Skip to main content
Log in

A critical review of wire arc additive manufacturing of nickel-based alloys: principles, process parameters, microstructure, mechanical properties, heat treatment effects, and defects

  • Review
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Wire arc additive manufacturing (WAAM) is capable of fabricating medium-to-large-scale parts due to its higher deposition rates. The mechanical and metallurgical characteristics of WAAMed parts are better compared to other additive manufacturing techniques. Since the technology has grown, a wide range of metals are processed by WAAM in recent days. Nickel (Ni)-based superalloys are superior in terms of oxidation resistance, high-temperature mechanical performance, and microstructural characteristics. The selection of WAAM techniques, input parameters, resulting microstructure, post-processing treatments, and the defects can influence the final mechanical properties. The WAAMed Ni-based superalloys show inhomogeneous microstructure and mechanical properties from bottom to top layers. To obtain the homogeneous and improved mechanical properties, still there is a strong need to understand the underlying physical metallurgical mechanisms. In this context, this paper reports a present-day review on the process parameters, microstructural characteristics, mechanical properties, corrosion behaviour, and defects of WAAMed Ni-based superalloys. Adapting the strategies like interpass cooling, post-deposition heat treatment, and solution annealing improves the mechanical properties and can help to obtain homogeneous characteristics. More penetrative research works should be carried out to analyse fatigue and corrosion properties of WAAMed Ni-based superalloys for future industrial applications. Additionally, process parameters optimization and better control over quality are the other aspects to be focused by further studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Laureijs RE, Roca JB, Narra SP, Montgomery C, Beuth JL, Fuchs ER (2017) Metal additive manufacturing: cost competitive beyond low volumes. J Manuf Sci Eng 139:081010-1–081010-9

    Article  Google Scholar 

  2. Bhuvanesh Kumar M, Sathiya P (2021) Methods and materials for additive manufacturing: a critical review on advancements and challenges. Thin-Walled Struct 159:107228. https://doi.org/10.1016/j.tws.2020.107228

    Article  Google Scholar 

  3. Varatharaj Kannan S, Yogasundar ST, Suraj Singh R, Tamilarasu S, Bhuvanesh Kumar M (2014) Rapid prototyping of human implants with case study. Int J Innov Res Sci Eng Technol 3:6

    Google Scholar 

  4. Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P (2016) Wire+ arc additive manufacturing. Mater Sci Technol 32:641

    Google Scholar 

  5. Derekar KS (2018) A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater Sci Technol 34:895. https://doi.org/10.1080/02670836.2018.1455012

    Article  Google Scholar 

  6. Thapliyal S (2019) Challenges associated with the wire arc additive manufacturing (WAAM) of aluminum alloys. Materials Research Express 6:112006

    Google Scholar 

  7. Korzhyk V, Khaskin V, Voitenko O, Sydorets VN, Dolianovskaia O (2017) Welding technology in additive manufacturing processes of 3d objects. Mater Sci Forum 906:121–130

    Google Scholar 

  8. Rodrigues TA, Duarte V, Miranda RM, Santos TG, Oliveira JP (2019) Current status and perspectives on wire and arc additive manufacturing (WAAM). Materials 12:1121

    Google Scholar 

  9. Ding J, Colegrove P, Mehnen J et al (2011) Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts. Comput Mater Sci 50:3315. https://doi.org/10.1016/j.commatsci.2011.06.023

    Article  Google Scholar 

  10. Wu B, Ding D, Pan Z et al (2017) Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V. J Mater Process Technol 250:304

    Google Scholar 

  11. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23:1917

    Google Scholar 

  12. Horgar A, Fostervoll H, Nyhus B, Ren X, Eriksson M, Akselsen O (2018) Additive manufacturing using WAAM with AA5183 wire. J Mater Process Technol 259:68

    Google Scholar 

  13. Gu J, Ding J, Williams SW et al (2016) The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al–6.3 Cu alloy. Mater Sci Eng A 651:18

    Google Scholar 

  14. Wang T, Zhang Y, Wu Z, Shi C (2018) Microstructure and properties of die steel fabricated by WAAM using H13 wire. Vacuum 149:185

    Google Scholar 

  15. Müller J, Grabowski M, Müller C et al (2019) Design and parameter identification of wire and arc additively manufactured (WAAM) steel bars for use in construction. Metals 9:725

    Google Scholar 

  16. Zhuo Y, Yang C, Fan C et al (2021) Grain refinement of wire arc additive manufactured titanium alloy by the combined method of boron addition and low frequency pulse arc. Mater Sci Eng, A 805:140557

    Google Scholar 

  17. Alonso U, Veiga F, Suárez A, Artaza T (2020) Experimental investigation of the influence of wire arc additive manufacturing on the machinability of titanium parts. Metals 10:24

    Google Scholar 

  18. Gneiger S, Österreicher JA, Arnoldt AR, Birgmann A, Fehlbier M (2020) Development of a high strength magnesium alloy for wire arc additive manufacturing. Metals 10:778

    Google Scholar 

  19. Guo Y, Pan H, Ren L, Quan G (2019) Microstructure and mechanical properties of wire arc additively manufactured AZ80M magnesium alloy. Mater Lett 247:4. https://doi.org/10.1016/j.matlet.2019.03.063

    Article  Google Scholar 

  20. Seow CE, Zhang J, Coules HE et al (2020) Effect of crack-like defects on the fracture behaviour of wire + arc additively manufactured nickel-base alloy 718. Addit Manuf 36:101578

    Google Scholar 

  21. Lan B, Wang Y, Liu Y et al (2021) The influence of microstructural anisotropy on the hot deformation of wire arc additive manufactured (WAAM) Inconel 718. Mater Sci Eng, A 823:141733

    Google Scholar 

  22. Li Y, Polden J, Pan Z et al (2021) A defect detection system for wire arc additive manufacturing using incremental learning. J Ind Inf Integr 27:100291

    Google Scholar 

  23. Ding D, Pan Z, Van Duin S, Li H, Shen C (2016) Fabricating superior NiAl bronze components through wire arc additive manufacturing. Materials 9:652

    Google Scholar 

  24. Hassel T, Carstensen T (2020) Properties and anisotropy behaviour of a nickel base alloy material produced by robot-based wire and arc additive manufacturing. Weld World 64:1921

    Google Scholar 

  25. Bhujangrao T, Veiga F, Suárez A, Iriondo E, Mata FG (2020) High-temperature mechanical properties of IN718 alloy: comparison of additive manufactured and wrought samples. Crystals 10:689

    Google Scholar 

  26. Kok Y, Tan XP, Wang P et al (2018) Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 139:565

    Google Scholar 

  27. Haghdadi N, Laleh M, Moyle M, Primig S (2021) Additive manufacturing of steels: a review of achievements and challenges. J Mater Sci 56:64

    Google Scholar 

  28. Tan JHK, Sing SL, Yeong WY (2020) Microstructure modelling for metallic additive manufacturing: a review. Virtual Phys Prototyp 15:87

    Google Scholar 

  29. Köhler M, Fiebig S, Hensel J, Dilger K (2019) Wire and arc additive manufacturing of aluminum components. Metals 9:608

    Google Scholar 

  30. Jinoop A, Paul C, Bindra K (2019) Laser-assisted directed energy deposition of nickel super alloys: a review. Proc Inst Mech Eng Part L J Mater Design Appl 233:2376

    Google Scholar 

  31. Yin Y, Tan Q, Bermingham M, Mo N, Zhang J, Zhang M-X (2021) Laser additive manufacturing of steels. Int Mater Rev 67(5):487–573

    Google Scholar 

  32. Zhang LC, Liu Y, Li S, Hao Y (2018) Additive manufacturing of titanium alloys by electron beam melting: a review. Adv Eng Mater 20:1700842

    Google Scholar 

  33. Sui Y, Zorman CA (2020) Inkjet printing of metal structures for electrochemical sensor applications. J Electrochem Soc 167:037571

    Google Scholar 

  34. Gujba AK, Medraj M (2020) Power ultrasonic additive manufacturing: process parameters, microstructure, and mechanical properties. Adv Mater Sci Eng 2020:1064870. https://doi.org/10.1155/2020/1064870

    Article  Google Scholar 

  35. Norrish J, Polden J, Richardson I (2021) A review of wire arc additive manufacturing: development, principles, process physics, implementation and current status. J Phys D Appl Phys 54:473001. https://doi.org/10.1088/1361-6463/ac1e4a

    Article  Google Scholar 

  36. Chaturvedi M, Scutelnicu E, Rusu CC, Mistodie LR, Mihailescu D, Subbiah AV (2021) Wire arc additive manufacturing: review on recent findings and challenges in industrial applications and materials characterization. Metals 11:939

    Google Scholar 

  37. Wu B, Pan Z, Ding D et al (2018) A review of the wire arc additive manufacturing of metals: properties, defects and quality improvement. J Manuf Process 35:127. https://doi.org/10.1016/j.jmapro.2018.08.001

    Article  Google Scholar 

  38. Dhinakaran V, Ajith J, Fathima Yasin Fahmidha A, Jagadeesha T, Sathish T, Stalin B (2020) Wire arc additive manufacturing (WAAM) process of nickel based superalloys: a review. Mater Today Proc 21:920. https://doi.org/10.1016/j.matpr.2019.08.159

    Article  Google Scholar 

  39. Li Z, Cui Y, Wang L et al (2022) An investigation into Ti-22Al-25Nb in-situ fabricated by electron beam freeform fabrication with an innovative twin-wire parallel feeding method. Addit Manuf 50:102552. https://doi.org/10.1016/j.addma.2021.102552

    Article  Google Scholar 

  40. Ma Y, Cuiuri D, Hoye N, Li H, Pan Z (2015) The effect of location on the microstructure and mechanical properties of titanium aluminides produced by additive layer manufacturing using in-situ alloying and gas tungsten arc welding. Mater Sci Eng A 631:230

    Google Scholar 

  41. Ayarkwa K, Williams SW, Ding J (2017) Assessing the effect of TIG alternating current time cycle on aluminium wire+ arc additive manufacture. Addit Manuf 18:186

    Google Scholar 

  42. Xiong J, Zhang G (2014) Adaptive control of deposited height in GMAW-based layer additive manufacturing. J Mater Process Technol 214:962

    Google Scholar 

  43. Posch G, Chladil K, Chladil H (2017) Material properties of CMT—metal additive manufactured duplex stainless steel blade-like geometries. Weld World 61:873

    Google Scholar 

  44. Tian Y, Shen J, Hu S, Wang Z, Gou J (2019) Microstructure and mechanical properties of wire and arc additive manufactured Ti-6Al-4V and AlSi5 dissimilar alloys using cold metal transfer welding. J Manuf Process 46:337

    Google Scholar 

  45. Pang J, Hu S, Shen J, Wang P, Liang Y (2016) Arc characteristics and metal transfer behavior of CMT+ P welding process. J Mater Process Technol 238:212

    Google Scholar 

  46. Fang X, Zhang L, Li H, Li C, Huang K, Lu B (2018) Microstructure evolution and mechanical behavior of 2219 aluminum alloys additively fabricated by the cold metal transfer process. Materials 11:812

    Google Scholar 

  47. Rosli NA, Alkahari MR, MFb Abdollah, S Maidin, FR Ramli, SG Herawan, (2021) Review on effect of heat input for wire arc additive manufacturing process. J Market Res 11:2127. https://doi.org/10.1016/j.jmrt.2021.02.002

    Article  Google Scholar 

  48. Spaniol E, Ungethüm T, Trautmann M, Andrusch K, Hertel M, Füssel U (2020) Development of a novel TIG hot-wire process for wire and arc additive manufacturing. Weld World 64:1329. https://doi.org/10.1007/s40194-020-00871-w

    Article  Google Scholar 

  49. Vimal K, Srinivas MN, Rajak S (2021) Wire arc additive manufacturing of aluminium alloys: a review. Mater Today Proc 41:1139

    Google Scholar 

  50. Balasubramanian K, Senthilkumar V (2020) Additive manufacturing applications for metals and composites. IGI Global, United States of America

  51. Zhang C, Li Y, Gao M, Zeng X (2018) Wire arc additive manufacturing of Al-6Mg alloy using variable polarity cold metal transfer arc as power source. Mater Sci Eng A 711:415. https://doi.org/10.1016/j.msea.2017.11.084

    Article  Google Scholar 

  52. Wang P, Hu S, Shen J, Liang Y, Pang J (2016) Effects of electrode positive/negative ratio on microstructure and mechanical properties of Mg/Al dissimilar variable polarity cold metal transfer welded joints. Mater Sci Eng A 652:127

    Google Scholar 

  53. Singh S, Sharma SK, Rathod DW (2021) A review on process planning strategies and challenges of WAAM. Mater Today Proc 47:6564:6575

    Google Scholar 

  54. Zahid M, Hai K, Khan M, Shekha A, Pervaiz S, Ali SM, Abdul-Latif O, Salman M (2020) Wire arc additive manufacturing (waam): reviewing technology, mechanical properties, applications and challenges. In: ASME international mechanical engineering congress and exposition. American Society of Mechanical Engineers, United States of America

  55. Byun J-G, Cho S-M (2016) Trend of metal 3D printing by welding. J Weld Join 34:1

    Google Scholar 

  56. Cheepu M, Lee CI, Cho SM (2020) Microstructural characteristics of wire arc additive manufacturing with Inconel 625 by super-TIG welding. Trans Indian Inst Metals 73:1475–1479

    Google Scholar 

  57. Lin JJ, Lv YH, Liu YX et al (2016) Microstructural evolution and mechanical properties of Ti-6Al-4V wall deposited by pulsed plasma arc additive manufacturing. Mater Des 102:30. https://doi.org/10.1016/j.matdes.2016.04.018

    Article  Google Scholar 

  58. Yaseer A, Chen H (2021) A review of path planning for wire arc additive manufacturing (WAAM). J Adv Manuf Syst 20(3):589–609

    Google Scholar 

  59. Wang X, Wang A, Li Y (2019) A sequential path-planning methodology for wire and arc additive manufacturing based on a water-pouring rule. Int J Adv Manuf Technol 103:3813

    Google Scholar 

  60. Ma G, Zhao G, Li Z, Xiao W (2019) IOP conference series: materials science and engineering. IOP Publishing, Bristol

    Google Scholar 

  61. Ding D, Pan Z, Cuiuri D, Li H (2015) A practical path planning methodology for wire and arc additive manufacturing of thin-walled structures. Robot Comput Integr Manuf 34:8

    Google Scholar 

  62. Jafari D, Vaneker TH, Gibson I (2021) Wire and arc additive manufacturing: Opportunities and challenges to control the quality and accuracy of manufactured parts. Mater Design 202:109471

    Google Scholar 

  63. Singh CP, Sarma R, Kapil S (2022) The qualitative analysis of warpage on residual stresses in wire arc additive manufacturing. Mater Today Proc 62:6619. https://doi.org/10.1016/j.matpr.2022.04.615

    Article  Google Scholar 

  64. Szost BA, Terzi S, Martina F et al (2016) A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti–6Al–4V components. Mater Des 89:559. https://doi.org/10.1016/j.matdes.2015.09.115

    Article  Google Scholar 

  65. Xiong J, Zhang Y, Pi Y (2020) Control of deposition height in WAAM using visual inspection of previous and current layers. J Intell Manuf 32:2209–2217

    Google Scholar 

  66. Kozamernik N, Bračun D, Klobčar D (2020) WAAM system with interpass temperature control and forced cooling for near-net-shape printing of small metal components. Int J Adv Manuf Technol 110:1955

    Google Scholar 

  67. Xia C, Pan Z, Polden J et al (2020) A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system. J Manuf Syst 57:31

    Google Scholar 

  68. Wang Y, Xu X, Zhao Z et al (2021) Coordinated monitoring and control method of deposited layer width and reinforcement in WAAM process. J Manuf Process 71:306

    Google Scholar 

  69. Tang S, Wang G, Zhang H (2019) In situ 3D monitoring and control of geometric signatures in wire and arc additive manufacturing. Surf Topogr Metrol Prop 7:025013

    Google Scholar 

  70. Michel F, Lockett H, Ding J, Martina F, Marinelli G, Williams S (2019) A modular path planning solution for wire + arc additive manufacturing. Robot Comput Integr Manuf 60:1. https://doi.org/10.1016/j.rcim.2019.05.009

    Article  Google Scholar 

  71. Pollock TM, Tin S (2006) Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power 22:361

    Google Scholar 

  72. Chamanfar A, Jahazi M, Gholipour J, Wanjara P, Yue S (2011) Mechanical property and microstructure of linear friction welded WASPALOY. Metall Mater Trans A 42:729

    Google Scholar 

  73. Dinda GP, Dasgupta AK, Mazumder J (2009) Laser aided direct metal deposition of Inconel 625 superalloy: microstructural evolution and thermal stability. Mater Sci Eng A 509:98. https://doi.org/10.1016/j.msea.2009.01.009

    Article  Google Scholar 

  74. Xu FJ, Lv YH, Xu BS, Liu YX, Shu FY, He P (2013) Effect of deposition strategy on the microstructure and mechanical properties of Inconel 625 superalloy fabricated by pulsed plasma arc deposition. Mater Des 45:446. https://doi.org/10.1016/j.matdes.2012.07.013

    Article  Google Scholar 

  75. Jiang Q, Zhang P, Yu Z et al (2021) Microstructure and mechanical properties of thick-walled Inconel 625 alloy manufactured by wire arc additive manufacture with different torch paths. Adv Eng Mater 23:2000728

    Google Scholar 

  76. Kindermann RM, Roy MJ, Morana R, Prangnell PB (2020) Process response of Inconel 718 to wire + arc additive manufacturing with cold metal transfer. Mater Design 195:109031. https://doi.org/10.1016/j.matdes.2020.109031

    Article  Google Scholar 

  77. Xu X, Ding J, Ganguly S, Williams S (2019) Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire + arc additive manufacture process. J Mater Process Technol 265:201. https://doi.org/10.1016/j.jmatprotec.2018.10.023

    Article  Google Scholar 

  78. Van D, Dinda GP, Park J, Mazumder J, Lee SH (2020) Enhancing hardness of Inconel 718 deposits using the aging effects of cold metal transfer-based additive manufacturing. Mater Sci Eng A 776:139005. https://doi.org/10.1016/j.msea.2020.139005

    Article  Google Scholar 

  79. Wang K, Liu Y, Sun Z, Lin J, Lv Y, Xu B (2020) Microstructural evolution and mechanical properties of Inconel 718 superalloy thin wall fabricated by pulsed plasma arc additive manufacturing. J Alloys Compd 819:152936. https://doi.org/10.1016/j.jallcom.2019.152936

    Article  Google Scholar 

  80. Asala G, Khan AK, Andersson J, Ojo OA (2017) Microstructural analyses of ATI 718Plus® produced by wire-ARC additive manufacturing process. Metall Mater Trans A 48:4211. https://doi.org/10.1007/s11661-017-4162-2

    Article  Google Scholar 

  81. Oguntuase O, Ojo OA, Beddoes J (2020) Influence of post-deposition heat treatments on the microstructure and mechanical properties of wire-arc additively manufactured ATI 718Plus. Metall Mater Trans A 51:1846. https://doi.org/10.1007/s11661-019-05619-w

    Article  Google Scholar 

  82. Asala G, Andersson J, Ojo OA (2019) Analysis and constitutive modelling of high strain rate deformation behaviour of wire–arc additive-manufactured ATI 718Plus superalloy. Int J Adv Manuf Technol 103:1419. https://doi.org/10.1007/s00170-019-03616-2

    Article  Google Scholar 

  83. Asala G, Andersson J, Ojo OA (2019) Hot corrosion behaviour of wire-arc additive manufactured Ni-based superalloy ATI 718Plus®. Corros Sci 158:108086. https://doi.org/10.1016/j.corsci.2019.07.010

    Article  Google Scholar 

  84. Li B, Shen Y, An Q (2020) Structural origin of reversible martensitic transformation and reversible twinning in NiTi shape memory alloy. Acta Mater 199:240

    Google Scholar 

  85. Fang C, Yam MC, Ma H, Chung KF (2015) Tests on superelastic Ni–Ti SMA bars under cyclic tension and direct-shear: towards practical recentring connections. Mater Struct 48:1013

    Google Scholar 

  86. Zhang Q, Hao S, Liu Y et al (2020) The microstructure of a selective laser melting (SLM)-fabricated NiTi shape memory alloy with superior tensile property and shape memory recoverability. Appl Mater Today 19:100547. https://doi.org/10.1016/j.apmt.2019.100547

    Article  Google Scholar 

  87. Wang J, Pan Z, Yang G, Han J, Chen X, Li H (2019) Location dependence of microstructure, phase transformation temperature and mechanical properties on Ni-rich NiTi alloy fabricated by wire arc additive manufacturing. Mater Sci Eng A 749:218. https://doi.org/10.1016/j.msea.2019.02.029

    Article  Google Scholar 

  88. Zeng Z, Cong BQ, Oliveira JP et al (2020) Wire and arc additive manufacturing of a Ni-rich NiTi shape memory alloy: microstructure and mechanical properties. Addit Manuf 32:101051. https://doi.org/10.1016/j.addma.2020.101051

    Article  Google Scholar 

  89. Wang J, Pan Z, Wang L et al (2020) In-situ dual wire arc additive manufacturing of NiTi-coating on Ti6Al4V alloys: microstructure characterization and mechanical properties. Surf Coatings Technol 386:125439. https://doi.org/10.1016/j.surfcoat.2020.125439

    Article  Google Scholar 

  90. Shen C, Reid M, Liss K-D et al (2020) In-situ neutron diffraction study on the high temperature thermal phase evolution of wire-arc additively manufactured Ni53Ti47 binary alloy. J Alloys Compd 843:156020. https://doi.org/10.1016/j.jallcom.2020.156020

    Article  Google Scholar 

  91. Wang J, Pan Z, Wang Y et al (2020) Evolution of crystallographic orientation, precipitation, phase transformation and mechanical properties realized by enhancing deposition current for dual-wire arc additive manufactured Ni-rich NiTi alloy. Addit Manuf 34:101240. https://doi.org/10.1016/j.addma.2020.101240

    Article  Google Scholar 

  92. Singh S, Resnina N, Belyaev S et al (2021) Investigations on NiTi shape memory alloy thin wall structures through laser marking assisted wire arc based additive manufacturing. J Manuf Process 66:70. https://doi.org/10.1016/j.jmapro.2021.04.004

    Article  Google Scholar 

  93. Bharat Kumar CH, Anandakrishnan V (2020) Experimental investigations on the effect of wire arc additive manufacturing process parameters on the layer geometry of Inconel 825. Mater Today Proc 21:622. https://doi.org/10.1016/j.matpr.2019.06.727

    Article  Google Scholar 

  94. Dinovitzer M, Chen X, Laliberte J, Huang X, Frei H (2019) Effect of wire and arc additive manufacturing (WAAM) process parameters on bead geometry and microstructure. Addit Manuf 26:138

    Google Scholar 

  95. Qiu Z, Wu B, Zhu H et al (2020) Microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy. Mater Design 195:109007. https://doi.org/10.1016/j.matdes.2020.109007

    Article  Google Scholar 

  96. Rajesh Kannan A, Mohan Kumar S, Pravin Kumar N, Siva Shanmugam N, Vishnu AS, Palguna Y (2020) Process-microstructural features for tailoring fatigue strength of wire arc additive manufactured functionally graded material of SS904L and Hastelloy C-276. Mater Lett 274:127968. https://doi.org/10.1016/j.matlet.2020.127968

    Article  Google Scholar 

  97. Marenych O (2019) School of mechanical, materials, mechatronic and biomedical engineering. University of Wollongong, Australia

    Google Scholar 

  98. Marenych O, Kostryzhev A, Shen C, Pan Z, Li H, van Duin S (2019) Precipitation strengthening in Ni–Cu alloys fabricated using wire arc additive manufacturing technology. Metals 9:105

    Google Scholar 

  99. Elahinia M, Shayesteh Moghaddam N, Taheri Andani M, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630. https://doi.org/10.1016/j.pmatsci.2016.08.001

    Article  Google Scholar 

  100. Bhuvanesh Kumar M, Sathiya P, Parameshwaran R (2020) Parameters optimization for end milling of Al7075–ZrO2–C metal matrix composites using GRA and ANOVA. Trans Indian Inst Met. https://doi.org/10.1007/s12666-020-02089-2

    Article  Google Scholar 

  101. Kumar MB, Parameshwaran R, Deepandurai K, Senthil SM (2020) Influence of milling parameters on surface roughness of Al–SiC–B4C composites. Trans Indian Inst Met. https://doi.org/10.1007/s12666-020-01960-6

    Article  Google Scholar 

  102. Cunningham CR, Flynn JM, Shokrani A, Dhokia V, Newman ST (2018) Invited review article: strategies and processes for high quality wire arc additive manufacturing. Addit Manuf 22:672. https://doi.org/10.1016/j.addma.2018.06.020

    Article  Google Scholar 

  103. Ravi G, Murugan N, Arulmani R (2020) Microstructure and mechanical properties of Inconel-625 slab component fabricated by wire arc additive manufacturing. Mater Sci Technol 36:1785. https://doi.org/10.1080/02670836.2020.1836737

    Article  Google Scholar 

  104. Tanvir ANM, Ahsan MRU, Ji C, Hawkins W, Bates B, Kim DB (2019) Heat treatment effects on Inconel 625 components fabricated by wire + arc additive manufacturing (WAAM)—part 1: microstructural characterization. Int J Adv Manuf Technol 103:3785. https://doi.org/10.1007/s00170-019-03828-6

    Article  Google Scholar 

  105. Yangfan W, Xizhang C, Chuanchu S (2019) Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing. Surf Coat Technol 374:116. https://doi.org/10.1016/j.surfcoat.2019.05.079

    Article  Google Scholar 

  106. Zhang LN, Ojo OA (2020) Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy. J Alloys Compd 829:154455. https://doi.org/10.1016/j.jallcom.2020.154455

    Article  Google Scholar 

  107. Marenych OO, Kostryzhev AG, Pan Z, Li H, van Duin S (2019) Comparative effect of Mn/Ti solute atoms and TiC/Ni3(Al, Ti) nano-particles on work hardening behaviour in NiCu alloys fabricated by wire arc additive manufacturing. Mater Sci Eng A 753:262. https://doi.org/10.1016/j.msea.2019.03.040

    Article  Google Scholar 

  108. Bhuvanesh Kumar M, Sathiya P, Rajesh Kannan G, Karthikeyan M (2022) Investigation on the microstructure and microhardness of Inconel 825 thick wall fabricated by wire arc additive manufacturing. Mater Lett 317:132115. https://doi.org/10.1016/j.matlet.2022.132115

    Article  Google Scholar 

  109. Benakis M, Costanzo D, Patran A (2020) Current mode effects on weld bead geometry and heat affected zone in pulsed wire arc additive manufacturing of Ti-6-4 and Inconel 718. J Manuf Process 60:61. https://doi.org/10.1016/j.jmapro.2020.10.018

    Article  Google Scholar 

  110. Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360. https://doi.org/10.1016/j.commatsci.2016.10.003

    Article  Google Scholar 

  111. Zhang S, Li J, Kou H, Yang J, Yang G, Wang J (2016) Effects of thermal history on the microstructure evolution of Ti-6Al-4V during solidification. J Mater Process Technol 227:281. https://doi.org/10.1016/j.jmatprotec.2015.08.030

    Article  Google Scholar 

  112. Xiong J, Yin Z, Zhang W (2016) Closed-loop control of variable layer width for thin-walled parts in wire and arc additive manufacturing. J Mater Process Technol 233:100. https://doi.org/10.1016/j.jmatprotec.2016.02.021

    Article  Google Scholar 

  113. Colegrove PA, Donoghue J, Martina F, Gu J, Prangnell P, Hönnige J (2017) Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components. Scripta Mater 135:111. https://doi.org/10.1016/j.scriptamat.2016.10.031

    Article  Google Scholar 

  114. Guo J, Zhou Y, Liu C, Wu Q, Chen X, Lu J (2016) Wire arc additive manufacturing of AZ31 magnesium alloy: grain refinement by adjusting pulse frequency. Materials 9:823

    Google Scholar 

  115. Luo Y, Li J, Xu J, Zhu L, Han J, Zhang C (2018) Influence of pulsed arc on the metal droplet deposited by projected transfer mode in wire-arc additive manufacturing. J Mater Process Technol 259:353. https://doi.org/10.1016/j.jmatprotec.2018.04.047

    Article  Google Scholar 

  116. Šmíd M, Kunz L, Hutař P, Hrbáček K (2014) High cycle fatigue of nickel-based superalloy MAR-M 247 at high temperatures. Proc Eng 74:329. https://doi.org/10.1016/j.proeng.2014.06.273

    Article  Google Scholar 

  117. Sabol GP, Stickler R (1969) Microstructure of nickel-based superalloys. Phys Status Solidi 35:11. https://doi.org/10.1002/pssb.19690350102

    Article  Google Scholar 

  118. Bhadeshia H (2000) Mechanically alloyed metals. Mater Sci Technol 16:1404–1411

    Google Scholar 

  119. Hosseini VA, Högström M, Hurtig K, Bermejo MAV, Stridh L-E, Karlsson L (2019) Wire-arc additive manufacturing of a duplex stainless steel: thermal cycle analysis and microstructure characterization. Weld World 63:975

    Google Scholar 

  120. Dharmendra C, Hadadzadeh A, Amirkhiz BS, Janaki Ram GD, Mohammadi M (2019) Microstructural evolution and mechanical behavior of nickel aluminum bronze Cu-9Al-4Fe-4Ni-1Mn fabricated through wire-arc additive manufacturing. Addit Manuf 30:100872. https://doi.org/10.1016/j.addma.2019.100872

    Article  Google Scholar 

  121. Wang JF, Sun QJ, Wang H, Liu JP, Feng JC (2016) Effect of location on microstructure and mechanical properties of additive layer manufactured Inconel 625 using gas tungsten arc welding. Mater Sci Eng, A 676:395. https://doi.org/10.1016/j.msea.2016.09.015

    Article  Google Scholar 

  122. Baufeld B (2012) Mechanical properties of INCONEL 718 parts manufactured by shaped metal deposition (SMD). J Mater Eng Perform 21:1416. https://doi.org/10.1007/s11665-011-0009-y

    Article  Google Scholar 

  123. Shen C, Mu G, Hua X et al (2019) Influences of postproduction heat treatments on the material anisotropy of nickel–aluminum bronze fabricated using wire-arc additive manufacturing process. Int J Adv Manuf Technol 103:3199. https://doi.org/10.1007/s00170-019-03700-7

    Article  Google Scholar 

  124. Ayan Y, Kahraman N (2022) Bending fatigue properties of structural steel fabricated through wire arc additive manufacturing (WAAM). Eng Sci Technol Int J 35:101247. https://doi.org/10.1016/j.jestch.2022.101247

    Article  Google Scholar 

  125. Siddiqui SF, Araiza E (2023) Microstructural defects governing torsional fatigue failure of additively manufactured as-built and heat-treated Inconel 718. Eng Failure Anal 144:106975. https://doi.org/10.1016/j.engfailanal.2022.106975

    Article  Google Scholar 

  126. Seow CE, Coules HE, Wu G, Khan RH, Xu X, Williams S (2019) Wire+ Arc Additively manufactured Inconel 718: effect of post-deposition heat treatments on microstructure and tensile properties. Mater Des 183:108157

    Google Scholar 

  127. Seow CE, Coules HE, Wu G, Khan RHU, Xu X, Williams S (2019) Wire + arc additively manufactured Inconel 718: effect of post-deposition heat treatments on microstructure and tensile properties. Mater Design 183:108157. https://doi.org/10.1016/j.matdes.2019.108157

    Article  Google Scholar 

  128. Tanvir ANM, Ahsan MRU, Seo G et al (2020) Heat treatment effects on Inconel 625 components fabricated by wire + arc additively manufacturing (WAAM)—part 2: mechanical properties. Int J Adv Manuf Technol 110:1709. https://doi.org/10.1007/s00170-020-05980-w

    Article  Google Scholar 

  129. Safarzade A, Sharifitabar M, Afarani MS (2020) Effects of heat treatment on microstructure and mechanical properties of Inconel 625 alloy fabricated by wire arc additive manufacturing process. Trans Nonferr Metals Soc China 30:3016

    Google Scholar 

  130. Dempster I, Cao W-D, Kennedy R, Bond B, Aurrecoechea J, Lipschutz M (2005) Structure and property comparison of Allvac® 718Plus™ alloy and Waspaloy forgings. In: Superalloys 718, 625, 706 and Derivatives. The Minerals, Metals & Materials Society (TMS), United States of America

  131. Oguntuase O (2019) Development of post-deposition heat treatment to improve mechanical properties of wire-arc additive manufactured ATI 718Plus superalloy. University of Manitoba, Canada. http://hdl.handle.net/1993/33902

  132. Qiu Z, Wu B, Wang Z et al (2021) Effects of post heat treatment on the microstructure and mechanical properties of wire arc additively manufactured Hastelloy C276 alloy. Mater Charact 177:111158

    Google Scholar 

  133. Yin ZF, Zhao WZ, Lai WY, Zhao XH (2009) Electrochemical behaviour of Ni-base alloys exposed under oil/gas field environments. Corros Sci 51:1702. https://doi.org/10.1016/j.corsci.2009.04.019

    Article  Google Scholar 

  134. Boissy C, Ter-Ovanessian B, Mary N, Normand B (2015) Correlation between predictive and descriptive models to characterize the passive film—study of pure chromium by electrochemical impedance spectroscopy. Electrochim Acta 174:430. https://doi.org/10.1016/j.electacta.2015.05.179

    Article  Google Scholar 

  135. Mohammadi F, Nickchi T, Attar MM, Alfantazi A (2011) EIS study of potentiostatically formed passive film on 304 stainless steel. Electrochim Acta 56:8727. https://doi.org/10.1016/j.electacta.2011.07.072

    Article  Google Scholar 

  136. Zhang Y, Chen Y, Li P, Male AT (2003) Weld deposition-based rapid prototyping: a preliminary study. J Mater Process Technol 135:347

    Google Scholar 

  137. Kong F, Ma J, Kovacevic R (2011) Numerical and experimental study of thermally induced residual stress in the hybrid laser–GMA welding process. J Mater Process Technol 211:1102

    Google Scholar 

  138. Wang J, Pan Z, Carpenter K, Han J, Wang Z, Li H (2021) Comparative study on crystallographic orientation, precipitation, phase transformation and mechanical response of Ni-rich NiTi alloy fabricated by WAAM at elevated substrate heating temperatures. Mater Sci Eng A 800:140307. https://doi.org/10.1016/j.msea.2020.140307

    Article  Google Scholar 

  139. Lu X, Li MV, Yang H (2021) Comparison of wire-arc and powder-laser additive manufacturing for IN718 superalloy: unified consideration for selecting process parameters based on volumetric energy density. Int J Adv Manuf Technol 114:1517

    Google Scholar 

  140. Biswal R, Zhang X, Syed AK et al (2019) Criticality of porosity defects on the fatigue performance of wire+ arc additive manufactured titanium alloy. Int J Fatigue 122:208

    Google Scholar 

  141. Seow CE, Zhang J, Coules HE et al (2020) Effect of crack-like defects on the fracture behaviour of wire + arc additively manufactured nickel-base alloy 718. Addit Manuf 36:101578. https://doi.org/10.1016/j.addma.2020.101578

    Article  Google Scholar 

  142. Artaza T, Bhujangrao T, Suárez A, Veiga F, Lamikiz A (2020) Influence of heat input on the formation of laves phases and hot cracking in plasma arc welding (PAW) additive manufacturing of Inconel 718. Metals 10:771

    Google Scholar 

  143. Ye X, Hua X, Wang M, Lou S (2015) Controlling hot cracking in Ni-based Inconel-718 superalloy cast sheets during tungsten inert gas welding. J Mater Process Technol 222:381

    Google Scholar 

  144. Dye D, Hunziker O, Reed R (2001) Numerical analysis of the weldability of superalloys. Acta Mater 49:683

    Google Scholar 

  145. Tammas-Williams S, Zhao H, Léonard F, Derguti F, Todd I, Prangnell PB (2015) XCT analysis of the influence of melt strategies on defect population in Ti–6Al–4V components manufactured by selective electron beam melting. Mater Charact 102:47

    Google Scholar 

  146. Xu X, Ding J, Ganguly S, Williams S (2019) Investigation of process factors affecting mechanical properties of INCONEL 718 superalloy in wire+ arc additive manufacture process. J Mater Process Technol 265:201

    Google Scholar 

  147. Lee J-Y, An J, Chua CK (2017) Fundamentals and applications of 3D printing for novel materials. Appl Mater Today 7:120. https://doi.org/10.1016/j.apmt.2017.02.004

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Institute of Technology, Tiruchirappalli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manickam Bhuvanesh Kumar.

Ethics declarations

Conflict of interest

There are no potential conflict of interest to disclose.

Additional information

Technical Editor: Izabel Fernanda Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhuvanesh Kumar, M., Sathiya, P. & Senthil, S.M. A critical review of wire arc additive manufacturing of nickel-based alloys: principles, process parameters, microstructure, mechanical properties, heat treatment effects, and defects. J Braz. Soc. Mech. Sci. Eng. 45, 164 (2023). https://doi.org/10.1007/s40430-023-04077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-023-04077-1

Keywords

Navigation