Skip to main content

Advertisement

Log in

Estimation of genetic diversity in seedlings of Plantago algarbiensis, an endangered species endemic to the south of Portugal in risk of global extinction

  • Original Article
  • Published:
Brazilian Journal of Botany Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Plantago algarbiensis samp is an endangered species endemic to the Algarve, in southern Portugal. In the present work, the genetic diversity of three populations was assessed by RAPD markers. Samples were amplified using ten primers that generated 145 markers, 80% of which were polymorphic. Tunes population presented the highest polymorphism percentage (73.68%) and Algoz the lowest (67.67%). In the cluster analysis, two major groups were formed, one including individuals from Gambelas and the other clustered together individuals from the other populations. The highest level of genetic diversity, estimated by both Nei’s gene diversity and Shannon’s information measure, was found in Tunes and the lowest in Algoz. From the estimates of Shannon’s index, the proportion of the diversity within populations was 86.12% and that among populations was 13.88%. Similar results were obtained by AMOVA analysis. A correlation was found between geographic distance and genetic differentiation among populations. The N m values obtained suggest a high level of gene flow among populations, which was inversely proportional to the distance between populations. RAPDs proved to be a useful tool to determine the genetic diversity of P. algarbiensis populations. The data obtained can be used to develop effective conservation strategies to prevent the decline of populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–2
Fig. 3

Similar content being viewed by others

References

  • Blumenthal M (1998) Plantain. In: Blumenthal M, Busse WR (eds) The complete german commission E monographs-therapeutic guide to herbal medicines. American Botanical Council in Cooperation with Integrative Medicine Communications, Boston, pp 107–123

    Google Scholar 

  • Brown WL (1983) Genetic diversity and genetic vulnerability—an appraisal. Econ Bot 37:4–12. doi:10.1007/BF02859301

    Article  Google Scholar 

  • Castroviejo S (2012) Flora Ibérica 1–8, 10–15, 17–18, 21. Real Jardín Botánico, Madrid

    Google Scholar 

  • Chiang LC, Lean TNG, Chiang W, Chang MY, Lin CC (2003) Immunomodulatory activities of flavonoids, monoterpenoids, triterpenoids, iridoid glycosides and phenolic compounds of Plantago species. Planta Med 69:600–604. doi:10.1055/s-2003-41113

    Article  CAS  PubMed  Google Scholar 

  • Excoffier NC, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira V, Matos M, Correia S, Martins N, Gonçalves S, Romano A, Pinto-Carnide O (2013) Genetic diversity of two endemic and endangered Plantago species. Biochem Syst Ecol 51:37–44. doi:10.1016/j.bse.2013.08.003

    Article  CAS  Google Scholar 

  • Franco JA (1984) Nova Flora de Portugal (Continente e Açores), vol II. Sociedade Astória, Lda, Lisboa

    Google Scholar 

  • Freitas H, Brehm A (2001) Genetic diversity of the Macaronesian leafy liverwort Porella canariensis inferred from RAPD markers. J Hered 92:339–345. doi:10.1093/jhered/92.4.339

    Article  CAS  PubMed  Google Scholar 

  • Gawel NJ, Jarret RL (1991) A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol Biol Rep 9:262–266. doi:10.1007/BF02672076

    Article  CAS  Google Scholar 

  • Gitzendanner MA, Soltis PS (2000) Patterns of genetic variation in rare and widespread plant congeners. Am J Bot 87:783–792

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Gómez L, Ahrazem O, Herranz JM, Ferrandis P (2012) Genetic characterization and variation within and among populations of Anthyllis rupestris Coss., and endangered endemism of southern Spain. Biochem Syst Ecol 45:138–147. doi:10.1016/j.bse.2012.07.015

    Article  Google Scholar 

  • Gonçalves S, Romano A (2016) The medicinal potential of plants from the genus Plantago (Plantaginaceae). Ind Crop Prod 83:213–226. doi:10.1016/j.indcrop.2015.12.038

    Article  Google Scholar 

  • Gonçalves S, Martins N, Romano A (2009) Micropropagation and conservation of endangered species Plantago algarbiensis and P. almogravensis. Biol Plant 53:774–778. doi:10.1007/s10535-009-0142-8

    Article  Google Scholar 

  • Hamrick JL, Godt MJW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Weir BS (eds) Plant population genetics, breeding, and genetic resources. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Harris SA (1999) Molecular approaches to assessing plant diversity. In: Benson EE (ed) Plant conservation biotechnology. Taylor & Francis, London, pp 11–24

    Google Scholar 

  • Hoggard RK, Kores PJ, Molvray M, Hoggard GD, Broughton DA (2003) Molecular systematics and biogeography of the amphibious genus Littorella (Plantaginaceae). Am J Bot 90:429–435. doi:10.3732/ajb.90.3.429

    Article  PubMed  Google Scholar 

  • Holsinger KE, Gottlieb LD (1991) Conservation of rare and endangered plants: principles and prospects. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 195–223

    Google Scholar 

  • ICN (Instituto de Conservação da Natureza) (2007) Plano nacional de conservação da flora em perigo (1ª fase), Relatório final do Projecto Life—Natureza III P\8480, vol IV. Instituto da Conservação da Natureza, Lisboa

    Google Scholar 

  • Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci Nat 44:223–470

    Google Scholar 

  • Lee SW, Ledig FT, Johnson DR (2002) Genetic variation at allozymes and RAPD markers in Pinus longaeva (Pinaceae) of the white mountains, California. Am J Bot 89:566–577. doi:10.3732/ajb.89.4.566

    Article  CAS  PubMed  Google Scholar 

  • Lewontin RC (1972) The apportionment of human diversity. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary Biology, vol 6. Springer, New York, pp 381–394. doi:10.1007/978-1-4684-9063-3

    Chapter  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95. doi:10.1146/annurev.es.15.110184.000433

    Article  Google Scholar 

  • Malizia D, Giuliano A, Ortaggu G, Masotti A (2012) Common plants as alternative analytical tool to monitor heavy metals in soil. Chem Cent J 6(Suppl 2):S6. doi:10.1186/1752-153X-6-S2-S6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín C, Parra T, Clemente-Muñoz M, Hernandez-Bermejo E (2008) Genetic diversity and structure of the endangered Betula pendula subsp. fontqueri populations in the south of Spain. Silva Fenn 42:487–498

    Article  Google Scholar 

  • Martins N, Gonçalves S, Palma T, Romano A (2012) Seed germination of two critically endangered plantain species, Plantago algarbiensis and P. almogravensis (Plantaginaceae). Seed Sci Technol 40:144–149

    Article  Google Scholar 

  • Martins N, Gonçalves S, Romano A (2013a) Metabolism and aluminum accumulation in Plantago almogravensis and P. algarbiensis in response to low pH and aluminium stress. Biol Plant 57:325–331. doi:10.1007/s10535-012-0271-3

    Article  CAS  Google Scholar 

  • Martins N, Osório ML, Gonçalves S, Osório J, Palma T, Romano A (2013b) Physiological responses of Plantago algarbiensis and P. almogravensis shoots and plantlets to low pH and aluminum stress. Acta Physiol Plant 35:615–625. doi:10.1007/s11738-012-1102-z

    Article  CAS  Google Scholar 

  • Martins N, Osório ML, Gonçalves S, Osório J, Romano A (2013c) Impact of low pH and aluminum on the oxidative stress, energy partitioning and antioxidant responses in roots and leaves of Plantago algarbiensis and P. almogravensis. Biometals 26:427–437. doi:10.1007/s10534-013-9625-3

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155. doi:10.1111/j.1365-294X.2004.02141.x

    Article  CAS  PubMed  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3:93–114. doi:10.1078/1433-8319-00006

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi:10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrol J (2009) Plantago L. In: Benedí González C, Rico E (eds) Flora Ibérica—Plantas vasculares de la Peninsula Iberica e Islas Baleares. Real Jardín Botánico, Madrid, pp 4–38

    Google Scholar 

  • Perez MAG, Polifrone M, Marrero-Gómez M, Bañares A, Sosa PA (2015) Are genetic data relevant in the conservation of species in imminent danger? The case of a critically endangered endemism from the Canary Islands Helianthemum juliae Wildpret (Cistaceae). Plant Syst Evol 301:1807–1818. doi:10.1007/s00606-014-1194-6

    Article  Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6. doi:10.1186/1746-4811-9-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramanatha Rao V, Hodgkin T (2002) Genetic diversity and conservation and utilization of plant genetic resources. Plant Cell Tissue Organ Cult 68:1–19. doi:10.1023/A:1013359015812

    Article  Google Scholar 

  • Remon E, Bouchardon J-L, Faure O (2007) Multi-tolerance to heavy metals in Plantago arenaria Waldst. & Kit.: adaptative versus constitutive characters. Chemosphere 69:41–47. doi:10.1016/j.chemosphere.2007.04.067

    Article  CAS  PubMed  Google Scholar 

  • Rohlf FJ (1992) NTSYS-PC: numerical taxonomy and multivariate analysis system. Exeter Software, New York

    Google Scholar 

  • Samantaray S, Dhagat UM, Maiti S (2010) Evaluation of genetic relationships in Plantago species using Random Amplified Polymorphic DNA (RAPD) markers. Plant Biotechnol 27:297–303. doi:10.5511/plantbiotechnology.27.297

    Article  CAS  Google Scholar 

  • Silva L, Elias RB, Moura M, Meimberg H, Dias E (2011) Genetic variability and differentiation among populations of the Azorean endemic gymnosperm Juniperus brevifolia: baseline information for a conservation and restoration perspective. Biochem Genet 49:715–734. doi:10.1007/s10528-011-9445-5

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Lal RK, Shasany AK (2009) Phenotypic and RAPD diversity among 80 germplasm accessions of the medicinal plant isabgol (Plantago ovata, Plantaginaceae). Genet Mol Res 8:1273–1284. doi:10.4238/vol8-4gmr583

    Article  CAS  PubMed  Google Scholar 

  • Trindade H, Sena I, Gonçalves S, Romano A (2012) Genetic diversity of wild populations of Tuberaria major (Cistaceae), an endangered species endemic to the Algarve region (Portugal), using ISSR markers. Biochem Syst Ecol 45:49–56. doi:10.1016/j.bse.2012.06.028

    Article  CAS  Google Scholar 

  • Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Article  CAS  PubMed  Google Scholar 

  • Zubair M, Nybom H, Ahnlund M, Rumpunen K (2012) Detection of genetic and phytochemical differences between and within populations of Plantago major L. (plantain). Sci Hortic 136:9–16. doi:10.1016/j.scienta.2012.01.0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. Coelho acknowledges a grant from the Portuguese Science and Technology Foundation (FCT, Grant SFRH/BD/63501/2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anabela Romano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coelho, N., Martín, C., González-Benito, M.E. et al. Estimation of genetic diversity in seedlings of Plantago algarbiensis, an endangered species endemic to the south of Portugal in risk of global extinction. Braz. J. Bot 40, 257–264 (2017). https://doi.org/10.1007/s40415-016-0340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40415-016-0340-5

Keywords

Navigation