Skip to main content
Log in

Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA)

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

Abstract

The use of soil bioagent along with chemical inducers in controlling plant diseases is a unique strategy. The exogenous application of some chemical inducers such as salicylic acid (SA) or methyl jasmonate (MeJA) provides resistance to combat plant pathogens. The intrinsic mechanism that leads into the enhanced defense mechanism by using biological microorganisms, however, correlates with the signaling pathways involving these chemical inducers. In the present study, we have evaluated the biochemical changes relevant to defense activities when plants were pretreated with bioagent, Trichoderma harzianum (Th) and chemical inducers (SA and/or MeJA) and challenged by wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have also evaluated the combined effect of biological (Th) and chemical inducers (SA and/or MeJA) pretreatment followed by pathogen exposure on the biochemical defense-related parameters in tomato. We found that the combined application of Trichoderma along with SA and MeJA provided a better strategy for controlling wilt pathogen rather than using bioagent and chemical inducers alone. The defense-related proteins and phenolics were found to be increased several folds at different time intervals following the combined treatment of biological and chemical inducers compared to when treatment was given alone with bioagent and chemical inducers. The activation of the phenylpropanoid pathway and accumulation of total phenolics were found to be highest at 48 h, whereas the activities of defense-related enzymes and PR proteins along with proline, were found to be maximum at 72 h. The activities of phenolics were also maximum at 48 h, and the activities of PR proteins and proline were higher at 72 h in all single treatments. However, the defense-related activities were greater in combined treatment compared to all single pretreated samples. Therefore, the combined pretreatment with bioagent and chemical inducers triggered the more aggressive defense responses when compared to single treatments and provided better protection against Fusarium wilt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alia Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • Araji S, Grammer TA, Gertzen R, Anderson SD, Mikulic-Petkovsek M, Veberic R, Phu ML, Solar A, Leslie CA, Dandekar AM, Escobar MA (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164:1191–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashry NA, Mohamed HI (2011) Impact of secondary metabolites and related enzymes in flax resistance and or susceptibility to powdery mildew. World J Agric Sci 7:78–85

    CAS  Google Scholar 

  • Ayres PG, Press MC, Spencer-Phillips PTN (1996) Effects of pathogens and parasitic plants on source-sink relationships. In: Zamski E, Schaffe AA (eds) Photoassimilate distribution in plants and crops. Marcel Dekker, New York, pp 479–499

  • Balasubramanian V, Vashisht D, Cletus J, Sakthivel N (2012) Plant b-1,3-glucanases: their biological functions and transgenic expression against phytopathogenic fungi. Biotechnol Lett 34:1983–1990

    Article  CAS  PubMed  Google Scholar 

  • Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Ben Rejeb K, Abdelly C, Savoure A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    Article  CAS  PubMed  Google Scholar 

  • Blade JA, Franciso R, Queroz A, Regaloda PA, Ricardo CP, Veloso MM (2006) Immunolocalization of a class III chitinase in two muskmelon cultivars reacting differently to Fusarium oxysproum f. sp. melons. J Plant Physiol 163:19–25

    Article  Google Scholar 

  • Boller T, Mauch F (1988) Colorimetric assay for chitinase. Methods Enzymol 161:430–435

    Article  CAS  Google Scholar 

  • Brueske CH (1980) Phenylalanine ammonia lyase activity in tomato roots infected and resistant to the root-knot nematode (Meloidogyne incognita). Physiol Plant Path 16:409–414

    Article  CAS  Google Scholar 

  • Burketová L, Trdá L, Ott PG, Valentová O (2015) Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol Adv. doi:10.1016/j.biotechadv

    PubMed  Google Scholar 

  • Caretto S, Linsalata V, Colella G, Mita G, Lattanzio V (2015) Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int J Mol Sci 16:26378–26394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CB, Wanduragala S, Becker DF, Dickman MB (2006) Tomato QM-Like protein protects Saccharomyces cerevisiae cells against oxidative stress by regulating intracellular proline levels. Appl Environ Microbiol 72:4001–4006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  PubMed  Google Scholar 

  • Côté F, Hahn M (1994) Oligosaccharins: structures and signal transduction. Plant Mol Biol 26:1379–1411

    Article  PubMed  Google Scholar 

  • Dehgahi R, Subramaniam S, Zakaria L, Joniyas A, Firouzjahi FB, Haghnama K, Razinataj M (2015) Review of research on fungal pathogen attack and plant defense mechanism against pathogen. Int J Sci Res Agric Sci 2:197–208

    Google Scholar 

  • El-Khallal SM (2007a) Induction and modulation of resistance in tomato plants against fusarium wilt disease by bioagent fungi (Arbuscular Mycorrhiza) and/or hormonal elicitors (Jasmonic Acid & Salicylic Acid): 1—changes in growth, some metabolic activities and endogenous hormones related to defence mechanism. Aust J Basic Appl Sci 1:691–705

    CAS  Google Scholar 

  • El-Khallal SM (2007b) Induction and modulation of resistance in tomato plants against Fusarium Wilt disease by bioagent fungi (Arbuscular Mycorrhiza) and/or hormonal elicitors (Jasmonic Acid & Salicylic Acid): 2—changes in the antioxidant enzymes, phenolic compounds and pathogen related-proteins. Aust J Basic Appl Sci 1:717–732

    CAS  Google Scholar 

  • Fotoohiyan Z, Rezaee S, Bonjar GHS, Mohammadi AH, Moradi M (2015) Induction of systemic resistance by Trichoderma harzianum isolates in pistachio plants infected with Verticillium dahliae. J Nuts 6:95–111

    Google Scholar 

  • Gallou A, Cranenbrouck S, Declerck S (2009) Trichoderma harzianum elicits defence response genes in roots of potato plantlets challenged by Rhizoctonia solani. Eur J Plant Pathol 124:219–230

    Article  Google Scholar 

  • Gao L, Zhang Y (2013) Effect of salicylic acid on pear leaf induced resistance to Pear ring rot. World Appl Sci J 22:1534–1539

    CAS  Google Scholar 

  • Gauillard F, Richard-Forget F, Nicholas J (1993) A new spectrophotometric assay for polyphenol oxidase activity. Anal Biochem 215:59–65

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Girhepuje PV, Shinde GB (2011) Transgenic tomato plants expressing a wheat endochitinase gene demonstrate enhanced resistance to Fusarium oxysporum f. sp. lycopersici. Plant Cell Tissue Org Cult 105:243–251

    Article  CAS  Google Scholar 

  • González-Lamothe R, Mitchell G, Gattuso M, Diarra M, Malouin F, Bouarab K (2009) Plant antimicrobial agents and their effects on plant and human pathogens. Int J Mol Sci 10:3400–3419

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J, Javed S (2013) Chitinases: an update. J Pharm Bioallied Sci 5:21–29

    PubMed  PubMed Central  Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol Plant Pathol 20:73–82

    Article  CAS  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    Article  CAS  PubMed  Google Scholar 

  • Herrero J, Esteban-Carrasco A, Zapata JM (2013) Looking for Arabidopsis thaliana peroxidases involved in lignin biosynthesis. Plant Physiol Biochem 67:77–86

    Article  CAS  PubMed  Google Scholar 

  • Houssien AA, Ahmed SM, Ismail AA (2010) Activation of tomato plant defense response against fusarium wilt disease using Trichoderma harzianum and salicylic acid under greenhouse conditions. J Agric Biol Sci 6:328–338

    CAS  Google Scholar 

  • Huang C-J, Wei G, Jie Y-C, Xu JJ, Zhao S-Y, Wang L-C, Anjum SA (2015) Responses of gas exchange, chlorophyll synthesis and ROS-scavenging systems to salinity stress in two ramie cultivars (Boehmeria nivea L.) cultivars. Photosynthetica 53:455

    Article  CAS  Google Scholar 

  • Jain A, Singh S, Sarma BK, Singh HB (2012) Microbial consortium mediated reprogramming of defense network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112:537–550

    Article  CAS  PubMed  Google Scholar 

  • Jaiti F, Verdeil JL, El Hadrami I (2009) Effect of jasmonic acid on the induction of polyphenoloxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. albedinis. Physiol Mol. Plant Pathol 74:84–90

    CAS  Google Scholar 

  • Jakhar S, Sheokand M (2015) Effect of foliar application of salicylic acid on photosynthetic pigments and antioxidative enzymes of soybean plant. Int J Appl Pure Sci Agric 1:7–15

    Google Scholar 

  • Jiang L, Wu J, Fan S, Li W, Dong L, Cheng Q, Xu P, Zhang S (2015) Isolation and characterization of a novel pathogenesis-related protein gene (gmprp) with induced expression in soybean (Glycine max) during infection with Phytophthora sojae. PLoS ONE 10:e0129932

    Article  PubMed  PubMed Central  Google Scholar 

  • Juber KS, Hassan AK, Alhamiri YN (2014) Evaluation of biocontrol agents and chemical inducers for managing vascular wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. J Biol Agric Healthc 4:335–343

    Google Scholar 

  • Kotasthane A, Agrawal T, Kushwah R, Rahatkar OV (2015) In-vitro antagonism of Trichoderma spp. against Sclerotium rolfsii and Rhizoctonia solani and their response towards growth of cucumber, bottle gourd and bitter gourd. Eur J Plant Pathol 141:523

    Article  CAS  Google Scholar 

  • La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284

    Article  PubMed  Google Scholar 

  • Lehmann S, Funck D, Szabados L, Rentsch D (2010) Proline metabolism and transport in plant development. Amino Acids 39:949–962

    Article  CAS  PubMed  Google Scholar 

  • Lehmann S, Serrano M, Haridon FL’, Tjamos SE, Metraux JP (2015) Reactive oxygen species and plant resistance to fungal pathogens. Phytochemistry 112:54–62

    Article  CAS  PubMed  Google Scholar 

  • Lu H (2009) Dissection of salicylic acid-mediated defense signaling networks. Plant Signal Behav 4:713–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnin-Robert M, Trotel-Aziz P, Quantinet D, Biagianti S, Aziz A (2007) Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and β-1,3 glucanase activities under field conditions. Eur J Plant Pathol 118:43–57

    Article  CAS  Google Scholar 

  • Malolepsza U, Rozalaska S (2005) Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in O-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato. Plant Physiol Biochem 43:623–635

    Article  CAS  PubMed  Google Scholar 

  • Mandal S, Mitra A (2007) Reinforcement of cell wall in roots of Lycopersicon esculentum through induction of phenolic compounds and lignin by elicitors. Physiol Mol Plant Pathol 71:201–209

    Article  CAS  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Medina A, Fernández I, Sánchez-Guzmán MJ, Jung SC, Pascual JA, Pozo MJ (2013) Deciphering the hormonal signalling network behind the systemic resistance induced by Trichoderma harzianum in tomato. Front Plant Sci 4:206

    Article  PubMed  PubMed Central  Google Scholar 

  • Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BP, De Coninck B (2012) Genome-wide characterisation of ISR induced in Arabidopsis thaliana by Trichoderma hamatum T382 against Botrytis cinerea infection. Front Plant Sci 3:108

    Article  PubMed  PubMed Central  Google Scholar 

  • Mélo EA, De Lima VLAG, Maciel MIS, Caetano ACS, Leal FLL (2006) Polyphenol, ascorbic acid and total carotenoid contents in common fruits and vegetables. Braz J Food Technol 9:89–94

    Google Scholar 

  • Metzner H, Rau H, Senger H (1965) Untersuchungen zur synchronisier barkeit einzelner pigment-mangel mutanten von Chlorella. Planta 65:186–194

    Article  CAS  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase rbohd mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45

    PubMed  Google Scholar 

  • Murkute AA, Sharma S, Singh SK (2006) Studies on salt stress tolerance of citrus root stock genotypes with arbuscular mycorrhizal fungi. Hortic Sci 33:70–76

    Google Scholar 

  • Nafie E, Hathout T, Shyma Al, Mokadem Al (2011) Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. Braz J Plant Physiol 23:161–174

    Article  CAS  Google Scholar 

  • Nawrot R, Barylski J, Nowicki G, Broniarczyk J, Buchwald W, Gozdzicka Josefiak A (2014) Plant antimicrobial peptides. Folia Microbiol 59:181–196

    Article  CAS  Google Scholar 

  • Nguyen T-N, Son SH, Jordan MC, Levin DB, Ayele BT (2016) Lignin biosynthesis in wheat (Triticum aestivum L.): its response to waterlogging and association with hormonal levels. BMC Plant Biol 16:28. doi:10.1186/s12870-016-0717-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30:369–380

    Article  CAS  Google Scholar 

  • Niki T, Mitsuhara I, Seo S, Ohtsubo N, Ohashi Y (1998) Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol 39:500–507

    Article  CAS  Google Scholar 

  • Oliveira MB, Junior ML, Grossi-de-Sá MF, Petrofeza S (2015) Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants. J Plant Physiol 182:13–22

    Article  CAS  PubMed  Google Scholar 

  • Pan SQ, Ye XS, Kuc J (1991) Association of β-1,3-glucanase activity and isoform pattern with systemic resistance to blue mold in tobacco induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiol Mol Plant Pathol 39:25–39

    Article  CAS  Google Scholar 

  • Ponce de León I, Montesano M (2013) Activation of defense mechanisms against pathogens in mosses and flowering plants. Int J Mol Sci 14:3178–3200

    Article  PubMed  Google Scholar 

  • Ramamoorthy V, Samiyappan R (2001) Induction of defense related genes in Pseudomonas fluorescens treated chilli plants in response to infection by Colletotrichum capsici. J Mycol Plant Pathol 31:146–155

    CAS  Google Scholar 

  • Ramyabharathi SA, Meena B, Raguchander T (2012) Induction of chitinase and β-1,3- glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. J Today’s Biol Sci Res Rev 1:50–60

    Google Scholar 

  • Rodriguez R, Redman R (2005) Balancing the generation and elimination of reactive oxygen species. PNAS 102:3175–3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryals J (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    Article  Google Scholar 

  • Saha P, Raychaudhuri SS, Chakraborty A, Sudarshan M (2010) PIXE analysis of trace elements in relation to chlorophyll concentration in Plantago ovata Forsk. Appl Radiat Isot 68:444–449

    Article  CAS  PubMed  Google Scholar 

  • Sain SK, Pandey AK (2016) Biological spectrum of Trichoderma harzianum Rifai isolates to control fungal diseases of tomato (Solanum lycopersicon L.). Arch Phytopathol Plant Prot 49:507–521

    Article  Google Scholar 

  • Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S (2011) Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26

    Article  CAS  Google Scholar 

  • Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    Article  CAS  PubMed  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum t203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Arellano JB, Melo TB, Borsani O, Monza J (2013) Proline does not quench singlet oxygen: evidence to reconsider its protective role in plants. Plant Physiol Biochem 64:80–83

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Coitino EL, Borsani O, Monza J (2014) Molecular mechanisms for the reaction between OH radicals and proline: insights on the role as reactive oxygen species scavenger in plant stress. J Phys Chem B 118:37–347

    Article  CAS  PubMed  Google Scholar 

  • Song W, Zhou L, Yang C, Cao X, Zhang L, Liu X (2004) Tomato Fusarium Wilt its chemical control strategies in a hydroponic system. Crop Prot 23:243–247

    Article  CAS  Google Scholar 

  • Tenhaken R (2014) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771

    PubMed  Google Scholar 

  • Thaler JS, Owen B, Higgins VJ (2004) The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant Physiol 135:530–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay P, Rai A, Kumar R, Singh M, Sinha B (2014) Differential expression of pathogenesis related protein genes in tomato during inoculation with A. solani. J Plant Pathol Microb 5:217

    Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Verslues PE, Sharma S (2010) Proline metabolism and its implications for plant-environment interaction. Arabidopsis Book 8:1–23

    Article  Google Scholar 

  • Walters DR, Ratsep J, Havis ND (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Wen PF, Chen JY, Kong WF, Pan QH, Wan SB, Huang WD (2005) Salicylic acid induced the expression of phenylalanine ammonia-lyase gene in grape berry. Plant Sci 169:928–934

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  PubMed  Google Scholar 

  • Yang C-W, Wang JW, Kao C-H (2000) The relation between accumulation of abscisic acid and proline in detached rice leaves. Biol Plant 43:301–304

    Article  CAS  Google Scholar 

  • Yanti Y (2015) peroxidase enzyme activity of rhizobacteria-introduced shallots bulbs to induce resistance of shallot towards bacterial leaf blight (Xanthomonas axonopodis pv. allii). Proc Chem 14:501–507

    Article  CAS  Google Scholar 

  • Yao HJ, Tian SP (2005) Effect of pre- and post-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol Technol 35:253–262

    Article  CAS  Google Scholar 

  • Ye SF, Zhou HY, Sun Y, Zou LY, Yu JQ (2006) Cinnamic acid causes oxidative stress in cucumber roots and promotes incidence of Fusarium wilt. Environ Exp Bot 56:255–262

    Article  CAS  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Environ Microbiol 65:1061–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Becker DF (2015) Connecting proline metabolism and signaling pathways in plant senescence. Front Plant Sci 6:552

    PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Shetty K (2000) Solid-state bioconversion of phenolics from cranberry pomace and role of Lentinus edodes β-glucosidase. J Agric Food Chem 48:895–900

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this work by the University Grants Commission (UGC), Government of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andleeb Zehra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zehra, A., Meena, M., Dubey, M.K. et al. Activation of defense response in tomato against Fusarium wilt disease triggered by Trichoderma harzianum supplemented with exogenous chemical inducers (SA and MeJA). Braz. J. Bot 40, 651–664 (2017). https://doi.org/10.1007/s40415-017-0382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-017-0382-3

Keywords

Navigation