Skip to main content
Log in

The Developments of Proximal Point Algorithms

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

The problem of finding a zero point of a maximal monotone operator plays a central role in modeling many application problems arising from various fields, and the proximal point algorithm (PPA) is among the fundamental algorithms for solving the zero-finding problem. PPA not only provides a very general framework of analyzing convergence and rate of convergence of many algorithms, but also can be very efficient in solving some structured problems. In this paper, we give a survey on the developments of PPA and its variants, including the recent results with linear proximal term, with the nonlinear proximal term, as well as the inexact forms with various approximate criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A pair of vectors \(x_{*}\in {\mathbb {R}}^n\) and \(\lambda _{*}\in {\mathbb {R}}^m\) is called a saddle point of \({\mathcal {L}}\) if

    $$\begin{aligned} {\mathcal {L}}(x_{*},\lambda )\leqslant {\mathcal {L}}(x_{*},\lambda _{*})\leqslant {\mathcal {L}}(x,\lambda _{*}),\qquad \forall x\in {\mathbb {R}}^n,\;\forall \lambda \in {\mathbb {R}}^m. \end{aligned}$$

References

  1. Minty, G.: Monotone operators in Hilbert space. Duke Mathematical Journal 29, 341–346 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  2. Moreau, J.: Proximité et dualité dans un espace hilbertien. Bulletin de la Socit Chimique de France, 273–299 (1965)

  3. Martinet, B.: Regularization d’inequations variationelles par approximations successives. Revue Francaise d’Informatique et de Recherche Opérationelle 4, 154–159 (1970)

    MATH  Google Scholar 

  4. Fukushima, M., Mine, H.: A generalized proximal point algorithm for certain non-convex minimization problems. International Journal of Systems Science 12(8), 989–1000 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Güler, O.: On the convergence of the proximal point algorithm for convex minimization. SIAM Journal on Control and Optimization 29(2), 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Güler, O.: New proximal point algorithms for convex minimization. SIAM Journal on Optimization 2(4), 649–664 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM Journal on Control and Optimization 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hestenes, M.R.: Multiplier and gradient methods. Journal of Optimization Theory and Applications 4(5), 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  9. Powell, M.J.: A Method for Nonlinear Constraints in Minimization Problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press (1969)

  10. Glowinski, R., Marroco, A.: Sur l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue française d’automatique, informatique, recherche opérationnelle. Analyse numérique 9(2), 41–76 (1975)

  11. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM Journal on Numerical Analysis 16(6), 964–979 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  12. Parikh, N., Boyd, S.: Proximal algorithms. Foundations and Trends in Optimization 1(3), 127–239 (2014)

    Article  Google Scholar 

  13. He, B., Fu, X., Jiang, Z.: Proximal-point algorithm using a linear proximal term. Journal of Optimization Theory and Applications 141(2), 299–319 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cai, X.: A proximal point algorithm with asymmetric linear term. Optimization Letters 13(4), 777–793 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, K., Han, D.: Nonsymmetric proximal point algorithm with moving proximal centers for variational inequalities: convergence analysis. Applied Numerical Mathematics 147, 1–18 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cai, X., Gu, G., He, B., Yuan, X.: A proximal point algorithm revisit on the alternating direction method of multipliers. Science China Mathematics 56(10), 2179–2186 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gu, G., He, B., Yuan, X.: Customized proximal point algorithms for linearly constrained convex minimization and saddle-point problems: a unified approach. Computational Optimization and Applications 59(1), 135–161 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: 2011 International Conference on Computer Vision, pages 1762–1769 (2011)

  19. Bonnans, J., Gilbert, J., Lemaréchal, C., Sagastizábal, C.: A family of variable metric proximal methods. Mathematical Programming 68, 15–47 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Burke, J., Qian, M.: A variable metric proximal point algorithm for monotone operators. SIAM Journal on Control and Optimization 37(2), 353–375 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Burke, J., Qian, M.: On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating. Mathematical Programming 88(1), 157–181 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kontogiorgis, S., Meyer, R.R.: A variable-penalty alternating directions method for convex optimization. Mathematical Programming 83(1–3), 29–53 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer Science & Business Media (2009)

  24. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, vol. 408. Springer (2011)

  25. Bertsekas, D., Scientific, A.: Convex Optimization Algorithms. Athena Scientific Belmont (2015)

  26. Aragón Artacho, F.J., Geoffroy, M.H.: Characterization of metric regularity of subdifferentials. Journal of Convex Analysis 15(2), 365–380 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Mathematical Programming 116(1–2), 5–16 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Absil, P.-A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM Journal on Optimization 16(2), 531–547 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels, les Équations auxdérivées partielles. Les Éditions aux Dérivées Partielles 117, 87–89 (1963)

    Google Scholar 

  30. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 12. Springer-Verlag, Berlin (1987)

  31. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM Journal on Optimization 17(4), 1205–1223 (2007)

    Article  MATH  Google Scholar 

  32. Dong, Y.: Comments on “The proximal point algorithm revisited’’. Journal of Optimization Theory and Applications 166(1), 343–349 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dontchev, A.L., Rockafellar, R.T.: Implicit Functions and Solution Mappings, vol. 543. Springer (2009)

  34. Leventhal, D.: Metric subregularity and the proximal point method. Journal of Mathematical Analysis and Applications 360(2), 681–688 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rockafellar, R.T.: Augmented Lagrangians and applications of the proximal point algorithm in convex programming. Mathematics of Operations Research 1(2), 97–116 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rockafellar, R.T.: Convex Analysis. Princeton University Press (2015)

  37. Bertsekas, D., Nedic, A.: Convex Analysis and Optimization. Athena Scientific (2003)

  38. Douglas, J., Rachford, H.: On the numerical solution of heat conduction problems in two and three space variables. Transactions of the American Mathematical Society 82(2), 421–439 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  39. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Mathematical Programming 55(1–3), 293–318 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning 3(1), 1–122 (2011)

  41. Fukushima, M.: Application of the alternating direction method of multipliers to separable convex programming problems. Computational Optimization and Applications 1(1), 93–111 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gabay, D., Mercier, B.: A dual algorithm for the solution of nonlinear variational problems via finite element approximation. Computers and Mathematics with Applications 2(1), 17–40 (1976)

    Article  MATH  Google Scholar 

  43. He, B., Liao, L., Han, D., Yang, H.: A new inexact alternating directions method for monotone variational inequalities. Mathematical Programming 92(1), 103–118 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Eckstein, J., Yao, W.: Understanding the convergence of the alternating direction method of multipliers: Theoretical and computational perspectives. Pacific Journal of Optimization 11(4), 619–644 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Fortin, M., Glowinski, R.: Augmented Lagrangian methods: application to the numerical solution of boundary-value problems. Studies in Applied Mathematics 15(3), 165–193 (1983)

    MATH  Google Scholar 

  46. Glowinski, R.: On alternating direction methods of multipliers: a historical perspective. In: Modeling, Simulation and Optimization for Science and Technology, pages 59–82. Springer (2014)

  47. He, B., You, Y., Yuan, X.: On the convergence of primal-dual hybrid gradient algorithm. SIAM Journal on Optimization 7(4), 2526–2537 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Jiang, F., Wu, Z., Cai, X.: Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization. Journal of Industrial and Management Optimization 16(2), 835–856 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Li, M., Sun, D., Toh, K.C.: A majorized admm with indefinite proximal terms for linearly constrained convex composite optimization. SIAM Journal on Optimization 26(2), 922–950 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Jiang, F., Cai, X., Han, D.: The indefinite proximal point algorithms for maximal monotone operators. Optimization 70(8), 1759–1790 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  51. Yang, J., Yuan, X.: Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Mathematics of Computation 82(281), 301–329 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. He, B., Ma, F., Yuan, X.: Optimal proximal augmented Lagrangian method and its application to full Jacobian splitting for multi-block separable convex minimization problems. IMA Journal of Numerical Analysis 40(2), 1188–1216 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  53. Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Mathematics of Operations Research 17(3), 670–690 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. Csiszár, I.: Information-type measures of difference of probability distributions and indirect observation. Studia Scientiarum Mathematicarum Hungarica 2, 229–318 (1967)

    MathSciNet  Google Scholar 

  55. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7(3), 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  56. Censor, Y., Zenios, S.A.: Proximal minimization algorithm with \(D\)-functions. Journal of Optimization Theory and Applications 73(3), 451–464 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  57. Chen, G., Teboulle, M.: Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM Journal on Optimization 3(3), 538–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kiwiel, K.C.: Proximal minimization methods with generalized Bregman functions. SIAM Journal on Control and Optimization 35(4), 1142–1168 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  59. Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Mathematics of Operations Research 19(4), 790–814 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  60. Iusem, A.N., Teboulle, M.: Convergence rate analysis of nonquadratic proximal methods for convex and linear programming. Mathematics of Operations Research 20(3), 657–677 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  61. Teboulle, M.: Convergence of proximal-like algorithms. SIAM Journal on Optimization 7(4), 1069–1083 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  62. Auslender, A., Haddou, M.: An interior-proximal method for convex linearly constrained problems and its extension to variational inequalities. Mathematical Programming 71(1), 77–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  63. Eckstein, J.: Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming. Mathematics of Operations Research 18(1), 202–226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  64. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM Journal on Control and Optimization 42(2), 596–636 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  65. Burachik, R.S., Iusem, A.N.: A generalized proximal point algorithm for the variational inequality problem in a hilbert space. SIAM Journal on Optimization 8(1), 197–216 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  66. Burachik, R.S., Scheimberg, S.: A proximal point method for the variational inequality problem in Banach spaces. SIAM Journal on Control and Optimization 39(5), 1633–1649 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  67. Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Computational Optimization and Applications 12(1–3), 31–40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  68. Auslender, A., Teboulle, M.: Entropic proximal decomposition methods for convex programs and variational inequalities. Mathematical Programming 91(1), 33–47 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  69. Han, D.: A new hybrid generalized proximal point algorithm for variational inequality problems. Journal of Global Optimization 26(2), 125–140 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  70. Han, D.: A hybrid entropic proximal decomposition method with self-adaptive strategy for solving variational inequality problems. Computers and Mathematics with Applications 55(1), 101–115 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. He, H., Wang, K., Cai, X., Han, D.: An LQP-based two-step method for structured variational inequalities. Journal of the Operations Research Society of China 5(3), 301–317 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  72. Li, M., Yuan, X.: A strictly contractive Peaceman-Rachford splitting method with logarithmic-quadratic proximal regularization for convex programming. Mathematics of Operations Research 40(4), 842–858 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  73. Tao, M., Yuan, X.: On the \({O}(1/t)\) convergence rate of alternating direction method with logarithmic-quadratic proximal regularization. SIAM Journal on Optimization 22(4), 1431–1448 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  74. Yuan, X., Li, M.: An LQP-based decomposition method for solving a class of variational inequalities. SIAM Journal on Optimization 21(4), 1309–1318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  75. He, H., Cai, X., Han, D.: A class of nonlinear proximal point algorithms for variational inequality problems. International Journal of Computer Mathematics 92(7), 1385–1401 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  76. Han, D., He, B.: A new accuracy criterion for approximate proximal point algorithms. Journal of Mathematical Analysis and Applications 263(2), 343–354 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  77. Yang, Z., He, B.: A relaxed approximate proximal point algorithm. Annals of Operations Research 133(1), 119–125 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  78. Eckstein, J.: Approximate iterations in Bregman-function-based proximal algorithms. Mathematical programming 83(1–3), 113–123 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  79. Solodov, M.V., Svaiter, B.F.: A hybrid projection-proximal point algorithm. Journal of Convex Analysis 6(1), 59–70 (1999)

    MathSciNet  MATH  Google Scholar 

  80. Humes, C., Silva, P.J.: Inexact proximal point algorithms and descent methods in optimization. Optimization and Engineering 6(2), 257–271 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  81. Solodov, M.V., Svaiter, B.F.: An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions. Mathematics of Operations Research 25(2), 214–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  82. He, B., Liao, L., Yang, Z.: A new approximate proximal point algorithm for maximal monotone operator. Science in China Series A: Mathematics 46(2), 200 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  83. He, B., Yang, Z., Yuan, X.: An approximate proximal-extragradient type method for monotone variational inequalities. Journal of Mathematical Analysis and Applications 300(2), 362–374 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  84. Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Analysis 5(2), 159–180 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  85. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set-Valued Analysis 7(4), 323–345 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  86. Korpelevich, G.: The extragradient method for finding saddle points and other problems. Matecon 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  87. Solodov, M.V., Svaiter, B.F.: A unified framework for some inexact proximal point algorithms. Numerical Functional Analysis and Optimization 22(7–8), 1013–1035 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  88. Hager, W., Zhang, H.: Asymptotic convergence analysis of a new class of proximal point methods. SIAM Journal on Control and Optimization 46(5), 1683–1704 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  89. He, B., Yuan, X.: An accelerated inexact proximal point algorithm for convex minimization. Journal of Optimization Theory and Applications 154(2), 536–548 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  90. Bnouhachem, A., Noor, M.A.: Inexact proximal point method for general variational inequalities. Journal of Mathematical Analysis and Applications 324(2), 1195–1212 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  91. Zaslavski, A.J.: Inexact proximal point methods in metric spaces. Set-Valued and Variational Analysis 19(4), 589–608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  92. Burachik, R., Dutta, J.: Inexact proximal point methods for variational inequality problems. SIAM Journal on Optimization 20(5), 2653–2678 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  93. Salzo, S., Villa, S.: Inexact and accelerated proximal point algorithms. Journal of Convex Analysis 19(4), 1167–1192 (2012)

    MathSciNet  MATH  Google Scholar 

  94. Eckstein, J., Yao, W.: Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM. Mathematical Programming 170(2), 417–444 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  95. Qian, M.: The Variable Metric Proximal Point Algorithm: Theory and Application. PhD thesis, (1992)

  96. Chen, X., Fukushima, M.: Proximal quasi-Newton methods for nondifferential convex optimization. Mathematical Programming 85, 313–334 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  97. Fukushima, M., Qi, L.: A globally and superlinearly convergent algorithm for nonsmooth convex minimization. SIAM Journal on Optimization 6(4), 1106–1120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  98. Qi, L., Chen, X.: A preconditioning proximal Newton method for nondifferentiable convex optimization. Mathematical Programming 76, 411–430 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  99. Lemaréchal, C., Sagastizábal, C.: An approach to variable metric bundle methods, volume 197 of LNCIS, pages 144–162. Springer, Berlin (1994)

  100. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable forms. Mathematical Programming 76, 393–410 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  101. Mifflin, R.: A quasi-second-order proximal bundle algorithm. Mathematical Programming 73, 51–72 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  102. Mifflin, R., Sun, D., Qi, L.: Quasi-Newton bundle-type methods for nondifferentiable convex optimization. SIAM Journal on Optimization 8, 583–603 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  103. Lemaréchal, C.: Bundle methods in nonsmooth optimization. Pergamon Press, Oxford (1978)

    MATH  Google Scholar 

  104. Qian, M., Burke, J.: On the local super-linear convergence of a matrix secant Implementation of the variable metric proximal point algorithm for monotone operators, pp. 317–334. Kluwer Academic Publishers (1999)

  105. Parente, L., Lotito, P., Solodov, M.: A class of inexact variable metric proximal point algorithms. SIAM Journal on Optimization 19(1), 240–260 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  106. Lin, H., Mairal, J., Harchaoui, Z.: An inexact variable metric proximal point algorithm for generic quasi-Newton acceleration. SIAM Journal on Optimization 29(2), 1408–1443 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  107. Combettes, P., Vu, B.-C.: Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 63(9), 1289–1318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  108. Becker, S., Fadili, J., Ochs, P.: On quasi-Newton forwad-backwad splitting proximal calculus and convergence. SIAM Journal on Optimization 29(4), 2445–2481 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  109. Chouzenoux, E., Pesquet, J.-C., Repetti, A.: Variable metric forward-backward algorithm for minimizing the sum of a differentiable function and a convex function. Journal of Optimization Theory and Applications 162(1), 107–132 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  110. Salzo, S.: The variable metric forward-backward splitting algorithm unde mild differentiablility assumptions. SIAM Journal on Optimization 27(4), 2153–2181 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  111. Stella, L., Themelis, A., Patrinos, P.: Forward-backward quasi-Newton methods for nonsmooth optimization problems. Computational Optimization and Applications 67, 443–487 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  112. Vu, B.-C.: A variable metric extension of the forward-backward-forward algorithm for monotone operators. Numerical Functional Analysis and Optimization 34(9), 1050–1065 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Ren Han.

Additional information

Xing-Ju Cai and Fan Jiang were supported by the National Natural Science Foundation of China (Nos. 11871279 and 11571178). Ke Guo was supported by the National Natural Science Foundation of China (Nos. 11801455, 11871059 and 11971238), China Postdoctoral Science Foundation (Nos. 2019M663459 and 2020T130081), the Applied Basic Project of Sichuan Province (No. 2020YJ0111), the Fundamental Research Funds of China West Normal University (No. 18B031) and the Open Project of Key Laboratory (No. CSSXKFKTM202004), School of Mathematical Sciences, Chongqing Normal University. Kai Wang was supported by the National Natural Science Foundation of China (No. 11901294) and Natural Science Foundation of Jiangsu Province (No. BK20190429). Zhong-Ming Wu was supported by the National Natural Science Foundation of China (No. 12001286) and the Startup Foundation for Introducing Talent of NUIST (No. 2020r003). De-Ren Han was supported by the National Natural Science Foundation of China (Nos. 12131004 and 12126603).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, XJ., Guo, K., Jiang, F. et al. The Developments of Proximal Point Algorithms. J. Oper. Res. Soc. China 10, 197–239 (2022). https://doi.org/10.1007/s40305-021-00352-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-021-00352-x

Keywords

Mathematics Subject Classification

Navigation