Skip to main content
Log in

Machinability properties of Al–7Si, Al–7Si–4Zn and Al–7Si–4Zn–3Cu alloys

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Al–7Si, Al–7Si–4Zn, Al–7Si–4Zn–3Cu alloys were produced by permanent mold casting method to investigate the effects of copper and zinc additions on the machinability properties of Al–7Si alloy. The structural and mechanical properties of the produced alloys were investigated with conventional methods. Machinability properties of these alloys were determined by turning, and they were associated with structural and mechanical properties of the alloys. Machinability experiments were carried out in CNC vertical machining center under dry cutting conditions using uncoated carbide drill and constant cutting speed (120 m/min), feed (0.15 mm/rev) and depth of cut (15 mm) values. The microstructure of Al–7Si binary alloy was observed to be composed of aluminum-rich α phase, primary silicon crystals and eutectic Al–Si phase. The addition of 4% Zn to the Al–7Si alloy did not form a different phase in the microstructure. However, Al2Cu intermetallic phase was formed by addition of 3% Cu. While the hardness and tensile strength of the alloy increased, elongation to fracture significantly reduced. As a result of machinability experiments, it was observed that the minimum thrust force and surface roughness occurred in Al–7Si–4Zn–3Cu alloy, while the maximum built-up edge was observed during drilling of Al–7Si and Al–7Si–4Zn alloys. Microhardness value of machined surface in Al–7Si alloy was found to be the minimum while the maximum Al–7Si–4Zn–3Cu alloy was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Gonçalves RA, Silva MB (2015) Influence of copper content on 6351 aluminum alloy machinability. Procedia Manuf 1:683–695. https://doi.org/10.1016/j.promfg.2015.09.014

    Article  Google Scholar 

  2. AlSaadi HIA, Tunay RF (2017) The effect of artificial aging on the hardness of aluminum alloy. J Eng Sci Des 5(3):525–532. https://doi.org/10.21923/jesd.287005

    Article  Google Scholar 

  3. Soares RB, De Jesus AMP, Neto RJL, Chinta B, Rosa PAR, Reis A (2017) Comparison between cemented carbide and PCD tools on machinability of a high silicon aluminium alloy. J Mater Eng Perform 26(9):4638–4657. https://doi.org/10.1007/s11665-017-2870-9

    Article  Google Scholar 

  4. Roy P, Sarangi SK, Ghosh A, Chattopadhyay AK (2009) Machinability study of pure aluminium and Al–12%Si alloys against uncoated and coated carbide inserts. Int J Ref Met Hard Mater 27(3):535–544. https://doi.org/10.1016/j.ijrmhm.2008.04.008

    Article  Google Scholar 

  5. Uhlman E, Reimers W, Bryne F, Klaus M (2010) Analysis of tool wear and residual stress of CVD diamond coated cemented carbide tools in the machining of aluminium silicon alloys. Prod Eng 4(2–3):203–209. https://doi.org/10.1007/s11740-010-0213-x

    Article  Google Scholar 

  6. Wain N, Thomas NR, Hickman S, Wallbank J, Teer DG (2005) Performance of low-friction coatings in the dry drilling of automotive Al–Si alloys. Surf Coat Technol 200(5–6):1885–1892. https://doi.org/10.1016/j.surfcoat.2005.08.016

    Article  Google Scholar 

  7. Zedan Y, Samuel FH, Samuel AM, Doty HW (2010) Effects of intermetallics on the machinability of heat-treated Al-(7-11)%Si alloys. J Mater Pro Tech 210(2):245–257. https://doi.org/10.1016/j.imatprotec.2009.09.007

    Article  Google Scholar 

  8. Miracle DB (2005) Metal matrix composites-from science to technological significance. Compos Sci Technol 65(15–16):2526–2540. https://doi.org/10.1016/j.compscitech.2005.05.027

    Article  Google Scholar 

  9. Abdelaziz MH, Samuel AM, Doty HW, Valtierra S, Samuel FH (2019) Effect of additives on the microstructure and tensile properties of Al–Si alloys. J Mater Res Technol 8(2):2255–2268. https://doi.org/10.1016/j.jmrt.2019.03.003

    Article  Google Scholar 

  10. Samuel E, Samuel AM, Doty HW, Valtierra S, Samuel FH (2014) Intermetallic phases in Al–Si based cast alloys: new perspective. Int J Cast Metals Res 27(2):107–114. https://doi.org/10.1179/1743133613Y.0000000083

    Article  Google Scholar 

  11. Basavakumar KG, Mukunda PG, Chakraborty M (2007) Influence of melt treatments and turning inserts on cutting force and surface integrity in turning of Al–7Si and Al–7Si–2.5Cu cast alloys. J Mater Sci 42(20):8714–8724. https://doi.org/10.1007/s10853-007-1754-z

    Article  Google Scholar 

  12. Grum J, Kisin M (2003) Influence of microstructure on surface integrity in turning-part I: the influence of the size of the soft phase in a microstructure on surface-roughness formation. Int J Mach Tool Manuf 43(15):1535–1543. https://doi.org/10.1016/S0890-6955(03)00199-8

    Article  Google Scholar 

  13. Pan EN, Cherng YC, Lin CA, Chiou HS (1994) Roles of Sr and Sb on Silicon Modification of A356 Aluminium Alloys. AFS Trans 102:609–629

    Google Scholar 

  14. Barzani MM, Sarhan AA, Farahany S, Ramesh S, Maher I (2015) Investigating the machinability of Al–Si–Cu cast alloy containing bismuth and antimony using coated carbide insert. Measurement 62:170–178. https://doi.org/10.1016/j.measurement.2014.10.030

    Article  Google Scholar 

  15. Nishida Y, Arima H, Kim JC, Ando T (2001) Rotary-die equal-channel angular pressing of an Al–7 mass% Si–0.35 mass% Mg alloy. Scr Mater 45(3):261–266

    Article  Google Scholar 

  16. Neishi K, Horita Z, Langdon TG (2001) Achieving superplasticity in a Cu–40% Zn alloy through severe plastic deformation. Scr Mater 45(8):965–970. https://doi.org/10.1016/S1359-6462(01)01119-8

    Article  Google Scholar 

  17. Alemdağ Y, Beder M (2014) Microstructural, mechanical and tribological properties of Al–7Si–(0–5)Zn alloys. Mater Des 63:159–167. https://doi.org/10.1016/j.matdes.2014.06.006

    Article  Google Scholar 

  18. Alemdağ Y, Karabıyık S, Yanar H, Pürçek G (2018) Mechanical properties of multi-directional forged Al–7Si–4Zn–3Cu alloy. Defect Differ Forum 385:250–255. https://doi.org/10.4028/www.scientific.net/DDF.385.250

    Article  Google Scholar 

  19. Basavakumar KG, Mukunda PG, Chakraborty M (2008) Influence of grain refinement and modification on microstructure and mechanical properties of Al–7Si and Al–7Si–2.5Cu cast alloys. Mater Charact 59(3):283–289. https://doi.org/10.1016/j.matchar.2007.01.011

    Article  Google Scholar 

  20. Hwang YK, Lee CM, Park SH (2009) Evaluation of machinability according to the changes in machine tools and cooling lubrication environments and optimization of cutting conditions using Taguchi method. Int J Precis Eng Manuf 10(3):65–73. https://doi.org/10.1007/s12541-009-0049-5

    Article  Google Scholar 

  21. Marani M, Songmene V, Zeinali M, Kouam J, Zedan Y (2019) Neuro-fuzzy predictive model for surface roughness and cutting force of machined Al–20Mg2Si–2Cu metal matrix composite using additives. Neural Comp Appl. https://doi.org/10.1007/s00521-019-04314-6

    Article  Google Scholar 

  22. Giasin K, Hodzic A, Phadnis V, Ayvar-Soberanis S (2016) Assessment of cutting forces and hole quality in drilling Al2024 aluminium alloy: experimental and finite element study. Int J Adv Manuf Technol 87(5–8):2041–2061. https://doi.org/10.1007/s00170-016-8563-y

    Article  Google Scholar 

  23. Basavakumar KG, Mukunda PG, Chakraborty M (2007) Influence of melt treatments and turning inserts on cutting force and surface integrity in turning of Al–12Si and Al–12Si–3Cu cast alloys. Surf Coat Technol 201(8):4757–4766. https://doi.org/10.1016/j.surfcoat.2006.10.015

    Article  Google Scholar 

  24. Farid AA, Sharif S, Idris MH (2011) Surface integrity study of high-speed drilling of Al–Si alloy using HSS drill. J Eng Manuf 225(7):1001–1007. https://doi.org/10.1177/2041297510393642

    Article  Google Scholar 

  25. Braga DU, Diniz AE, Miranda GW, Coppini NL (2002) Using a minimum quantity of lubricant (MQL) and a diamond coated tool in the drilling of aluminum–silicon alloys. J Mater Process Technol 122(1):127–138. https://doi.org/10.1016/S0924-0136(01)01249-3

    Article  Google Scholar 

  26. Froehlich AR, Jacques RC, Strohaecker TR, Mombru R (2007) The correlation of machinability and microstrutural characteristics of different extruded aluminum alloys. J Mater Eng Perform 16(6):784–791. https://doi.org/10.1007/s11665-007-9097-0

    Article  Google Scholar 

  27. Edwards JD, Frary FC, Jeffries Z (1930) The aluminum industry: aluminum products and their fabrication, vol 2. McGraw-Hill Book Company, New York

    Google Scholar 

  28. Marani M, Songmene V, Kouam J, Zedan Y (2018) Experimental investigation on microstructure, mechanical properties and dust emission when milling Al–20Mg2 Si–2Cu metal matrix composite with modifier elements. Int J Adv Manuf Technol 99(1–4):789–802. https://doi.org/10.1007/s00170-018-2491-y

    Article  Google Scholar 

  29. Bayraktar Ş, Hekimoğlu AP (2020) Effect of zinc content and cutting tool coating on the machinability of the Al–(5–35) Zn alloys. Met Mater Int. https://doi.org/10.1007/s12540-019-00582-y

    Article  Google Scholar 

  30. Hekimoğlu AP, Bayraktar Ş, Turgut Y (2018) Investigation of the effect of cutting speed and feed rate on machining of the Al–35Zn alloy. In: 2nd international symposium on innovative approaches in scientific studies (ISAS 2018-Winter), 30th Nov–2th Dec, Samsun, Turkey

  31. Bayraktar Ş, Hekimoğlu AP, Turgut Y, Hacıosmanoğlu M (2017) Effect of different cutting tools on machinability of the Al–5Zn alloy. In: 2nd international symposium on industrial design engineering (ISIDE), 13th–15th Sep, Nevşehir, Turkey

  32. Bayraktar Ş, Hekimoğlu AP, Turgut Y, Hacıosmanoğlu M (2017) A performance comparison study of uncoated and TiAlN coated carbide end mill on machining of the Al–35Zn alloy. In: 9th international conference on tribology (BalkanTRib’17), 13th–15th Sept, Nevşehir, Turkey

  33. Agustina DB, Saá A, Marcos BM, Rubio EM (2011) Analysis of the machinability of aluminium alloys UNS A97050-T7 and UNS A92024-T3 during short dry turning tests. Adv Mater Res 264:931–936. https://doi.org/10.4028/www.scientific.net/AMR.264-265.931

    Article  Google Scholar 

  34. Marcos BM, Sebastián PMA, Contreras SJP, Sánchez CM, Sánchez LM, Sánchez SJM (2005) Study of roundness on cylindrical bars turned of aluminium–copper alloys UNS A92024. J Mater Process Technol 162:644–648. https://doi.org/10.1016/j.jmatprotec.2005.02.061

    Article  Google Scholar 

  35. Vilches F, Hurtado L, Fernández F, Gamboa C (2017) Analysis of the chip geometry in dry machining of aeronautical aluminum alloys. Appl Sci 7(2):132. https://doi.org/10.3390/app7020132

    Article  Google Scholar 

  36. Fatahalla N, Hafiz M, Abdulkhalek M (1999) Effect of microstructure on the mechanical properties and fracture of commercial hypoeutectic Al–Si alloy modified with Na, Sb and Sr. J Mater Sci 34(14):3555–3564

    Article  Google Scholar 

  37. Alemdağ Y, Beder M (2015) Dry sliding wear properties of Al–7Si–4Zn–(0–5)Cu alloys. In: 8th international conference on tribology, 30th Oct–1st Nov, Sinaia, Romania

  38. Özçatalbaş Y, Aydın B (2006) Effect of mechanical properties and cutting geometry on the machinability properties of AA2014 alloy. J Fac Eng Archit Gazi Univ 21(1):21–27. http://dergipark.org.tr/gazimmfd/issue/6667/88807

  39. Pugazhenthi A, Dinaharan I, Kanagaraj G, Selvam JDR (2018) Predicting the effect of machining parameters on turning characteristics of AA7075/TiB2 in situ aluminum matrix composites using empirical relationships. J Braz Soc Mech Sci Eng 40:555. https://doi.org/10.1007/s40430-018-1480-2

    Article  Google Scholar 

  40. Garcia RF, Feix EC, Mendel HT, Gonzalez AR, Souza AJ (2019) Optimization of cutting parameters for finish turning of 6082-T6 aluminum alloy under dry and RQL conditions. J Braz Soc Mech Sci Eng 41:317. https://doi.org/10.1007/s40430-019-1826-4

    Article  Google Scholar 

  41. Carrilero MS, Bienvenido R, Sanchez JM, Alvarez A, Gonzalez A, Marcos M (2002) A SEM and EDS insight into the BUL and BUE differences in the turning processes of AA2024 Al–Cu alloy. Int J Mach Tools Manuf 42(2):215–220. https://doi.org/10.1016/S0890-6955(01)00112-2

    Article  Google Scholar 

  42. Gökkaya H (2010) The effect of machining parameters on cutting forces, surface roughness, build-up edge (BUE) and built-up layer (BUL) during machining AA2014(T4) alloy. J Mech Eng 56(9):584–593

    Google Scholar 

  43. Gökkaya H, Nalbant M (2007) Investigating the effects of cutting speeds over the built-up layer and built-up edge formation with SEM. J Fac Eng Archit Gazi Univ 22(3):481–488

    Google Scholar 

  44. Nouari M, List G, Girot F, Gehin D (2005) Effect of machining parameters and coating on wear mechanisms in dry drilling of aluminium alloys. Int J Mach Tools Manuf 45(12–13):1436–1442. https://doi.org/10.1016/j.ijmachtools.2005.01.026

    Article  Google Scholar 

  45. List G, Nouari M, Gehin D, Gomez S, Manaud JP, Le Petitcorps Y, Girot F (2005) Wear behaviour of cemented carbide tools in dry machining of aluminium alloy. Wear 259(7–12):1177–1189. https://doi.org/10.1016/j.wear.2005.02.056

    Article  Google Scholar 

  46. Zeren M, Karakulak E, Gümüş S (2011) Influence of Cu addition on microstructure and hardness of near-eutectic Al–Si–xCu-alloys. Trans Nonferrous Met Soc China 21(8):1698–1702. https://doi.org/10.1016/S1003-6326(11)60917-5

    Article  Google Scholar 

  47. Savaşkan T, Bican O, Alemdağ Y (2009) Developing aluminium–zinc-based a new alloy for tribological applications. J Mater Sci 44(8):1969–1976. https://doi.org/10.1007/s10853-009-3297-y

    Article  Google Scholar 

  48. Aurich JC, Sudermann H, Bil H (2005) Characterisation of burr formation in grinding and prospects for modelling. CIRP Ann 54(1):313–316. https://doi.org/10.1016/s0007-8506(07)60111-5

    Article  Google Scholar 

  49. Pramila Bai BN, Biswas SK (1991) Effect of magnesium addition and heat treatment on mild wear of hypoeutectic aluminium–silicon alloys. Acta Metal Mater 39(5):833–840. https://doi.org/10.1016/0956-7151(91)90283-7

    Article  Google Scholar 

  50. Ramesh A, Melkote SN, Allard LF, Riester L, Watkins TR (2005) Analysis of white layers formed in hard turning of AISI 52100 steel. Mater Sci Eng A 390(1–2):88–97. https://doi.org/10.1016/j.msea.2004.08.052

    Article  Google Scholar 

  51. Osterle W, Li PX (1997) Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates. Mater Sci Eng A 238(2):357–366. https://doi.org/10.1016/S0921-5093(97)00457-7

    Article  Google Scholar 

  52. Zhou J, Bushlya V, Peng RL, Stahl JE (2012) Identification of subsurface deformation in machining of Inconel 718. Appl Mech Mater 117–119:1681–1688. https://doi.org/10.4028/www.scientific.net/AMM.117_119.1681

    Article  Google Scholar 

  53. Dargusch SM, Zhang MX, Palanisamy S, Buddery AJM, StJohn DH (2008) Subsurface deformation after dry machining of grade 2 titanium. Adv Eng Mater 10(1–2):85–88. https://doi.org/10.1002/adem.200700233

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şenol Bayraktar.

Additional information

Technical Editor: Adriano Fagali de Souza.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, Ş., Afyon, F. Machinability properties of Al–7Si, Al–7Si–4Zn and Al–7Si–4Zn–3Cu alloys. J Braz. Soc. Mech. Sci. Eng. 42, 187 (2020). https://doi.org/10.1007/s40430-020-02281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02281-x

Keywords

Navigation