Skip to main content
Log in

Anchoring on Utopia: a generalization of the Kalai–Smorodinsky solution

  • Research Article
  • Published:
Economic Theory Bulletin Aims and scope Submit manuscript

Abstract

Many bargaining solutions anchor on disagreement, allocating gains with respect to the worst-case scenario. We propose here a solution anchoring on utopia (the ideal, maximal aspirations for all agents), but yielding feasible allocations for any number of agents. The negotiated aspirations solution proposes the best allocation in the direction of utopia starting at an endogenous reference point which depends on both the utopia point and bargaining power. The Kalai–Smorodinsky solution becomes a particular case if (and only if) the reference point lies on the line from utopia to disagreement. We provide a characterization for the two-agent case relying only on standard axioms or natural restrictions thereof: strong Pareto optimality, scale invariance, restricted monotonicity, and restricted concavity. A characterization for the general (n-agent) case is obtained by relaxing Pareto optimality and adding the (standard) axiom of restricted contraction independence, plus the minimal condition that utopia should be selected if available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Most of the literature concentrates on bargaining over convex sets. See, however, Conley and Wilkie (1996), Hougaard and Tvede (2003), and Qin et al. (2015).

  2. The vector notation \(y\ge x\) means \(y_i\ge x_i\) for \(i=1,\ldots ,n\); \(y>x\) means \(y\ge x\) and \(y\ne x\).

  3. The assumption \(d = \mathbf{0}\) is without loss of generality if we consider solutions satisfying translation invariance, i.e. the property that \(f(S+\{t\}, d+t) = f(S, d) + t \) for all \(t \in \mathbb {R}^n\). This is because for any pair (Sd), by translation invariance \(f(S,d)=f(S - \{d\},\mathbf{0})+d\), and \((S - \{d\},\mathbf{0}) \in \Sigma _0\). That is, the restriction of f to \(\Sigma _0\) completely determines f.

  4. An allocation x is individually rational if \(x\ge d\). Since we assume \(d=\mathbf{0}\) and \(S\subseteq \mathbb {R}^n_+\), individual rationality is guaranteed. Peters (1986) defines utopia points without the individual rationality constraint.

  5. To see this, let \(z^i\) be an element of S where the problem \(\max \left\{ x_i \;\left| \; \; x \ge \mathbf{0} \text { and } x \in S\right. \right\} \) achieves its solution, hence \(z^i\ge \mathbf{0}\) and \(z_i^i=m_i(S)\). Let \(\hat{z}^i\) be given by \({\hat{z}}_i^i=m_i(S)\) and \({\hat{z}}_j^i=0\) for all \(j\ne i\). Since S is \(\mathbf{0}\)-comprehensive, it follows that \({\hat{z}}^i \in S\) for all i. Since S is convex, we obtain that \(m^{\alpha }(S) = \sum _{i=1}^n \alpha _i {\hat{z}}^i \in S\).

  6. Strictly speaking, this solution is actually a family of solutions, indexed by \(\alpha \). For simplicity, we drop the dependence on \(\alpha \) whenever it does not lead to confusion.

  7. This is conceptually similar to the notion of duality introduced by Thomson (2015a) for bankruptcy problems, namely that the dual of a rule should allocate losses the same way the original rule allocates gains.

  8. This axiom is also well-known in the domain of claims problems (see, e.g., Thomson 2003, 2015a, b; Harless 2017).

  9. Alós-Ferrer et al. (2017) show that, under strong Pareto optimality, concavity is equivalent to the axiom of superadditivity (Perles and Maschler 1981; Peters 1985).

  10. The solution of Dubra (2001), which is only defined for \(n=2\), prescribes the (unique) Pareto optimal point which dominates \(\mathrm{KS}^\alpha (S)\), and hence it can be considered a lexicographic extension of the solution by Thomson (1994) in the case of two agents.

References

  • Alós-Ferrer, C., García-Segarra, J., Ginés-Vilar, M.: Super-additivity and concavity are equivalent for Pareto optimal \(n\)-agent bargaining solutions. Econ. Lett. 157, 50–52 (2017)

    Article  Google Scholar 

  • Anbarci, N.: Reference functions and balanced concessions in bargaining. Can. J. Econ. 28(3), 675–682 (1995)

    Article  Google Scholar 

  • Balakrishnan, P.V.S., Gómez, J.C., Vohra, R.V.: The tempered aspirations solution for bargaining problems with a reference point. Math. Soc. Sci. 62(3), 144–150 (2011)

    Article  Google Scholar 

  • Chun, Y.: The equal-loss principle for bargaining problems. Econ. Lett. 26(2), 103–106 (1988)

    Article  Google Scholar 

  • Chun, Y.: The separability principle in bargaining. Econ. Theory 1(1), 227–235 (2005)

    Article  Google Scholar 

  • Chun, Y., Peters, H.J.H.: The lexicographic equal-loss solution. Math. Soc. Sci. 22(2), 151–161 (1991)

    Article  Google Scholar 

  • Conley, J.P., Wilkie, S.: An extension of the Nash bargaining solution to nonconvex problems. Games Econ. Behav. 13(1), 26–38 (1996)

    Article  Google Scholar 

  • Dubra, J.: An asymmetric Kalai-Smorodinsky solution. Econ. Lett. 73(2), 131–136 (2001)

    Article  Google Scholar 

  • Freimer, M., Yu, P.L.: Some new results on compromise solutions for group decision problems. Manag. Sci. 22(6), 688–693 (1976)

    Article  Google Scholar 

  • García-Segarra J.: Efficiency, Monotonicity, and Uncertainty in Bargaining Problems: an Axiomatic Approach. PhD thesis, Departament of Economics. Universitat Jaume I de Castelló (2015)

  • García-Segarra, J., Ginés-Vilar, M.: The impossibility of Paretian monotonic solutions: a strengthening of Roth’s result. Oper. Res. Lett. 43(5), 476–478 (2015)

    Article  Google Scholar 

  • Gupta, S., Livne, Z.A.: Resolving a conflict situation with a reference outcome: an axiomatic model. Manag. Sci. 34(11), 1303–1314 (1988)

    Article  Google Scholar 

  • Harless, P.: Endowment additivity and the weighted proportional rules for adjudicating conflicting claims. Econ. Theory 63(3), 755–781 (2017)

    Article  Google Scholar 

  • Herrero, C., Marco, M.C.: Rational equal-loss solutions for bargaining problems. Math. Soc. Sci. 26(3), 273–286 (1993)

    Article  Google Scholar 

  • Hougaard, J.L., Tvede, M.: Nonconvex \(n\)-person bargaining: efficient maxmin solutions. Econ. Theory 21(1), 81–95 (2003)

    Article  Google Scholar 

  • Kalai, E.: Proportional solutions to bargaining situations: interpersonal utility comparisons. Econometrica 45(7), 1623–1630 (1977)

    Article  Google Scholar 

  • Kalai, E., Smorodinsky, M.: Other solutions to Nash’s bargaining problem. Econometrica 43(3), 513–518 (1975)

    Article  Google Scholar 

  • Karagözoglu E, Keskin K, Özcan-Tok E (2015) Between anchors and aspirations: a new family of bargaining solutions, Working Paper, Bilkent University

  • Myerson, R.B.: Utilitarianism, egalitarianism, and the timing effect in social choice problems. Econometrica 49(4), 883–897 (1981)

    Article  Google Scholar 

  • Nash, J.F.: The bargaining problem. Econometrica 18(2), 155–162 (1950)

    Article  Google Scholar 

  • Perles, M.A., Maschler, M.: The super-additive solution for the Nash bargaining game. Int. J. Game Theory 10, 163–193 (1981)

    Article  Google Scholar 

  • Peters, H.J.H.: A note on additive utility and bargaining. Econ. Lett. 17(3), 219–222 (1985)

    Article  Google Scholar 

  • Peters, H.J.H.: Simultaneity of issues and additivity in bargaining. Econometrica 54(1), 153–169 (1986)

    Article  Google Scholar 

  • Peters, H.J.H., Tijs, S.H.: Individually monotonic bargaining solutions of \(n\)-person bargaining games. Methods Oper. Res. 51, 377–384 (1984)

    Google Scholar 

  • Peters, H.J.H., Tijs, S.H.: Characterization of all individually monotonic bargaining solutions. Int. J. Game Theory 14(4), 219–228 (1985)

    Article  Google Scholar 

  • Qin, C.Z., Shi, S., Tan, G.: Nash bargaining for log-convex problems. Econ. Theory 58(3), 413–440 (2015)

    Article  Google Scholar 

  • Rosenthal, R.W.: An arbitration model for normal-form games. Math. Oper. Res. 1(1), 82–88 (1976)

    Article  Google Scholar 

  • Roth, A.E.: Independence of irrelevant alternatives, and solutions to Nash’s bargaining problem. J. Econ. Theory 16(2), 247–251 (1977)

    Article  Google Scholar 

  • Salonen, H.: A solution for two-person bargaining problems. Soc. Choice Welf. 2(2), 139–146 (1985)

    Article  Google Scholar 

  • Salonen, H.: Partially monotonic bargaining solutions. Soc. Choice Welf. 4(1), 1–8 (1987)

    Article  Google Scholar 

  • Thomson, W.: A class of solutions to bargaining problems. J. Econ. Theory 25(3), 431–441 (1981)

    Article  Google Scholar 

  • Thomson W.: Cooperative models of bargaining. In: Aumann, R.J., Hart, S. (eds.) Handbook of Game Theory with Economic Applications, vol. 2, chap 35, pp. 1237–1284. Elsevier, Amsterdam (1994)

  • Thomson, W.: Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey. Math. Soc. Sci. 45(3), 249–297 (2003)

    Article  Google Scholar 

  • Thomson, W.: Bargaining and the Theory of Cooperative Games: John Nash and Beyond. Edward Elgar Publishing, Cheltenham (2010)

    Book  Google Scholar 

  • Thomson, W.: For claims problems, compromising between the proportional and constrained equal awards rules. Econ. Theory 60(3), 495–520 (2015a)

    Article  Google Scholar 

  • Thomson, W.: Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: an update. Math. Soc. Sci. 74, 41–59 (2015b)

    Article  Google Scholar 

  • Yu, P.L.: A class of solutions for group decision problems. Manag. Sci. 19(8), 936–946 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Vte. Guinot, Carmen Herrero, M. Carmen Marco, Juan D. Moreno-Ternero, Hervé Moulin, Hans Peters, Hannu Salonen, William Thomson, two anonymous referees and an associate editor for their useful comments. Financial support from projects ECO2015-68469 Ministerio de Educación, PREDOC/2007/28 Fundación Bancaja, and P1.15-1B2015-48 and E-2011-27 (Pla de Promoció de la Investigació) of the Universitat Jaume I are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Alós-Ferrer.

Appendix: Properties of the sets \(V_t\)

Appendix: Properties of the sets \(V_t\)

For each \(t\in [1,n]\) let \(V_t\) be given by (1). The following lemma summarizes the geometric properties of these sets as required in the proofs in the main text.

Lemma 1

For every \(t\in [1,n]\),

  1. (a)

    \(m(V_t)=(1,\ldots ,1)\);

  2. (b)

    \(SPO(V_t)=\left\{ x\in V_t\;\left| \; \; \sum _{i=1}^n x_i =t\right. \right\} \);

  3. (c)

    \(\mathrm{WPO}(V_t)=SPO(V_t) \cup \left\{ x \in V_t\;\left| \; \; x_j=1 \text { for some } j\in \{1,\ldots ,n\}\right. \right\} \); and

  4. (d)

    \(V_t = \left( \frac{n-t}{n-1}\right) V_1 + \left( 1-\frac{n-t}{n-1}\right) V_n\).

Proof

(a), (b), and (c) are straightforward. To see (d), we proceed by double inclusion. Let \(x\in V_1\), \(y\in V_n\), and \(z=\left( \frac{n-t}{n-1}\right) x + \left( 1-\frac{n-t}{n-1}\right) y\). Then \(z\in [0,1]^n\) and \(\sum _{i=1}^n z_i= \left( \frac{n-t}{n-1}\right) \sum _{i=1}^n x_i + \left( 1-\frac{n-t}{n-1}\right) \sum _{i=1}^n y_i \le \left( \frac{n-t}{n-1}\right) (1) + \left( 1-\frac{n-t}{n-1}\right) (n) = t\). Hence, \(y\in V_t\).

Let \(z\in V_t\). Note that \(y=(1,\ldots ,1)\in V_n\) and define x by \(x_i=\frac{(n-1)z_i-t+1}{n-t}\). Then, \(\sum _{i=1}^n x_i= \frac{1}{n-t}\left( (n-1) \sum _{i=1}^n z_i + n(1-t)\right) \le \frac{1}{n-t}\left( (n-1)t + n(1-t)\right) =1\) and \(x\in V_1\). Note that \(\left( \frac{n-t}{n-1}\right) x_i + \left( 1-\frac{n-t}{n-1}\right) y_i = \frac{n-t}{n-1} \left( \frac{(n-1)z_i-t+1}{n-t}\right) + \left( 1-\frac{n-t}{n-1}\right) = \frac{1}{n-1} ( (n-1)z_i ) = z_i\). Hence, \(z\in \left( \frac{n-t}{n-1}\right) V_1 + \left( 1-\frac{n-t}{n-1}\right) V_n\). \(\square \)

The next result identifies two useful properties of bargaining solutions satisfying restricted concavity, when applied to the sets \(V_t\).

Lemma 2

Let f be a bargaining solution for n-agent problems satisfying weak Pareto optimality, restricted concavity, and utopia fulfillment. Then, for every \(t\in [1,n]\),

  1. (a)

    \(f(V_t)= \left( \frac{n-t}{n-1}\right) f(V_1) + \left( 1-\frac{n-t}{n-1}\right) f(V_n)\), and

  2. (b)

    \(f(V_t)\in SPO(V_t)\).

Proof

(a) By Lemma 1(a), \(m(V_1)=m(V_n)\). Let \(z=\left( \frac{n-t}{n-1}\right) f(V_1) + \left( 1-\frac{n-t}{n-1}\right) f(V_n)\). By weak Pareto optimality, \(f(V_1)\in \mathrm{WPO}(V_1)\) and by Lemma 1(b,c), \(SPO(V1)=\mathrm{WPO}(V1)\). Hence, by Lemma 1(b), \(\sum _{i=1}^n f_i(V_1)=1\). By utopia fulfillment, \(f(V_n)=(1,\ldots ,1)\). We obtain that \(\sum _{i=1}^n z_i =t\). By restricted concavity, \(f(V_t)\ge z\). Since \(\sum _{i=1}^n f_i(V_t)\le t\), it follows that \(f(V_t)=z\).

(b) Follows from part (a) and Lemma 1(b). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alós-Ferrer, C., García-Segarra, J. & Ginés-Vilar, M. Anchoring on Utopia: a generalization of the Kalai–Smorodinsky solution. Econ Theory Bull 6, 141–155 (2018). https://doi.org/10.1007/s40505-017-0130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40505-017-0130-7

Keywords

JEL Classification

Navigation