Province in 2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziran Yuan.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest in this work. We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Y., Yuan, Z. Discrete element method modeling of granular flow characteristics transition in mixed flow. Comp. Part. Mech. 8, 21–34 (2021). https://doi.org/10.1007/s40571-019-00309-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-019-00309-1

Keywords

Navigation