Skip to main content
Log in

Metabolism and aluminum accumulation in Plantago almogravensis and P. algarbiensis in response to low pH and aluminum stress

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

We investigated the impact of low pH and aluminum on the metabolism and capacity for Al accumulation in shoots of the plantain species Plantago algarbiensis and P. almogravensis. We found that increasing the concentration of Al in the medium increased accumulation of it in the shoots of both plants (although more in P. almogravensis than in P. algarbiensis). The presence of Al in the medium induced proline and saccharide synthesis in P. almogravensis without affecting lipid peroxidation, but increased proline synthesis and lipid peroxidation in P. algarbiensis without affecting the saccharide content. Lipid peroxidation in P. algarbiensis was also enhanced at pH 4.0. The activity of antioxidant enzymes was increased as a response to low pH and Al in both species. Our data indicate that both species can accumulate high levels of Al but they have different sensitivities to low pH and/or the presence of Al in the growth medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

d.m.:

dry mass

f.m.:

fresh mass

GPX:

guaiacol peroxidase

MDA:

malondialdehyde

MS:

Murashige and Skoog medium

NBT:

nitroblue tetrazolium

SOD:

superoxide dismutase

TBA:

thiobarbituric acid

TCA:

trichloroacetic acid

References

  • Aebi, H.E.: Catalase. — In: Bergmeyer, H.U. (ed.): Methods of Enzymatic Analysis. Pp. 273–286. Verlag Chemie, Weinhern 1983.

    Google Scholar 

  • Andersson, M.E., Brunet, J.: Sensitivity to H and Al ions limiting growth and distribution of the woodland grass Bromus benekennii. — Plant Soil 153: 243–254, 1993.

    Article  CAS  Google Scholar 

  • Baker, A.J.M., Brooks, R.R.: Terrestrial higher plants which hyperaccumulate metallic elements — a review of their distribution, ecology and phytochemistry. — Biorecovery 1: 81–126, 1989.

    CAS  Google Scholar 

  • Barnabas, B., Kovacs, G., Hegedus, A., Erdei, S., Horvath, G.: Regeneration of doubled haploid plants from in vitro selected microspores to improve aluminium tolerance in wheat. — J. Plant Physiol. 156: 217–222, 2000.

    Article  CAS  Google Scholar 

  • Basu, U., Basu, A., Taylor, G.J.: Differential exudation of polypeptides by roots of aluminum-resistant and aluminumsensitive cultivars of Triticum aestivum L. in response to aluminum stress. — Plant Physiol. 106: 151–158, 1994.

    PubMed  CAS  Google Scholar 

  • Beauchamp, C.O., Fridovich, I.: Superoxide dismutase: improved assays and assays applicable to acrylamide gels. — Anal. Biochem. 44: 276–287, 1971.

    Article  PubMed  CAS  Google Scholar 

  • Bradford, M.: A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  PubMed  CAS  Google Scholar 

  • Branquinho, C., Serrano, H.C., Pinto, M.J., Martins-Loução, M.A.: Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements. — Environ. Pollut. 146: 437–443, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Buurman, P., Jongmans, A.G.: Podzolization — an additional paradigm. — Edafologia 9: 107–114, 2002.

    Google Scholar 

  • Delhaize, E., Ryan, P.R.: Aluminum toxicity and tolerance in plants. — Plant Physiol. 107: 315–321, 1995.

    PubMed  CAS  Google Scholar 

  • Egley, G.H., Paul, R.N., Vaughn, K.C., Duke, S.O.: Role of peroxidase in the development of water impermeable seed coats in Sida spinosa L. — Planta 157: 224–232, 1983.

    Article  CAS  Google Scholar 

  • Ezaki, B., Nagao, E., Yamamoto, Y., Nakashima, S., Enomoto, T.: Wild plants, Andropogon virginidus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminium, heavy metals and oxidative stresses. — Plant Cell Rep. 27: 951–961, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Foy, C.D.: Physiological effects of hydrogen, aluminium, nad manganese toxicities in acid soil. — In: Adams, F. (ed.): Soil Acidity and Liming. 2nd Ed. Pp. 57–97. ASA, CSSA nad SSSA, Madison 1984.

    Google Scholar 

  • Giannakoula, A., Moustakas, M., Syros, T., Yupsanis, T.: Aluminum stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. — Environ. exp. Bot. 67: 487–494, 2010.

    Article  CAS  Google Scholar 

  • Gonçalves, S., Martins, N., Romano, A.: Micropropagation nad conservation of endangered species Plantago algarbiensis and P. almogravensis. — Biol. Plant. 53: 774–778, 2009.

    Article  Google Scholar 

  • Hodges, D.M., Delong, J.M., Forney, C.F., Prange, R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. — Planta 207: 604–611, 1999.

    Article  CAS  Google Scholar 

  • Kerven, G.L., Edwards, D.G., Asher, C.J., Hallman, P.S., Kokot, S.: Aluminum determination in soil solution. II. Short-term colorimetric procedures for the measurement of inorganic monomeric aluminum in the presence of organic acid ligands. — Aust. J. Soil Res. 27: 91–102, 1989.

    Article  CAS  Google Scholar 

  • Khan, A.A., McNeilly, T., Collins, C.: Accumulation of amino acids, proline, and carbohydrates in response to aluminum and manganese stress in maize. — J. Plant Nutr. 23: 1303–1314, 2000.

    Article  CAS  Google Scholar 

  • Kinraide, T.B.: Aluminum enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations. — Physiol. Plant. 88: 619–625, 1993.

    Article  CAS  Google Scholar 

  • Kochian, L.V., Hoekenga, O.A., Pineros, M.A.: How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorus efficiency. — Annu. Rev. Plant Biol. 55: 459–493, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Liu, P., Xu, G.D., Jiang, X.M., Ying, X.F.: The effect of aluminum on germination of soybean seed. — Seed 1: 30–32, 2003.

    Google Scholar 

  • Liu, Q., Yang, J.L., He, Y.Y., Zheng, S.J.: Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. — Biol. Plant. 52: 87–92, 2008.

    Article  CAS  Google Scholar 

  • Magné, C., Larher, F.: High sugar content of extracts interferes with colorimetric determination of aminoacid and free proline. — Anal. Biochem. 200: 115–118, 1992.

    Article  PubMed  Google Scholar 

  • Martins, N., Gonçalves, S., Palma, T., Romano, A.: the influence of low pH on in vitro growth and biochemical parameters of Plantago almogravensis and P. algarbiensis. — Plant Cell Tissue Organ Cult. 107: 113–121, 2011.

    Article  CAS  Google Scholar 

  • Mittova, V., Guy, M., Tal, M., Volokita, M.: Salinity upregulates the antioxidative system in root mitochondria nad peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. — J. exp. Bot. 55: 1105–1113, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Murashige, T., Shoog, F.: A revised medium for rapid growth and bio-assays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.

    CAS  Google Scholar 

  • Olivares, E., Peña, E., Marcan, E., Mostacero, J., Aguiar, G., Benítez, M., Rengifo, E.: Aluminum accumulation and its relationship with mineral plant nutrients in 12 pteridophytes from Venezuela. — Environ. exp. Bot. 65: 132–141, 2009.

    Article  CAS  Google Scholar 

  • Shamsi, I.H., Wei, K., Zhang, G.P., Jilani, G.H., Hassan, M.J.: Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. — Biol. Plant. — 52: 165–169, 2008.

    Article  CAS  Google Scholar 

  • Smirnoff, N.: Plant resistance to environmental stress. — Curr. Opin. Biotechnol. 9: 214–219, 1998.

    Article  PubMed  CAS  Google Scholar 

  • Tabaldi, L.A., Cargnelutti, D., Castro, G.Y., Gonçalves, J.F., Rauber, R., Bisognin, D.A., Schetinger, M.R.C., Nicoloso, F.T.: Effect of aluminum on the in vitro activity of acid phosphatases of four potato clones grown in three growth systems. — Biol. Plant. 55: 178–182, 2011.

    Article  CAS  Google Scholar 

  • Troll, W., Lindsley, J.: A photometric method for the determination of proline. — J. biol. Chem. 215: 655–660, 1955.

    PubMed  CAS  Google Scholar 

  • Von Uexküll, H.R., Mutert, E.: Global extent, development nad economic impact of acid soils. — Plant Soil 171: 1–15, 1995.

    Article  Google Scholar 

  • Wen, X.-P., Ban, Y., Inoue, H., Matsuda, N., Moriguchi, T.: Aluminum tolerance in a spermidine synthase-overexpressing transgenic European pear is correlated with the enhanced level of spermidine via alleviating oxidative status. — Environ. exp. Bot. 66: 471–478, 2009.

    Article  CAS  Google Scholar 

  • Xu, M., You, J., Hou, N., Zhang, H., Chen, G., Yang, Z.: Mitochondrial enzymes and citrate transporter contribute to the aluminium-induced citrate secretion from soybean (Glycine max) root. — Funct. Plant Biol. 37: 478, 2010.

    Article  CAS  Google Scholar 

  • Xu, F.J., Li, G., Jin, C.W., Liu, W.J., Zhang, S.S., Zhang, Y.S., Lin, X.Y.: Aluminum-induced changes in reactive oxygen species accumulation, lipid peroxidation and antioxidant capacity in wheat root tips. — Biol. Plant. 56: 89–96, 2012.

    Article  CAS  Google Scholar 

  • Yadav, S.K., Mohanpuria, P.: Responses of Camellia sinensis cultivars to Cu and Al stress. — Biol. Plant. 53: 737–740, 2009.

    Article  CAS  Google Scholar 

  • Yemm, E.W., Willis, A.J.: The estimation of carbohydrates in plant extracts by anthrone. — Biochem. J. 57: 508–514, 1954.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Romano.

Additional information

Acknowledgements: N. Martins and S. Gonçalves acknowledge grants SFRH/BD/48379/2008 and SFRH/BPD/31534/2006 from the Portuguese Science and Technology Foundation (FCT). This work was supported by the FCT project PTDC/AGRAAM/102664/2008. The authors acknowledge MC Costa for providing access to the Hach LANGE DR 2800 spectrophotometer. The first two authors equally contributed to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martins, N., Gonçalves, S. & Romano, A. Metabolism and aluminum accumulation in Plantago almogravensis and P. algarbiensis in response to low pH and aluminum stress. Biol Plant 57, 325–331 (2013). https://doi.org/10.1007/s10535-012-0271-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-012-0271-3

Additional key words

Navigation