Skip to main content
Log in

Experimental Analysis of Polishing of Hybrid Aluminium Metal Matrix Composite Reinforced with SiC, ZrO2, and NiTi Particles Using a Developed Rotary Abrasive Float Polishing System

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Finishing is an essential process after manufacturing of miniature products. The conventional finishing processes can be used to produce good surface in micro domain but effectiveness of these processes is very poor for polishing of ductile, hard and brittle materials. Considering aforementioned, rotary abrasive float polishing set-up has been developed and utilized for polishing of aluminium matrix composite specimens. The effect of abrasive particle size, abrasive concentration, lap rotation and polishing time on surface finish were analysed. Taguchi L18 mixed orthogonal array was engaged for the experimental design and optimization. The surface roughness height (Ra, µm) of the polished specimens were enhanced from 0.437 to 0.049 µm i.e. 88.79%, when experiments were performed at optimal parametric setting. Abrasive particle size, lap rotation and polishing time was found significant factors in deciding surface roughness. Scanning electrode microscopic and optical images confirm the absence of any scratch and roughness peaks on polished surface specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jeon, C. H., Jeong, Y. H., Seo, J. J., Tien, H. N., Hong, S. T., Yum, Y. J., Hur, S. H., & Lee, K. J. (2014). Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing. International Journal of Precision Engineering and Manufacturing, 15, 1235–1239. https://doi.org/10.1007/s12541-014-0462-2

    Article  Google Scholar 

  2. Dwivedi, S. P., Sharma, S., & Mishra, R. K. (2016). Mechanical and metallurgical characterizations of AA2014/eggshells waste particulate metal matrix composite. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 281–288. https://doi.org/10.1007/s40684-016-0036-0

    Article  Google Scholar 

  3. Li, C., Liu, X., Xu, M., Chen, J., Li, S., Li, P., & Ko, T. J. (2023). Formation Mechanism and Adhesion Evaluation of Debris in Ti–6Al–4V Alloy Turning. International Journal of Precision Engineering and Manufacturing-Green Technology, 10(5), 1189–1205. https://doi.org/10.1007/s40684-022-00487-z

    Article  Google Scholar 

  4. Ho, K. H., Newman, S. T., Rahimifard, S., & Allen, R. D. (2004). State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture, 44(12–13), 1247–1259. https://doi.org/10.1016/j.ijmachtools.2004.04.017

    Article  Google Scholar 

  5. Brinksmeier, E., Riemer, O., & Gessenharter, A. (2006). Finishing of structured surfaces by abrasive polishing. Precision Engineering, 30(3), 325–336. https://doi.org/10.1016/jprecisioneng.2005.11.012

    Article  Google Scholar 

  6. Feng, K., Lyu, B., Zhao, T., Yin, T., & Zhou, Z. (2022). Fabrication and application of gel-forming CeO2 fixed abrasive tools for quartz glass polishing. International Journal of Precision Engineering and Manufacturing, 23(9), 985–1002. https://doi.org/10.1007/s12541-022-00687-2

    Article  Google Scholar 

  7. Greitemeier, D., Dalle Donne, C., Syassen, F., Eufinger, J., & Melz, T. (2016). Effect of surface roughness on fatigue performance of additive manufactured Ti–6Al–4V. Materials Science and Technology, 32(7), 629–634. https://doi.org/10.1179/1743284715Y.0000000053

    Article  Google Scholar 

  8. Pradhan, D., Mahobia, G. S., Chattopadhyay, K., & Singh, V. (2018). Effect of surface roughness on corrosion behaviour of the super alloy IN718 in simulated marine environment. Journal of Alloys and Compounds, 740, 250–263. https://doi.org/10.1016/j.jallcom.2018.01.042

    Article  Google Scholar 

  9. Rahaman, M. L., Zhang, L., Liu, M., & Liu, W. (2015). Surface roughness effect on the friction and wear of bulk metallic glasses. Wear, 332, 1231–1237. https://doi.org/10.1016/j.wear.2014.11.030

    Article  Google Scholar 

  10. Wei, S., Zhang, T., Wei, H., Wang, W., Wang, H., & Liu, Y. (2023). Simulation study on removal mechanism of Si3N4 ceramic in rotary ultrasonic grinding. International Journal of Precision Engineering and Manufacturing, 24(6), 945–965. https://doi.org/10.1007/s12541-023-00808-5

    Article  Google Scholar 

  11. Kishore, K., Sinha, M.K., Singh, A., Archana, Gupta, M. K. & Korkmaz, M. E. (2022). A comprehensive review on the grinding process: Advancements, applications and challenges. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 236(22), 10923–10952. https://doi.org/10.1177/09544062221110782

  12. Rahi, D. K., & Dubey, A. K. (2022). Evaluation of machining performance for electrochemical surface grinding of aluminium based hybrid MMC. International Journal of Precision Engineering and Manufacturing, 23(9), 1039–1047. https://doi.org/10.1007/s12541-022-00670-x

    Article  Google Scholar 

  13. Lerra, F., Candido, A., Liverani, E., & Fortunato, A. (2022). Prediction of micro-scale forces in dry grinding process through a FEM—ML hybrid approach. International Journal of Precision Engineering and Manufacturing, 23, 15–29. https://doi.org/10.1007/s12541-021-00601-2

    Article  Google Scholar 

  14. Dixit, N., Sharma, V., & Kumar, P. (2021). Research trends in abrasive flow machining: A systematic review. Journal of manufacturing Processes, 64, 1434–1461. https://doi.org/10.1016/j.jmapro.2021.03.009

    Article  Google Scholar 

  15. Jain, V. K., & Adsul, S. G. (2000). Experimental investigations into abrasive flow machining (AFM). International Journal of Machine Tools and Manufacture, 40(7), 1003–1021. https://doi.org/10.1016/S0890-6955(99)00114-5

    Article  Google Scholar 

  16. Gorana, V. K., Jain, V. K., & Lal, G. K. (2006). Prediction of surface roughness during abrasive flow machining. The International Journal of Advanced Manufacturing Technology, 31(3), 258–267. https://doi.org/10.1007/s00170-005-0197-4

    Article  Google Scholar 

  17. Zhu, Y. S., Wu, J., Lu, W. Z., Zuo, D. W., Xiao, H. P., Cao, D. W., & Ko, T. J. (2022). Surface formation mechanics and its microstructural characteristics of AAJP of aluminum alloy by using amino thermosetting plastic abrasive. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 59–72. https://doi.org/10.1007/s40684-020-00284-6

    Article  Google Scholar 

  18. Wang, A. C., Liu, C. H., Liang, K. Z., & Pai, S. H. (2007). Study of the rheological properties and the finishing behaviour of abrasive gels in abrasive flow machining. Journal of Mechanical Science and Technology, 21(10), 1593–1598. https://doi.org/10.1007/BF03177380

    Article  Google Scholar 

  19. Zhao, J., Huang, J., Wang, R., Peng, H., Hang, W., & Ji, S. (2020). Investigation of the optimal parameters for the surface finish of K9 optical glass using a soft abrasive rotary flow polishing process. Journal of Manufacturing Processes, 49, 26–34. https://doi.org/10.1016/j.jmapro.2019.11.011

    Article  Google Scholar 

  20. Chih-Hua, W., Chun Wai, K., Stephen Yee Ming, W., & Adri Muhammad, A. B. (2020). Numerical and experimental investigation of abrasive flow machining of branching channels. The International Journal of Advanced Manufacturing Technology, 108, 2945–2966. https://doi.org/10.1007/s00170-020-05589-z

    Article  Google Scholar 

  21. Zhu, Y. S., Lu, W. Z., Zuo, D. W., Xiao, H. P., Cao, D. W., & Ko, J. T. (2019). Development of abrasive jet polishing by using amino thermosetting plastic abrasive for aluminium alloy. Materials and Manufacturing Processes, 43, 218–228. https://doi.org/10.1016/j.jmapro.2019.05.016

    Article  Google Scholar 

  22. Misra, A., Pandey, P. M., Dixit, U. S., Roy, A., & Silberschmidt, V. V. (2019). Multi-objective optimization of ultrasonic-assisted magnetic abrasive finishing process. International Journal of Advanced Manufacturing Technology, 101(5), 1661–1670. https://doi.org/10.1007/s00170-018-3060-0

    Article  Google Scholar 

  23. Poudel, B., Lee, P. H., Song, G., Nguyen, H., Kim, K., Jung, K., Shao, C., Kwon, P., & Chung, H. (2021). Innovative magnetic-field assisted finishing (MAF) using nano-scale solid lubricant: A case study on mold steel. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 1411–1426. https://doi.org/10.1007/s40684-021-00404-w

    Article  Google Scholar 

  24. Yadav, R. D., Singh, A. K., & Arora, K. (2020). Parametric analysis of magnetorheological finishing process for improved performance of gear profile. Journal of Manufacturing Processes, 57, 254–267. https://doi.org/10.1016/j.jmapro.2020.06.024

    Article  Google Scholar 

  25. Sharma, V. K. (2021). Modeling and analysis of a novel rotational magnetorheological abrasive flow finishing process. International Journal of Lightweight Materials and Manufacture., 4(3), 290–301. https://doi.org/10.1016/j.ijlmm.2021.02.001

    Article  Google Scholar 

  26. Umehara, N., Kirtane, T., Gerlick, R., Jain, V. K., & Komanduri, R. (2006). A new apparatus for finishing large size/large batch silicon nitride (Si3N4) balls for hybrid bearing applications by magnetic float polishing (MFP). International Journal of Machine Tools and Manufacture, 46, 151–169. https://doi.org/10.1016/j.ijmachtools.2005.04.015

    Article  Google Scholar 

  27. Singh, D. K., Jain, V. K., & Raghuram, V. (2006). Experimental investigations into forces acting during magnetic abrasive finishing. International Journal of Advanced Manufacturing Technology, 30, 652–662. https://doi.org/10.1007/s00170-005-0118-6

    Article  Google Scholar 

  28. Liang, H., Yan, Q., Pan, J., Luo, B., Lu, J., & Zhang, X. (2021). Characteristics of forces in plane polishing based on the magnetorheological effect with dynamic magnetic fields formed by rotating magnetic poles. Journal of Testing and Evaluation, 49(1), 255–269. https://doi.org/10.1520/JTE20180769

    Article  Google Scholar 

  29. Hirata, T., Takei, Y., & Mimura, H. (2014). Machining property in smoothing of steeply curved surfaces by elastic emission machining’. Procedia CIRP, 13, 198–202. https://doi.org/10.1016/j.procir.2014.04.034

    Article  Google Scholar 

  30. Lee, H., Kim, H., & Jeong, H. (2022). Approaches to sustainability in chemical mechanical polishing (CMP): A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 9, 349–367. https://doi.org/10.1007/s40684-021-00406-8

    Article  Google Scholar 

  31. Ahn, Y., Youn, J., Back, C. W., & Kim, Y. K. (2004). Chemical mechanical polishing by colloidal silica-based slurry for micro-scratch reduction. Wear, 257, 785–789. https://doi.org/10.1016/j.wear.2004.03.020

    Article  Google Scholar 

  32. Soares, S. F., Baselt, D. R., Black, J. P., Jungling, K. C., & Stowell, W. K. (1994). Float-polishing process and analysis of float-polished quartz. Applied optics, 33(1), 89–95. https://doi.org/10.1364/AO.33.000089

    Article  Google Scholar 

  33. Chi, X., & Suo, X. H. (2011). Study on float polishing of metal nanometer surface. In Advanced Materials Research (Trans Tech Publications Ltd.), (vol. 154, pp. 1757–1760). https://doi.org/10.4028/www.scientific.net/AMR.154-155.1757

  34. Chechi, P., Maurya, S. K., Prasad, R., & Manna, A. (2023). Influence on microstructural and mechanical properties of al2o3/graphite/flyash-reinforced hybrid composite using scrap aluminum alloy. International Journal of Metalcasting. https://doi.org/10.1007/s40962-023-01069-8

    Article  Google Scholar 

  35. ASTM E8 (2001). Standard test methods for tension testing of metallic materials. Annual book of ASTM standards, ASTM international.

  36. Hetzner, D. W. (2003). Micro-indentation hardness testing of materials using ASTM E384. Microscopy and Microanalysis, 9(S02), 708–709. https://doi.org/10.1017/S1431927603443547

    Article  Google Scholar 

  37. Maurya, S. K., Susheel, C. K., & Manna, A. (2022). Experimental investigation of wire EDM parameters during machining of fabricated hybrid Al/(SiC+ZrO2+NiTi)-MMC. Advances in Materials and Processing Technologies. https://doi.org/10.1080/2374068X.2022.2109684

    Article  Google Scholar 

  38. Manna, A., & Bhattacharyya, B. (2006). Taguchi and Gauss elimination method: A dual response approach for parametric optimization of CNC wire cut EDM of PRAlSiCMMC. The International Journal of Advanced Manufacturing Technology, 28, 67–75. https://doi.org/10.1007/s00170-004-2331-0

    Article  Google Scholar 

  39. Namba, Y., Tsuwa, H., Wada, R., & Ikawa, N. (1987). Ultra-precision float polishing machine. CIRP Annals, 36(1), 211–214. https://doi.org/10.1016/S0007-8506(07)62588-8

    Article  Google Scholar 

  40. Tsai, F. C., Yan, B. H., Kuan, C. Y., & Huang, F. Y. (2008). A Taguchi and experimental investigation into the optimal processing conditions for the abrasive jet polishing of SKD61 mold steel. International Journal of Machine Tools and Manufacture, 48, 932–945. https://doi.org/10.1016/j.ijmachtools.2007.08.019

    Article  Google Scholar 

  41. Krishnaiah, K., & Shahabudeen, P. (2012). Applied design of experiments and Taguchi methods. PHI Learning Pvt Ltd.

    Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge the Department of Metallurgy and Materials Engineering PEC Chandigarh, SAIF-Panjab University and NITTTR Chandigarh for allowing usage of testing facilities.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Saurabh Kumar Maurya, Chander Kant Susheel designed the research, performed experiments and analysed data. Saurabh Kumar Maurya conducted the calculations and drafted the original research article. Alakesh Manna provided technical guidance and reviewed the manuscript. All authors contributed to the scientific discussions and reviewed the final manuscript.

Corresponding author

Correspondence to Saurabh Kumar Maurya.

Ethics declarations

Competing interests

The authors declare no conflict of interests/competing interests related to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurya, S.K., Susheel, C.K. & Manna, A. Experimental Analysis of Polishing of Hybrid Aluminium Metal Matrix Composite Reinforced with SiC, ZrO2, and NiTi Particles Using a Developed Rotary Abrasive Float Polishing System. Int. J. Precis. Eng. Manuf. (2024). https://doi.org/10.1007/s12541-024-01024-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12541-024-01024-5

Keywords

Navigation