Skip to main content

Advertisement

Log in

An LQP-Based Two-Step Method for Structured Variational Inequalities

  • Published:
Journal of the Operations Research Society of China Aims and scope Submit manuscript

Abstract

The logarithmic quadratic proximal (LQP) regularization is a popular and powerful proximal regularization technique for solving monotone variational inequalities with nonnegative constraints. In this paper, we propose an implementable two-step method for solving structured variational inequality problems by combining LQP regularization and projection method. The proposed algorithm consists of two parts. The first step generates a pair of predictors via inexactly solving a system of nonlinear equations. Then, the second step updates the iterate via a simple correction step. We establish the global convergence of the new method under mild assumptions. To improve the numerical performance of our new method, we further present a self-adaptive version and implement it to solve a traffic equilibrium problem. The numerical results further demonstrate the efficiency of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. He, B., Xu, Y., Yuan, X.: A logarithmic-quadratic proximal prediction–correction method for structured monotone variational inequalities. Comput. Optim. Appl. 35, 19–46 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hestenes, M.: Multiplier and gradient methods. J. Optim. Theory Appl. 4, 303–320 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Powell, M.: A method for nonlinear constraints in minimization problems. In: Fletcher, R. (ed.) Optimization, pp. 283–298. Academic Press, London (1969)

    Google Scholar 

  4. Martinet, B.: Régularization d’ inéquations variationelles par approximations sucessives. Rev. Fr. Inform. Rech. Opér. 4, 154–159 (1970)

    Google Scholar 

  5. Parikh, N., Boyd, S.: Proximal algorithms. Found. Trends Optim. 1, 123–231 (2013)

    Google Scholar 

  6. He, B.: PPA-like contraction methods for convex optimization a framework using variational inequality approach. J. Oper. Res. Soc. China 3, 391–420 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Wang, X.: On the convergence rate of a class of proximal-based decomposition methods for monotone variational inequalities. J. Oper. Res. Soc. China 3, 347–362 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Auslender, A., Teboulle, M., Ben-Tiba, S.: A logarithmic-quadratic proximal method for variational inequalities. Comput. Optim. Appl. 12, 31–40 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Auslender, A., Teboulle, M.: Interior gradient and epsilon-subgradient descent methods for constrained convex minimization. Math. Oper. Res. 29, 1–26 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16, 697–725 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, B., Liao, L., Yuan, X.: A LQP-based interior prediction-correction method for nonlinear complementarity problems. J. Comput. Math. 24, 33–44 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Li, M., Yuan, X.: An improved LQP-based method for solving nonlinear complementarity problems. Front. Math. China 5, 23–35 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Xu, Y., He, B., Yuan, X.: A hybrid inexact logarithmic quadratic proximal method for nonlinear complementarity problems. J. Math. Anal. Appl. 322, 276–287 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Han, D.: A hybrid entropic proximal decomposition method with self-adaptive strategy for solving variational inequality problems. Comput. Math. Appl. 55, 101–115 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, H., Cai, X., Han, D.: A class of nonlinear proximal point algorithms for variational inequality problems. Int. J. Comput. Math. 92, 1385–1401 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, M., Li, X.X., Yuan, X.M.: Convergence analysis of the generalized alternating direction method of multipliers with logarithmic quadratic proximal regularization. J. Optim. Theory Appl. 164, 218–233 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tao, M., Yuan, X.M.: On the \(o(1/t)\) convergence rate of alternating direction method with logarithmic-quadratic proximal regularization. SIAM J. Optim. 22, 1431–1448 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yuan, X., Li, M.: An LQP-based decomposition method for solving a class of variational inequalities. SIAM J. Optim. 21(4), 1309–1318 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khobotov, E.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  20. He, B., Yang, H., Meng, Q., Han, D.: Modified Goldstein-Levitin-Polyak projection method for asymmetric strongly monotone variational inequalities. J. Optim. Theory Appl. 112, 129–143 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fu, X., He, B.: Self-adaptive projection-based prediction-correction method for constrained variational inequalities. Front. Math. China 5, 3–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Taji, K., Fukushima, M., Ibaraki, T.: A globally convergent Newton method for solving strongly monotone variational inequalities. Math. Program. 58, 369–383 (1993)

    Article  MATH  Google Scholar 

  23. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Springer, Berlin (1981)

    Book  MATH  Google Scholar 

  24. Nagurney, A., Zhang, D.: Projected Dynamical Systems and Variational Inequalities with Applications. International Series in Operations Research & Management Science. Springer, New York (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Ju Cai or De-Ren Han.

Additional information

The first author is partially supported by the National Natural Science Foundation of China (Nos. 11571087 and 71471051) and the National Natural Science Foundation of Zhejiang Province (No. LY17A010028). The third author is supported by the National Natural Science Foundation of China (Nos. 11431002 and 11401315) and Jiangsu Provincial National Natural Science Foundation of China (No. BK20140914).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, HJ., Wang, K., Cai, XJ. et al. An LQP-Based Two-Step Method for Structured Variational Inequalities. J. Oper. Res. Soc. China 5, 301–317 (2017). https://doi.org/10.1007/s40305-016-0147-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40305-016-0147-x

Keywords

Mathematics Subject Classification

Navigation