Skip to main content
Log in

Numerical solutions of fractional delay differential equations using Chebyshev wavelet method

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

In the present research article, we used a new numerical technique called Chebyshev wavelet method for the numerical solutions of fractional delay differential equations. The Caputo operator is used to define fractional derivatives. The numerical results illustrate the accuracy and reliability of the proposed method. Some numerical examples presented which have shown that the computational study completely supports the compatibility of the suggested method. Similarly, a proposed algorithm can also be applied for other physical problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abu Arqub O (2018) Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer Methods Partial Differ Equ 34(5):1759–1780

    Article  MathSciNet  MATH  Google Scholar 

  • Abu Arqub O, Al-Smadi M (2018) Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer Methods Partial Differ Equ 34(5):1577–1597

    Article  MathSciNet  MATH  Google Scholar 

  • Arimoto S, Kawamura S, Miyazaki F (1984) Bettering operation of robots by learning. J Rob Syst 1(2):123–140

    Article  Google Scholar 

  • Arqub OA, Al-Smadi M (2018) Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals 117:161–167

    Article  MathSciNet  Google Scholar 

  • Arqub OA, Maayah B (2018) Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator. Chaos Solitons Fractals 117:117–124

    Article  MathSciNet  Google Scholar 

  • Bapna IB, Mathur N (2012) Application of fractional calculus in statistics. Int. J. Contemp. Math. Sci. 7(18):849–856

    MathSciNet  MATH  Google Scholar 

  • Baskin E, Iomin A (2013) Electro-chemical manifestation of nanoplasmonics in fractal media. Open Phys. 11(6):676–684

    Article  Google Scholar 

  • Bhalekar S, Daftardar-Gejji V (2011) A predictor-corrector scheme for solving nonlinear delay differential equations of fractional order. J. Fract. Calc. Appl. 1(5):1–9

    MATH  Google Scholar 

  • Bhrawy AH, Zaky MA (2015) A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281:876–895

    Article  MathSciNet  MATH  Google Scholar 

  • Chen X, Wang L (2010) The variational iteration method for solving a neutral functional-differential equation with proportional delays. Comput. Mathe. Appl. 59(8):2696–2702

    Article  MathSciNet  MATH  Google Scholar 

  • Deng WH, Li CP (2005) Chaos synchronization of the fractional Lü system. Phys. A 353:61–72

    Article  Google Scholar 

  • Engelborghs K, Roose D (2002) On stability of LMS methods and characteristic roots of delay differential equations. SIAM J. Numer. Anal. 40(2):629–650

    Article  MathSciNet  MATH  Google Scholar 

  • Ghanbari B, Yusuf A, Baleanu D (2019) The new exact solitary wave solutions and stability analysis for the (2+ 1) \((2+ 1) \)-dimensional Zakharov-Kuznetsov equation. Adv. Differ. Equ. 2019(1):49

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi M, Fardi M, Ghaziani RK (2015) Numerical solution of nonlinear delay differential equations of fractional order in reproducing kernel Hilbert space. Appl. Math. Comput. 268:815–831

    MathSciNet  MATH  Google Scholar 

  • Hafshejani MS, Vanani SK, Hafshejani JS (2011) Numerical solution of delay differential equations using Legendre wavelet method. World Appl. Sci. J. 13:27–33

    Google Scholar 

  • Hartley TT, Lorenzo CF, Qammer HK (1995) Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(8):485–490

    Article  Google Scholar 

  • Hartung F, Krisztin T, Walther HO, Wu J (2006) Functional differential equations with state-dependent delays: theory and applications. In: Handbook of differential equations: ordinary differential equations, vol 3. North-Holland, pp 435–545

  • Hethcote HW (2000) The mathematics of infectious diseases. SIAM Rev. 42(4):599–653

    Article  MathSciNet  MATH  Google Scholar 

  • Heydari MH, Hooshmandasl MR, Maalek Ghaini FM, Li M (2013) Chebyshev wavelets method for solution of nonlinear fractional integrodifferential equations in a large interval. Adv. Math. Phys. 2013:482083

  • Heydari MH, Hooshmandasl MR, Ghaini FM (2014) A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type. Appl. Math. Modelling 38(5–6):1597–1606

    Article  MathSciNet  MATH  Google Scholar 

  • Hsiao CH (1997) State analysis of linear time delayed systems via Haar wavelets. Math. Comput. Simul. 44(5):457–470

    Article  MathSciNet  MATH  Google Scholar 

  • Kajiwara T, Saraki T, Takeuchi Y (2012) Construction of lyapunov functionals for delay differential equations in virology and epidemiology. Nonlinear Anal. 13:1802–1826

    Article  MathSciNet  MATH  Google Scholar 

  • Khader MM, Hendy AS (2012) The approximate and exact solutions of the fractional-order delay differential equations using Legendre seudospectral method. Int. J. Pure Appl. Math. 74(3):287–297

    MATH  Google Scholar 

  • Khan H, Arif M, Mohyud-Din ST (2019) Numerical solution of fractional boundary value problems by using chebyshev wavelet. Matrix Sci. Math. (MSMK) 3(1):13–16

    Article  Google Scholar 

  • Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and Applications of Fractional Differential Equations, vol 204. Elsevier Science Limited, Bucharest

    Book  MATH  Google Scholar 

  • Kuang Y (ed) (1993) Delay Differential Equations. Academic Press, Boston

    MATH  Google Scholar 

  • Kuang Y (ed) (1993) Delay differential equations: with applications in population dynamics, vol 191. Academic Press, Cambridge

    MATH  Google Scholar 

  • Kulish VV, Lage JL (2002) Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124(3):803–806

    Article  Google Scholar 

  • Machado JT, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3):1140–1153

    Article  MathSciNet  MATH  Google Scholar 

  • Maindadi F (1997) Fractional Calculus. In Fractals and Fractional Calculus in Continuum Mechanics. Springer, Vienna, pp 291–348

    Google Scholar 

  • Moghaddam BP, Yaghoobi S, Machado JT (2016) An extended predictor-corrector algorithm for variable-order fractional delay differential equations. J. Comput. Nonlinear Dyn. 11(6):061001

    Article  Google Scholar 

  • Nelson PW, Murray JD, Perelson AS (2000) A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci. 163:201–215

    Article  MathSciNet  MATH  Google Scholar 

  • Obata T, Liu TT, Miller KL, Luh WM, Wong EC, Frank LR, Buxton RB (2004) Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients. NeuroImage 21(1):144–153

    Article  Google Scholar 

  • Oldham KB (1983) The reformulation of an infinite sum via semiintegration. SIAM J. Math. Anal. 14(5):974–981

    Article  MathSciNet  MATH  Google Scholar 

  • Osman MS (2017) Multiwave solutions of time-fractional (2+ 1)-dimensional Nizhnik–Novikov–Veselov equations. Pramana 88(4):67

    Article  MathSciNet  Google Scholar 

  • Osman MS, Korkmaz A, Rezazadeh H, Mirzazadeh M, Eslami M, Zhou Q (2018) The unified method for conformable time fractional Schrodinger equation with perturbation terms. Chin. J. Phys. 56(5):2500–2506

    Article  MathSciNet  Google Scholar 

  • Podlubny I (1998) Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol 198. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Povstenko YZ (2009) Thermoelasticity that uses fractional heat conduction equation. J. Math. Sci. 162(2):296–305

    Article  MathSciNet  Google Scholar 

  • Rahimkhani P, Ordokhani Y, Babolian E (2017) A new operational matrix based on Bernoulli wavelets for solving fractional delay differential equations. Numer. Algorithms 74(1):223–245

    Article  MathSciNet  MATH  Google Scholar 

  • Ramadan MA, El-Sherbeiny AEA, Sherif MN (2006) Numerical solution of system of first-order delay differential equations using polynomial spline functions. Int. J. Comput. Math. 83(12):925–937

    Article  MathSciNet  MATH  Google Scholar 

  • Rezazadeh H, Osman MS, Eslami M, Ekici M, Sonmezoglu A, Asma M, Othman WAM et al (2018) Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity. Optik 164:84–92

    Article  Google Scholar 

  • Rezazadeh H, Osman MS, Eslami M, Mirzazadeh M, Zhou Q, Badri SA, Korkmaz A (2019) Hyperbolic rational solutions to a variety of conformable fractional Boussinesq-Like equations. Nonlinear Eng. 8(1):224–230

    Article  Google Scholar 

  • Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50(1):15–67

    Article  Google Scholar 

  • Ruan S, Wei J (2003) On the zeros of transcendental functions with applications to stability of delay differential equations with two delays. Dyn. Contin. Discrete Impulsive Syst. Ser. A 10:863–874

    MathSciNet  MATH  Google Scholar 

  • Saeed U (2014) Hermite wavelet method for fractional delay differential equations. J. Differ. Equ. 2014:359093

  • Saeedi H, Mohseni Moghadam M (2011) Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets. Appl. Math. Comput. 16:1216–1226

    MathSciNet  MATH  Google Scholar 

  • Shakeri F, Dehghan M (2008) Solution of delay differential equations via a homotopy perturbation method. Math. Comput. Modelling 48(3–4):486–498

    Article  MathSciNet  MATH  Google Scholar 

  • Smith HL (2011) An introduction to delay differential equations with applications to the life sciences, vol 57. Springer, New York

    Book  MATH  Google Scholar 

  • Tarasov VE (2010) Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer. Heidelberg. Higher Education Press, Beijing

    Book  MATH  Google Scholar 

  • Tariq KU, Younis M, Rezazadeh H, Rizvi STR, Osman MS (2018) Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution. Modern Phys. Lett. B 32(26):1850317

    Article  MathSciNet  Google Scholar 

  • Wang Z (2013) A numerical method for delayed fractional-order differential equations. J. Appl. Math. 219:4590–4600

    MathSciNet  MATH  Google Scholar 

  • Wang W (2013) Stability of solutions of nonlinear neutral differential equations with piecewise constant delay and their discretizations. Appl. Math. Comput. 2013:256071

  • Wang Z, Huang X, Zhou J (2013) A numerical method for delayed fractional-order differential equations: based on GL definition. Appl. Math. Inf. Sci 7(2):525–529

    Article  MathSciNet  Google Scholar 

  • Xu MQ, Lin YZ (2016) Simplified reproducing kernel method for fractional differential equations with delay. Appl. Math. Lett. 52:156–161

    Article  MathSciNet  MATH  Google Scholar 

  • Yi S, Nelson P, Ulsoy A (2007) Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter. Math. Biosci. Eng. 4(2):355

    Article  MathSciNet  MATH  Google Scholar 

  • Zhu H, Zou X (2008) Impact of delays in cell infection and virus production on HIV-1 dynamics. Math. Medic. Bio. 25:99–112

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Baleanu.

Additional information

Communicated by José Tenreiro Machado.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farooq, U., Khan, H., Baleanu, D. et al. Numerical solutions of fractional delay differential equations using Chebyshev wavelet method. Comp. Appl. Math. 38, 195 (2019). https://doi.org/10.1007/s40314-019-0953-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-019-0953-y

Keywords

Mathematics Subject Classification

Navigation