Skip to main content
Log in

Advances in Radioligand Theranostics in Oncology

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Theranostics with radioligands (radiotheranostics) has played a pivotal role in oncology. Radiotheranostics explores the molecular targets expressed on tumor cells to target them for imaging and therapy. In this way, radiotheranostics entails non-invasive demonstration of the in vivo expression of a molecular target of interest through imaging followed by the administration of therapeutic radioligand targeting the tumor-expressed molecular target. Therefore, radiotheranostics ensures that only patients with a high likelihood of response are treated with a particular radiotheranostic agent, ensuring the delivery of personalized care to cancer patients. Within the last decades, a couple of radiotheranostics agents, including Lutetium-177 DOTATATE (177Lu-DOTATATE) and Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA), were shown to prolong the survival of cancer patients compared to the current standard of care leading to the regulatory approval of these agents for routine use in oncology care. This recent string of successful approvals has broadened the interest in the development of different radiotheranostic agents and their investigation for clinical translation. In this work, we present an updated appraisal of the literature, reviewing the recent advances in the use of established radiotheranostic agents such as radioiodine for differentiated thyroid carcinoma and Iodine-131-labeled meta-iodobenzylguanidine therapy of tumors of the sympathoadrenal axis as well as the recently approved 177Lu-DOTATATE and 177Lu-PSMA for differentiated neuroendocrine tumors and advanced prostate cancer, respectively. We also discuss the radiotheranostic agents that have been comprehensively characterized in preclinical studies and have shown some clinical evidence supporting their safety and efficacy, especially those targeting fibroblast activation protein (FAP) and chemokine receptor 4 (CXCR4) and those still being investigated in preclinical studies such as those targeting poly (ADP-ribose) polymerase (PARP) and epidermal growth factor receptor 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bodei L, Herrmann K, Schöder H, Scott AM, Lewis JS. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol. 2022;19(8):534–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pomykala KL, Hadaschik BA, Sartor O, Gillessen S, Sweeney CJ, Maughan T, et al. Next generation radiotheranostics promoting precision medicine. Ann Oncol. 2023;34(6):507–19.

    Article  CAS  PubMed  Google Scholar 

  3. Aboagye EO, Barwick TD, Haberkorn U. Radiotheranostics in oncology: making precision medicine possible. CA Cancer J Clin. 2023;73(3):255–74.

    Article  PubMed  Google Scholar 

  4. Hoberück S, Zöphel K, Pomper MG, Rowe SP, Gafita A. One hundred years of the tracer principle. J Nucl Med. 2023;64:1998–2000.

    Article  PubMed  Google Scholar 

  5. Hertz S, Roberts A. Radioactive iodine in the study of thyroid physiology; the use of radioactive iodine therapy in hyperthyroidism. J Am Med Assoc. 1946;131:81–6.

    Article  CAS  PubMed  Google Scholar 

  6. Hertz S. A plan for analysis of the biologic factors involved in experimental carcinogenesis of the thyroid by means of radioactive isotopes. Bull N Engl Med Cent. 1946;8(5):220–4.

    CAS  Google Scholar 

  7. Lawal IO, Orunmuyi AT, Popoola GO, Mokoala KMG, Lengana T, Sathekge MM. Immune reconstitution inflammatory syndrome-associated Graves disease in HIV-infected patients: clinical characteristics and response to radioactive iodine therapy. HIV Med. 2021;22(10):907–16.

    Article  CAS  PubMed  Google Scholar 

  8. Song B, Lin Z, Feng C, Zhao X, Teng W. Global research landscape and trends of papillary thyroid cancer therapy: a bibliometric analysis. Front Endocrinol (Lausanne). 2023;14: 1252389.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pasqual E, Sosa JA, Chen Y, Schonfeld SJ, Berrington de González A, et al. Trends in the management of localized papillary thyroid carcinoma in the United States (2000–2018). Thyroid. 2022;32(4):397–410.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wynendaele E, Bracke N, Stalmans S, De Spiegeleer B. Development of peptide and protein based radiopharmaceuticals. Curr Pharm Des. 2014;20(14):2250–67.

    Article  CAS  PubMed  Google Scholar 

  11. Edelmann MR. Radiolabelling small and biomolecules for tracking and monitoring. RSC Adv. 2022;12(50):32383–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Colombo I, Overchuk M, Chen J, Reilly RM, Zheng G, Lheureux S. Molecular imaging in drug development: update and challenges for radiolabeled antibodies and nanotechnology. Methods. 2017;130:23–35.

    Article  CAS  PubMed  Google Scholar 

  13. Altmann A, Kratochwil C, Giesel F, Haberkorn U. Ligand engineering for theranostic applications. Curr Opin Chem Biol. 2021;63:145–51.

    Article  CAS  PubMed  Google Scholar 

  14. Lawal IO, Ankrah AO, Mokgoro NP, Vorster M, Maes A, Sathekge MM. Diagnostic sensitivity of Tc-99m HYNIC PSMA SPECT/CT in prostate carcinoma: a comparative analysis with Ga-68 PSMA PET/CT. Prostate. 2017;77(11):1205–12.

    Article  CAS  PubMed  Google Scholar 

  15. Benfante V, Stefano A, Ali M, Laudicella R, Arancio W, Cucchiara A, et al. An overview of in vitro assays of 64Cu-, 68Ga-, 125I-, and 99mTc-labelled radiopharmaceuticals using radiometric counters in the era of radiotheranostics. Diagnostics (Basel). 2023;13(7):1210.

    Article  CAS  PubMed  Google Scholar 

  16. Breeman WA, de Blois E, Sze Chan H, Konijnenberg M, Kwekkeboom DJ, Krenning EP. (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin Nucl Med. 2011;41(4):314–21.

    Article  PubMed  Google Scholar 

  17. Chattopadhyay S, Ash S, Mahesh DG, Barua L, Mitra A, Das SS, et al. Preparation of [68Ga]Ga-chloride from 68Zn solid target for the synthesis of pharmaceutical grade [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTA-TATE. Appl Radiat Isot. 2023;195: 110744.

    Article  CAS  PubMed  Google Scholar 

  18. Thisgaard H, Kumlin J, Langkjær N, Chua J, Hook B, Jensen M, et al. Multi-curie production of gallium-68 on a biomedical cyclotron and automated radiolabelling of PSMA-11 and DOTATATE. EJNMMI Radiopharm Chem. 2021;6(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Martinez J, Subramanian K, Castellanos SH, Thomas C, Choudhury AR, Muench B, et al. Cyclotron vs generator-produced 68Ga PSMA: a single-institution, prospective clinical trial. Transl Oncol. 2023;28: 101593.

    Article  CAS  PubMed  Google Scholar 

  20. Leupe H, Ahenkorah S, Dekervel J, Unterrainer M, Van Cutsem E, Verslype C, et al. 18F-labeled somatostatin analogs as PET tracers for the somatostatin receptor: ready for clinical use. J Nucl Med. 2023;64(6):835–41.

    Article  CAS  PubMed  Google Scholar 

  21. Niedermoser S, Chin J, Wängler C, Kostikov A, Bernard-Gauthier V, Vogler N, et al. In vivo evaluation of 18F-SiFAlin-modified TATE: a potential challenge for 68Ga-DOTATATE, the clinical gold standard for somatostatin receptor imaging with PET. J Nucl Med. 2015;56(7):1100–5.

    Article  CAS  PubMed  Google Scholar 

  22. Yang T, Peng L, Qiu J, He X, Zhang D, Wu R, et al. A radiohybrid theranostics ligand labeled with fluorine-18 and lutetium-177 for fibroblast activation protein-targeted imaging and radionuclide therapy. Eur J Nucl Med Mol Imaging. 2023;50(8):2331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Capriotti G, Piccardo A, Giovannelli E, Signore A. Targeting copper in cancer imaging and therapy: a new theragnostic agent. J Clin Med. 2022;12(1):223.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krasnovskaya OO, Abramchuck D, Erofeev A, Gorelkin P, Kuznetsov A, Shemukhin A, et al. Recent advances in 64Cu/67Cu-based radiopharmaceuticals. Int J Mol Sci. 2023;24(11):9154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic nuclear medicine with gallium-68, lutetium-177, copper-64/67, actinium-225, and lead-212/203 radionuclides. Chem Rev. 2023;123(20):12004–35.

    Article  CAS  PubMed  Google Scholar 

  26. Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med. 2005;46(Suppl 1):4S-12S.

    PubMed  Google Scholar 

  27. Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38(5):358–66.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Inaki A, Shiga T, Tsushima Y, Jinguji M, Wakabayashi H, Kayano D, et al. An open-label, single-arm, multi-center, phase II clinical trial of single-dose [131I]meta-iodobenzylguanidine therapy for patients with refractory pheochromocytoma and paraganglioma. Ann Nucl Med. 2022;36(3):267–78.

    Article  CAS  PubMed  Google Scholar 

  29. Cicone F, Santo G, Bodet-Milin C, Cascini GL, Kraeber-Bodéré F, Stokke C, et al. Radioimmunotherapy of non-Hodgkin B-cell lymphoma: an update. Semin Nucl Med. 2023;53(3):413–25.

    Article  PubMed  Google Scholar 

  30. Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0), Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. J Nucl Med. 2005;46(Suppl 1):83S-91S.

    CAS  PubMed  Google Scholar 

  31. Bodei L, Kidd M, Paganelli G, Grana CM, Drozdov I, Cremonesi M, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  32. Müller C, van der Meulen NP, Schibli R. Opportunities and potential challenges of using terbium-161 for targeted radionuclide therapy in clinics. Eur J Nucl Med Mol Imaging. 2023;50(11):3181–4.

    Article  PubMed  Google Scholar 

  33. Larouze A, Alcocer-Ávila M, Morgat C, Champion C, Hindié E. Membrane and nuclear absorbed doses from 177Lu and 161Tb in tumor clusters: effect of cellular heterogeneity and potential benefit of dual targeting—a Monte Carlo study. J Nucl Med. 2023;64(10):1619–24.

    Article  CAS  PubMed  Google Scholar 

  34. Lawal IO, Bruchertseifer F, Vorster M, Morgenstern A, Sathekge MM. Prostate-specific membrane antigen-targeted endoradiotherapy in metastatic prostate cancer. Curr Opin Urol. 2020;30(1):98–105.

    Article  PubMed  Google Scholar 

  35. Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57(12):1941–4.

    Article  CAS  PubMed  Google Scholar 

  36. Wulbrand C, Seidl C, Gaertner FC, Bruchertseifer F, Morgenstern A, Essler M, et al. Alpha particle emitting 213Bi-anti-EGFR immunoconjugates eradicate tumor cells independent of oxygenation. PLoS One. 2013;8(5): e64730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sathekge MM, Bruchertseifer F, Vorster M, Morgenstern A, Lawal IO. Global experience with PSMA-based alpha therapy in prostate cancer. Eur J Nucl Med Mol Imaging. 2021;49(1):30–46.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roscher M, Bakos G, Benešová M. Atomic nanogenerators in targeted alpha therapies: Curie’s legacy in modern cancer management. Pharmaceuticals (Basel). 2020;13(4):76.

    Article  CAS  PubMed  Google Scholar 

  39. Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha particle-emitting radiopharmaceuticals as cancer therapy: biological basis, current status, and future outlook for therapeutics discovery. Mol Imaging Biol. 2023;25:991–1019.

    Article  CAS  PubMed  Google Scholar 

  40. Pirovano G, Wilson TC, Reiner T. Auger: the future of precision medicine. Nucl Med Biol. 2021;96–97:50–3.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bolcaen J, Gizawy MA, Terry SYA, Paulo A, Cornelissen B, Korde A, et al. Marshalling the potential of auger electron radiopharmaceutical therapy. J Nucl Med. 2023;64(9):1344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mishiro K, Hanaoka H, Yamaguchi A, Ogawa K. Radiotheranostics with radiolanthanides: design, development strategies, and medical applications. Coord Chem Rev. 2019;383:104–31.

    Article  CAS  Google Scholar 

  43. Holik HA, Ibrahim FM, Elaine AA, Putra BD, Achmad A, Kartamihardja AHS. The chemical scaffold of theranostic radiopharmaceuticals: radionuclide, bifunctional chelator, and pharmacokinetics modifying linker. Molecules. 2022;27(10):3062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Pohlman RJL, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(10):2453–63.

    Article  CAS  PubMed  Google Scholar 

  45. Fisher RI, Kaminski MS, Wahl RL, Knox SJ, Zelenetz AD, Vose JM, et al. Tositumomab and iodine-131 tositumomab produces durable complete remissions in a subset of heavily pretreated patients with low-grade and transformed non-Hodgkin’s lymphomas. J Clin Oncol. 2005;23(30):7565–73.

    Article  CAS  PubMed  Google Scholar 

  46. Lazar V, Bidart JM, Caillou B, Mahé C, Lacroix L, Filetti S, et al. Expression of the Na+/I symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab. 1999;84(9):3228–34.

    CAS  PubMed  Google Scholar 

  47. Lawal IO, Nyakale NE, Harry LM, Lengana T, Mokgoro NP, Vorster M, et al. Higher preablative serum thyroid-stimulating hormone level predicts radioiodine ablation effectiveness in patients with differentiated thyroid carcinoma. Nucl Med Commun. 2017;38(3):222–7.

    Article  CAS  PubMed  Google Scholar 

  48. Avram AM, Dewaraja YK. Thyroid Cancer Radiotheragnostics: the case for activity adjusted 131I therapy. Clin Transl Imaging. 2018;6(5):335–46.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Avram AM, Rosculet N, Esfandiari NH, Gauger PG, Miller BS, Cohen M, et al. Differentiated thyroid cancer outcomes after surgery and activity-adjusted 131I theragnostics. Clin Nucl Med. 2019;44(1):11–20.

    Article  PubMed  Google Scholar 

  50. Tuttle RM, Ahuja S, Avram AM, Bernet VJ, Bourguet P, Daniels GH, et al. Controversies, consensus, and collaboration in the use of 131I therapy in differentiated thyroid cancer: a joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid. 2019;29(4):461–70.

    Article  PubMed  Google Scholar 

  51. Verburg FA, Mäder U, Giovanella L, Luster M, Reiners C. Low or undetectable basal thyroglobulin levels obviate the need for neck ultrasound in differentiated thyroid cancer patients after total thyroidectomy and 131I ablation. Thyroid. 2018;28(6):722–8.

    Article  CAS  PubMed  Google Scholar 

  52. Pacini F, Fuhrer D, Elisei R, Handkiewicz-Junak D, Leboulleux S, Luster M, et al. ETA Consensus Statement: what are the indications for post-surgical radioiodine therapy in differentiated thyroid cancer? Eur Thyroid J. 2022;11(1): e210046.

    Article  CAS  PubMed  Google Scholar 

  53. Sacks W, Fung CH, Chang JT, Waxman A, Braunstein GD. The effectiveness of radioactive iodine for treatment of low-risk thyroid cancer: a systematic analysis of the peer-reviewed literature from 1966 to April 2008. Thyroid. 2010;20(11):1235–45.

    Article  CAS  PubMed  Google Scholar 

  54. Kim HJ, Kim NK, Choi JH, Kim SW, Jin SM, Suh S, et al. Radioactive iodine ablation does not prevent recurrences in patients with papillary thyroid microcarcinoma. Clin Endocrinol (Oxf). 2013;78(4):614–20.

    Article  PubMed  Google Scholar 

  55. Tang J, Kong D, Cui Q, Wang K, Zhang D, Liao X, et al. The role of radioactive iodine therapy in papillary thyroid cancer: an observational study based on SEER. Onco Targets Ther. 2018;11:3551–60.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Al-Qahtani KH, Al Asiri M, Tunio MA, Aljohani NJ, Bayoumi Y, Fatani H, AlHadab A. Adjuvant radioactive iodine 131 ablation in papillary microcarcinoma of thyroid: Saudi Arabian experience [corrected]. J Otolaryngol Head Neck Surg. 2015;44:51.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Creach KM, Siegel BA, Nussenbaum B, Grigsby PW. Radioactive iodine therapy decreases recurrence in thyroid papillary microcarcinoma. ISRN Endocrinol. 2012;2012: 816386.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Leboulleux S, Bournaud C, Chougnet CN, Zerdoud S, Al Ghuzlan A, Catargi B, et al. Thyroidectomy without radioiodine in patients with low-risk thyroid cancer. N Engl J Med. 2022;386(10):923–32.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang L, Feng Q, Wang J, Tan Z, Li Q, Ge M. Molecular basis and targeted therapy in thyroid cancer: progress and opportunities. Biochim Biophys Acta Rev Cancer. 2023;1878(4): 188928.

    Article  CAS  PubMed  Google Scholar 

  60. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33(1):42–50.

    Article  PubMed  Google Scholar 

  61. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, et al. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309(14):1493–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nilsson JN, Siikanen J, Condello V, Jatta K, Saini R, Hedman C, et al. Iodine avidity in papillary and poorly differentiated thyroid cancer is predicted by immunohistochemical and molecular work-up. Eur Thyroid J. 2023;12(4): e230099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Laschinsky C, Theurer S, Herold T, Rawitzer J, Weber F, Herrmann K, et al. Molecular markers are associated with onset of radioiodine refractoriness in patients with papillary thyroid carcinoma. J Nucl Med. 2023;64:1865–8.

    Article  CAS  PubMed  Google Scholar 

  64. Wadsley J, Ainsworth G, Coulson AB, Garcez K, Moss L, Newbold K, et al. Results of the SEL-I-METRY phase II trial on resensitization of advanced iodine refractory differentiated thyroid cancer to radioiodine therapy. Thyroid. 2023;33(9):1119–23.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Leboulleux S, Benisvy D, Taieb D, Attard M, Bournaud C, Terroir-Cassou-Mounat M, et al. MERAIODE: a phase II redifferentiation trial with trametinib and 131I in metastatic radioactive iodine refractory RAS mutated differentiated thyroid cancer. Thyroid. 2023;33(9):1124–9.

    CAS  PubMed  Google Scholar 

  66. Mauguen A, Grewal RK, Augensen F, Abusamra M, Mahajan S, Jayaprakasam VS, et al. The use of single-timepoint images to link administered radioiodine activity (MBq) to a prescribed lesion radiation-absorbed dose (cGy): a regression-based prediction interval tool for the management of well-differentiated thyroid cancer patients. Eur J Nucl Med Mol Imaging. 2023;50(10):2971–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wierts R, Jentzen W, Quick HH, Wisselink HJ, Pooters INA, Wildberger JE, et al. Quantitative performance evaluation of 124I PET/MRI lesion dosimetry in differentiated thyroid cancer. Phys Med Biol. 2017;63(1): 015014.

    Article  CAS  PubMed  Google Scholar 

  68. Zhou Z, Wang G, Qian L, Liu J, Yang X, Zhang S, et al. Evaluation of iodine-123-labeled metaiodobenzylguanidine single-photon emission computed tomography/computed tomography based on the International Society of Pediatric Oncology Europe Neuroblastoma score in children with neuroblastoma. Quant Imaging Med Surg. 2023;13(6):3841–51.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Jacobson AF, Deng H, Lombard J, Lessig HJ, Black RR. 123I-meta-iodobenzylguanidine scintigraphy for the detection of neuroblastoma and pheochromocytoma: results of a meta-analysis. J Clin Endocrinol Metab. 2010;95(6):2596–606.

    Article  CAS  PubMed  Google Scholar 

  70. He H, Xu Q, Yu C. The efficacy and safety of Iodine-131-metaiodobenzylguanidine therapy in patients with neuroblastoma: a meta-analysis. BMC Cancer. 2022;22(1):216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. de Kraker J, Hoefnagel KA, Verschuur AC, van Eck B, van Santen HM, Caron HN. Iodine-131-metaiodobenzylguanidine as initial induction therapy in stage 4 neuroblastoma patients over 1 year of age. Eur J Cancer. 2008;44(4):551–6.

    Article  PubMed  Google Scholar 

  72. Kraal KC, Tytgat GA, van Eck-Smit BL, Kam B, Caron HN, van Noesel M. Upfront treatment of high-risk neuroblastoma with a combination of 131I-MIBG and topotecan. Pediatr Blood Cancer. 2015;62(11):1886–91.

    Article  CAS  PubMed  Google Scholar 

  73. van Hulsteijn LT, Niemeijer ND, Dekkers OM, Corssmit EP. (131)I-MIBG therapy for malignant paraganglioma and phaeochromocytoma: systematic review and meta-analysis. Clin Endocrinol (Oxf). 2014;80(4):487–501.

    Article  PubMed  Google Scholar 

  74. Jimenez C, Erwin W, Chasen B. Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131 metaiodobenzylguanidine. Cancers (Basel). 2019;11(7):1018.

    Article  CAS  PubMed  Google Scholar 

  75. Barrett JA, Joyal JL, Hillier SM, Maresca KP, Femia FJ, Kronauge JF, et al. Comparison of high-specific-activity ultratrace 123/131I-MIBG and carrier-added 123/131I-MIBG on efficacy, pharmacokinetics, and tissue distribution. Cancer Biother Radiopharm. 2010;25(3):299–308.

    CAS  PubMed  Google Scholar 

  76. Zhang X, Wakabayashi H, Hiromasa T, Kayano D, Kinuya S. Recent advances in radiopharmaceutical theranostics of pheochromocytoma and paraganglioma. Semin Nucl Med. 2023;53(4):503–16.

    Article  PubMed  Google Scholar 

  77. Noto RB, Pryma DA, Jensen J, Lin T, Stambler N, Strack T, et al. Phase 1 study of high-specific-activity I-131 MIBG for metastatic and/or recurrent pheochromocytoma or paraganglioma. J Clin Endocrinol Metab. 2018;103(1):213–20.

    Article  PubMed  Google Scholar 

  78. Pryma DA, Chin BB, Noto RB, Dillon JS, Perkins S, Solnes L, et al. Efficacy and safety of high-specific-activity 131I-MIBG therapy in patients with advanced pheochromocytoma or paraganglioma. J Nucl Med. 2019;60(5):623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pandit-Taskar N, Zanzonico P, Staton KD, Carrasquillo JA, Reidy-Lagunes D, Lyashchenko S, et al. Biodistribution and dosimetry of 18F-meta-fluorobenzylguanidine: a first-in-human PET/CT imaging study of patients with neuroendocrine malignancies. J Nucl Med. 2018;59(1):147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wang P, Li T, Liu Z, Jin M, Su Y, Zhang J, et al. [18F]MFBG PET/CT outperforming [123I]MIBG SPECT/CT in the evaluation of neuroblastoma. Eur J Nucl Med Mol Imaging. 2023;50(10):3097–106.

    Article  CAS  PubMed  Google Scholar 

  81. Albertsson P, Bäck T, Bergmark K, Hallqvist A, Johansson M, Aneheim E, et al. Astatine-211 based radionuclide therapy: current clinical trial landscape. Front Med (Lausanne). 2023;9:1076210.

    Article  PubMed  Google Scholar 

  82. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  83. Sartor O, de Bono J, Chi KN, Fizazi K, Herrmann K, Rahbar K, et al. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med. 2021;385(12):1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Van de Wiele C, Sathekge M, de Spiegeleer B, De Jonghe PJ, Debruyne PR, Borms M, et al. PSMA expression on neovasculature of solid tumors. Histol Histopathol. 2020;35(9):919–27.

    PubMed  Google Scholar 

  85. Xu Z, Wang L, Dai S, Chen M, Li F, Sun J, et al. Epidemiologic trends of and factors associated with overall survival for patients with gastroenteropancreatic neuroendocrine tumors in the United States. JAMA Netw Open. 2021;4(9): e2124750.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Krenning EP, de Jong M, Kooij PP, Breeman WA, Bakker WH, de Herder WW, et al. Radiolabelled somatostatin analogue(s) for peptide receptor scintigraphy and radionuclide therapy. Ann Oncol. 1999;10(Suppl 2):S23–9.

    Article  PubMed  Google Scholar 

  87. Poletto G, Cecchin D, Sperti S, Filippi L, Realdon N, Evangelista L. Head-to-head comparison between peptide-based radiopharmaceutical for PET and SPECT in the evaluation of neuroendocrine tumors: a systematic review. Curr Issues Mol Biol. 2022;44(11):5516–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lawal IO, Ololade KO, Lengana T, Reyneke F, Ankrah AO, Ebenhan T, et al. Gallium-68-dotatate PET/CT is better than CT in the management of somatostatin expressing tumors: first experience in Africa. Hell J Nucl Med. 2017;20(2):128–33.

    PubMed  Google Scholar 

  89. Cwikla JB, Sankowski A, Seklecka N, Buscombe JR, Nasierowska-Guttmejer A, Jeziorski KG, et al. Efficacy of radionuclide treatment DOTATATE Y-90 in patients with progressive metastatic gastroenteropancreatic neuroendocrine carcinomas (GEP-NETs): a phase II study. Ann Oncol. 2010;21(4):787–94.

    Article  CAS  PubMed  Google Scholar 

  90. Vinjamuri S, Gilbert TM, Banks M, McKane G, Maltby P, Poston G, et al. Peptide receptor radionuclide therapy with (90)Y-DOTATATE/(90)Y-DOTATOC in patients with progressive metastatic neuroendocrine tumours: assessment of response, survival and toxicity. Br J Cancer. 2013;108(7):1440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kong G, Callahan J, Hofman MS, Pattison DA, Akhurst T, Michael M, et al. High clinical and morphologic response using 90Y-DOTA-octreotate sequenced with 177Lu-DOTA-octreotate induction peptide receptor chemoradionuclide therapy (PRCRT) for bulky neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2017;44(3):476–89.

    Article  CAS  PubMed  Google Scholar 

  92. Brabander T, van der Zwan WA, Teunissen JJM, Kam BLR, Feelders RA, de Herder WW, et al. Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin Cancer Res. 2017;23(16):4617–24.

    Article  CAS  PubMed  Google Scholar 

  93. Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med. 2017;376(2):125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lawal I, Louw L, Warwick J, Nyakale N, Steyn R, Lengana T, et al. The College of Nuclear Physicians of South Africa practice guidelines on peptide receptor radionuclide therapy in neuroendocrine tumours. S Afr J Surg. 2018;56(3):55–64.

    CAS  PubMed  Google Scholar 

  95. Strosberg JR, Caplin ME, Kunz PL, Ruszniewski PB, Bodei L, Hendifar A, et al. 177Lu-Dotatate plus long-acting octreotide versus high-dose long-acting octreotide in patients with midgut neuroendocrine tumours (NETTER-1): final overall survival and long-term safety results from an open-label, randomised, controlled, phase 3 trial. Lancet Oncol. 2021;22(12):1752–63.

    Article  CAS  PubMed  Google Scholar 

  96. Zandee WT, Brabander T, Blažević A, Kam BLR, Teunissen JJM, Feelders RA, et al. Symptomatic and radiological response to 177Lu-DOTATATE for the treatment of functioning pancreatic neuroendocrine tumors. J Clin Endocrinol Metab. 2019;104(4):1336–44.

    Article  PubMed  Google Scholar 

  97. Strosberg J, Wolin E, Chasen B, Kulke M, Bushnell D, Caplin M, et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-dotatate in the phase III NETTER-1 trial. J Clin Oncol. 2018;36(25):2578–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Leeuwenkamp O, Smith-Palmer J, Ortiz R, Werner A, Valentine W, Blachier M, Walter T. Cost-effectiveness of Lutetium [177Lu] oxodotreotide versus best supportive care with octreotide in patients with midgut neuroendocrine tumors in France. J Med Econ. 2020;23(12):1534–41.

    Article  CAS  PubMed  Google Scholar 

  99. Fortunati E, Bonazzi N, Zanoni L, Fanti S, Ambrosini V. Molecular imaging theranostics of neuroendocrine tumors. Semin Nucl Med. 2023;53(4):539–54.

    Article  PubMed  Google Scholar 

  100. Marretta AL, Ottaiano A, Iervolino D, Bracigliano A, Clemente O, Di Gennaro F, et al. Response to peptide receptor radionuclide therapy in pheocromocytomas and paragangliomas: a systematic review and meta-analysis. J Clin Med. 2023;12(4):1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jha A, Taïeb D, Carrasquillo JA, Pryma DA, Patel M, Millo C, et al. High-specific-activity-131I-MIBG versus 177Lu-DOTATATE targeted radionuclide therapy for metastatic pheochromocytoma and paraganglioma. Clin Cancer Res. 2021;27(11):2989–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mirian C, Duun-Henriksen AK, Maier A, Pedersen MM, Jensen LR, Bashir A, et al. Somatostatin receptor-targeted radiopeptide therapy in treatment-refractory meningioma: individual patient data meta-analysis. J Nucl Med. 2021;62(4):507–13.

    Article  CAS  PubMed  Google Scholar 

  103. Parghane RV, Naik C, Talole S, Desmukh A, Chaukar D, Banerjee S, et al. Clinical utility of 177Lu-DOTATATE PRRT in somatostatin receptor-positive metastatic medullary carcinoma of thyroid patients with assessment of efficacy, survival analysis, prognostic variables, and toxicity. Head Neck. 2020;42(3):401–16.

    Article  PubMed  Google Scholar 

  104. Zidan L, Iravani A, Oleinikov K, Ben-Haim S, Gross DJ, Meirovitz A, et al. Efficacy and safety of 177Lu-DOTATATE in lung neuroendocrine tumors: a bicenter study. J Nucl Med. 2022;63(2):218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Minczeles NS, Bos EM, de Leeuw RC, Kros JM, Konijnenberg MW, Bromberg JEC, et al. Efficacy and safety of peptide receptor radionuclide therapy with [177Lu]Lu-DOTA-TATE in 15 patients with progressive treatment-refractory meningioma. Eur J Nucl Med Mol Imaging. 2023;50(4):1195–204.

    Article  CAS  PubMed  Google Scholar 

  106. Chan TG, O’Neill E, Habjan C, Cornelissen B. Combination strategies to improve targeted radionuclide therapy. J Nucl Med. 2020;61(11):1544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ballal S, Yadav MP, Damle NA, Sahoo RK, Bal C. Concomitant 177Lu-DOTATATE and capecitabine therapy in patients with advanced neuroendocrine tumors: a long-term-outcome, toxicity, survival, and quality-of-life study. Clin Nucl Med. 2017;42(11):e457–66.

    Article  PubMed  Google Scholar 

  108. Rousseau E, Lau J, Zhang Z, Uribe CF, Kuo HT, Zhang C, et al. Effects of adding an albumin binder chain on [177Lu]Lu-DOTATATE. Nucl Med Biol. 2018;66:10–7.

    Article  CAS  PubMed  Google Scholar 

  109. Liu Q, Zang J, Sui H, Ren J, Guo H, Wang H, Wang R, Jacobson O, Zhang J, Cheng Y, Zhu Z, Chen X. Peptide receptor radionuclide therapy of late-stage neuroendocrine tumor patients with multiple cycles of 177Lu-DOTA-EB-TATE. J Nucl Med. 2021;62(3):386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jiang Y, Liu Q, Wang G, Sui H, Wang R, Wang J, et al. Safety and efficacy of peptide receptor radionuclide therapy with 177Lu-DOTA-EB-TATE in patients with metastatic neuroendocrine tumors. Theranostics. 2022;12(15):6437–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Albrecht J, Exner S, Grötzinger C, Prasad S, Konietschke F, Beindorff N, et al. Multimodal imaging of 2-cycle PRRT with 177Lu-DOTA-JR11 and 177Lu-DOTATOC in an orthotopic neuroendocrine xenograft tumor mouse model. J Nucl Med. 2021;62(3):393–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Dalm SU, Nonnekens J, Doeswijk GN, de Blois E, van Gent DC, Konijnenberg MW, et al. Comparison of the therapeutic response to treatment with a 177Lu-labeled somatostatin receptor agonist and antagonist in preclinical models. J Nucl Med. 2016;57(2):260–5.

    Article  CAS  PubMed  Google Scholar 

  113. Wild D, Grønbæk H, Navalkissoor S, Haug A, Nicolas GP, Pais B, et al. A phase I/II study of the safety and efficacy of [177Lu]Lu-satoreotide tetraxetan in advanced somatostatin receptor-positive neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2023;51(1):183–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ballal S, Yadav MP, Bal C, Sahoo RK, Tripathi M. Broadening horizons with 225Ac-DOTATATE targeted alpha therapy for gastroenteropancreatic neuroendocrine tumour patients stable or refractory to 177Lu-DOTATATE PRRT: first clinical experience on the efficacy and safety. Eur J Nucl Med Mol Imaging. 2020;47(4):934–46.

    Article  CAS  PubMed  Google Scholar 

  115. Kratochwil C, Apostolidis L, Rathke H, Apostolidis C, Bicu F, Bruchertseifer F, et al. Dosing 225Ac-DOTATOC in patients with somatostatin-receptor-positive solid tumors: 5-year follow-up of hematological and renal toxicity. Eur J Nucl Med Mol Imaging. 2021;49(1):54–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Uijen MJM, Derks YHW, Merkx RIJ, Schilham MGM, Roosen J, Privé BM, et al. PSMA radioligand therapy for solid tumors other than prostate cancer: background, opportunities, challenges, and first clinical reports. Eur J Nucl Med Mol Imaging. 2021;48(13):4350–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Laurie SA, Ho AL, Fury MG, Sherman E, Pfister DG. Systemic therapy in the management of metastatic or locally recurrent adenoid cystic carcinoma of the salivary glands: a systematic review. Lancet Oncol. 2011;12(8):815–24.

    Article  CAS  PubMed  Google Scholar 

  118. Nishida H, Kondo Y, Kusaba T, Kadowaki H, Daa T. Immunohistochemical reactivity of prostate-specific membrane antigen in salivary gland tumors. Head Neck Pathol. 2022;16(2):427–33.

    Article  PubMed  Google Scholar 

  119. van Boxtel W, Lütje S, van Engen-van Grunsven ICH, Verhaegh GW, Schalken JA, Jonker MA, et al. 68Ga-PSMA-HBED-CC PET/CT imaging for adenoid cystic carcinoma and salivary duct carcinoma: a phase 2 imaging study. Theranostics. 2020;10(5):2273–83.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Civan C, Kasper S, Berliner C, Fragoso-Costa P, Grünwald V, Pogorzelski M, et al. PSMA-directed imaging and therapy of salivary gland tumors: a single-center retrospective study. J Nucl Med. 2023;64(3):372–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Klein Nulent TJW, van Es RJJ, Willems SM, Braat AJAT, Devriese LA, de Bree R, et al. First experiences with 177Lu-PSMA-617 therapy for recurrent or metastatic salivary gland cancer. EJNMMI Res. 2021;11(1):126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Terroir M, Lamesa C, Krim M, Vija L, Texier JS, Cassou-Mounat T, et al. radioligand therapy with [177Lu]Lu-PSMA-617 for salivary gland cancers: literature review and first compassionate use in France. Pharmaceuticals (Basel). 2023;16(5):754.

    Article  CAS  PubMed  Google Scholar 

  123. Has Simsek D, Kuyumcu S, Agaoglu FY, Unal SN. Radionuclide therapy with 177Lu-PSMA in a case of metastatic adenoid cystic carcinoma of the parotid. Clin Nucl Med. 2019;44(9):764–6.

    Article  PubMed  Google Scholar 

  124. de Vries LH, Lodewijk L, Braat AJAT, Krijger GC, Valk GD, Lam MGEH, et al. 68Ga-PSMA PET/CT in radioactive iodine-refractory differentiated thyroid cancer and first treatment results with 177Lu-PSMA-617. EJNMMI Res. 2020;10(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98.

    Article  CAS  PubMed  Google Scholar 

  126. Wang XM, Yu DM, McCaughan GW, Gorrell MD. Fibroblast activation protein increases apoptosis, cell adhesion, and migration by the LX-2 human stellate cell line. Hepatology. 2005;42(4):935–45.

    Article  CAS  PubMed  Google Scholar 

  127. Fitzgerald AA, Weiner LM. The role of fibroblast activation protein in health and malignancy. Cancer Metastasis Rev. 2020;39(3):783–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Loktev A, Lindner T, Mier W, Debus J, Altmann A, Jäger D, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med. 2018;59(9):1423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. 68Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60(6):801–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ouyang J, Ding P, Zhang R, Lu Y. Head-to-head comparison of 68Ga-FAPI-04 PET/CT and 18F-FDG PET/CT in the evaluation of primary digestive system cancer: a systematic review and meta-analysis. Front Oncol. 2023;13:1202505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mokoala K, Emil N, Lawal I, Antke C, Giesel FL, Sathekge M. [68 Ga]Ga-FAPI versus [18F]F-FDG in malignant melanoma: complementary or counterpoint? Eur J Nucl Med Mol Imaging. 2022;49(7):2445–6.

    Article  PubMed  Google Scholar 

  132. Novruzov E, Dendl K, Ndlovu H, Choyke PL, Dabir M, Beu M, et al. Head-to-head intra-individual comparison of [68Ga]-FAPI and [18F]-FDG PET/CT in patients with bladder cancer. Mol Imaging Biol. 2022;24(4):651–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mokoala KMG, Lawal IO, Maserumule LC, Bida M, Maes A, Ndlovu H, et al. Correlation between [68Ga]Ga-FAPI-46 PET imaging and HIF-1α immunohistochemical analysis in cervical cancer: proof-of-concept. Cancers (Basel). 2023;15(15):3953.

    Article  CAS  PubMed  Google Scholar 

  134. Watabe T, Liu Y, Kaneda-Nakashima K, Shirakami Y, Lindner T, Ooe K, et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu- and 225Ac-labeled FAPI-04 in pancreatic cancer xenograft mouse models. J Nucl Med. 2020;61(4):563–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Liu Y, Watabe T, Kaneda-Nakashima K, Shirakami Y, Naka S, Ooe K, et al. Fibroblast activation protein targeted therapy using [177Lu]FAPI-46 compared with [225Ac]FAPI-46 in a pancreatic cancer model. Eur J Nucl Med Mol Imaging. 2022;49(3):871–80.

    Article  CAS  PubMed  Google Scholar 

  136. Privé BM, Boussihmad MA, Timmermans B, van Gemert WA, Peters SMB, Derks YHW, et al. Fibroblast activation protein-targeted radionuclide therapy: background, opportunities, and challenges of first (pre)clinical studies. Eur J Nucl Med Mol Imaging. 2023;50(7):1906–18.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Millul J, Koepke L, Haridas GR, Sparrer KMJ, Mansi R, Fani M. Head-to-head comparison of different classes of FAP radioligands designed to increase tumor residence time: monomer, dimer, albumin binders, and small molecules vs peptides. Eur J Nucl Med Mol Imaging. 2023;50(10):3050–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zboralski D, Hoehne A, Bredenbeck A, Schumann A, Nguyen M, Schneider E, et al. Preclinical evaluation of FAP-2286 for fibroblast activation protein targeted radionuclide imaging and therapy. Eur J Nucl Med Mol Imaging. 2022;49(11):3651–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J, et al. Feasibility, biodistribution, and preliminary dosimetry in peptide-targeted radionuclide therapy of diverse adenocarcinomas using 177Lu-FAP-2286: first-in-humans results. J Nucl Med. 2022;63(3):415–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ballal S, Yadav MP, Moon ES, Kramer VS, Roesch F, Kumari S, et al. First-In-human results on the biodistribution, pharmacokinetics, and dosimetry of [177Lu]Lu-DOTASAFAPi and [177Lu]Lu-DOTAGA.(SA.FAPi)2. Pharmaceuticals (Basel). 2021;14(12):1212.

    Article  CAS  PubMed  Google Scholar 

  141. Ballal S, Yadav MP, Moon ES, Roesch F, Kumari S, Agarwal S, et al. Novel fibroblast activation protein inhibitor-based targeted theranostics for radioiodine-refractory differentiated thyroid cancer patients: a pilot study. Thyroid. 2022;32(1):65–77.

    CAS  PubMed  Google Scholar 

  142. Pozzobon T, Goldoni G, Viola A, Molon B. CXCR4 signaling in health and disease. Immunol Lett. 2016;177:6–15.

    Article  CAS  PubMed  Google Scholar 

  143. Fricker SP. Physiology and pharmacology of plerixafor. Transfus Med Hemother. 2013;40(4):237–45.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zhao H, Guo L, Zhao H, Zhao J, Weng H, Zhao B. CXCR4 over-expression and survival in cancer: a system review and meta-analysis. Oncotarget. 2015;6(7):5022–40.

    Article  PubMed  Google Scholar 

  145. Buck AK, Haug A, Dreher N, Lambertini A, Higuchi T, Lapa C, et al. Imaging of C-X-C motif chemokine receptor 4 expression in 690 patients with solid or hematologic neoplasms using 68Ga-Pentixafor PET. J Nucl Med. 2022;63(11):1687–92.

    CAS  PubMed  Google Scholar 

  146. Lawal IO, Popoola GO, Mahapane J, Kaufmann J, Davis C, Ndlovu H, et al. [68Ga]Ga-Pentixafor for PET imaging of vascular expression of CXCR-4 as a marker of arterial inflammation in HIV-infected patients: a comparison with 18F[FDG] PET imaging. Biomolecules. 2020;10(12):1629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Demmer O, Gourni E, Schumacher U, Kessler H, Wester HJ. PET imaging of CXCR4 receptors in cancer by a new optimized ligand. ChemMedChem. 2011;6(10):1789–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Schottelius M, Osl T, Poschenrieder A, Hoffmann F, Beykan S, Hänscheid H, et al. [177Lu]pentixather: comprehensive preclinical characterization of a first CXCR4-directed endoradiotherapeutic agent. Theranostics. 2017;7(9):2350–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Herrmann K, Schottelius M, Lapa C, Osl T, Poschenrieder A, Hänscheid H, et al. First-in-human experience of CXCR4-directed endoradiotherapy with 177Lu- and 90Y-labeled Pentixather in advanced-stage multiple myeloma with extensive intra- and extramedullary disease. J Nucl Med. 2016;57(2):248–51.

    Article  CAS  PubMed  Google Scholar 

  150. Lapa C, Herrmann K, Schirbel A, Hänscheid H, Lückerath K, Schottelius M, et al. CXCR4-directed endoradiotherapy induces high response rates in extramedullary relapsed Multiple Myeloma. Theranostics. 2017;7(6):1589–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lapa C, Hänscheid H, Kircher M, Schirbel A, Wunderlich G, Werner RA, et al. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J Nucl Med. 2019;60(1):60–4.

    Article  CAS  PubMed  Google Scholar 

  152. Buck AK, Grigoleit GU, Kraus S, Schirbel A, Heinsch M, Dreher N, et al. C-X-C Motif chemokine receptor 4-targeted radioligand therapy in patients with advanced T-cell lymphoma. J Nucl Med. 2023;64(1):34–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hartlapp I, Hartrampf PE, Serfling SE, Wild V, Weich A, Rasche L, et al. CXCR4-directed imaging and endoradiotherapy in desmoplastic small round cell tumors. J Nucl Med. 2023;64(9):1424–30.

    Article  CAS  PubMed  Google Scholar 

  154. Maurer S, Herhaus P, Lippenmeyer R, Hänscheid H, Kircher M, Schirbel A, et al. Side effects of CXC-chemokine receptor 4-directed endoradiotherapy with pentixather before hematopoietic stem cell transplantation. J Nucl Med. 2019;60(10):1399–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Osl T, Schmidt A, Schwaiger M, Schottelius M, Wester HJ. A new class of PentixaFor- and PentixaTher-based theranostic agents with enhanced CXCR4-targeting efficiency. Theranostics. 2020;10(18):8264–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Lau J, Kwon D, Rousseau E, Zhang Z, Zeisler J, Uribe CF, Kuo HT, Zhang C, Lin KS, Bénard F. [68Ga]Ga/[177Lu]Lu-BL01, a novel theranostic pair for targeting C-X-C chemokine receptor 4. Mol Pharm. 2019;16(11):4688–95.

    Article  CAS  PubMed  Google Scholar 

  157. Luyten K, Van Loy T, Cawthorne C, Deroose CM, Schols D, Bormans G, et al. D-Peptide-based probe for CXCR4-targeted molecular imaging and radionuclide therapy. Pharmaceutics. 2021;13(10):1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Reubi JC, Wenger S, Schmuckli-Maurer J, Schaer JC, Gugger M. Bombesin receptor subtypes in human cancers: detection with the universal radioligand (125)I-[D-TYR(6), beta-ALA(11), PHE(13), NLE(14)] bombesin(6–14). Clin Cancer Res. 2002;8(4):1139–46.

    CAS  PubMed  Google Scholar 

  159. Maina T, Nock BA, Kulkarni H, Singh A, Baum RP. Theranostic prospects of gastrin-releasing peptide receptor-radioantagonists in oncology. PET Clin. 2017;12(3):297–309.

    Article  PubMed  Google Scholar 

  160. Mansi R, Nock BA, Dalm SU, Busstra MB, van Weerden WM, Maina T. Radiolabeled bombesin analogs. Cancers (Basel). 2021;13(22):5766.

    Article  CAS  PubMed  Google Scholar 

  161. D’Onofrio A, Engelbrecht S, Läppchen T, Rominger A, Gourni E. GRPR-targeting radiotheranostics for breast cancer management. Front Med (Lausanne). 2023;10: 1250799.

    Article  PubMed  Google Scholar 

  162. Stoykow C, Erbes T, Maecke HR, Bulla S, Bartholomä M, Mayer S, et al. Gastrin-releasing peptide receptor imaging in breast cancer using the receptor antagonist (68)Ga-RM2 and PET. Theranostics. 2016;6(10):1641–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ruigrok EAM, Verhoeven M, Konijnenberg MW, de Blois E, de Ridder CMA, Stuurman DC, et al. Safety of [177Lu]Lu-NeoB treatment: a preclinical study characterizing absorbed dose and acute, early, and late organ toxicity. Eur J Nucl Med Mol Imaging. 2022;49(13):4440–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Montemagno C, Raes F, Ahmadi M, Bacot S, Debiossat M, Leenhardt J, et al. In vivo biodistribution and efficacy evaluation of NeoB, a radiotracer targeted to GRPR, in mice bearing gastrointestinal stromal tumor. Cancers (Basel). 2021;13(5):1051.

    Article  CAS  PubMed  Google Scholar 

  165. Reubi JC, Schaer JC, Waser B. Cholecystokinin(CCK)-A and CCK-B/gastrin receptors in human tumors. Cancer Res. 1997;57(7):1377–86.

    CAS  PubMed  Google Scholar 

  166. Klingler M, Hörmann AA, Guggenberg EV. Cholecystokinin-2 receptor targeting with radiolabeled peptides: current status and future directions. Curr Med Chem. 2020;27(41):7112–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Nock BA, Kanellopoulos P, Joosten L, Mansi R, Maina T. Peptide radioligands in cancer theranostics: agonists and antagonists. Pharmaceuticals (Basel). 2023;16(5):674.

    Article  CAS  PubMed  Google Scholar 

  168. Klingler M, Summer D, Rangger C, Haubner R, Foster J, Sosabowski J, et al. DOTA-MGS5, a new cholecystokinin-2 receptor-targeting peptide analog with an optimized targeting profile for theranostic use. J Nucl Med. 2019;60(7):1010–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. von Guggenberg E, Uprimny C, Klinger M, Warwitz B, Sviridenko A, Bayerschmidt S, et al. Preliminary clinical experience with cholecystokinin-2 receptor PET/CT using the 68Ga-labeled minigastrin analog DOTA-MGS5 in patients with medullary thyroid cancer. J Nucl Med. 2023;64(6):859–62.

    Article  Google Scholar 

  170. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2(2):127–37.

    Article  CAS  PubMed  Google Scholar 

  171. Sato S, Kajiyama Y, Sugano M, Iwanuma Y, Sonoue H, Matsumoto T, et al. Monoclonal antibody to HER-2/neu receptor enhances radiosensitivity of esophageal cancer cell lines expressing HER-2/neu oncoprotein. Int J Radiat Oncol Biol Phys. 2005;61(1):203–11.

    Article  CAS  PubMed  Google Scholar 

  172. Ducharme M, Hall L, Eckenroad W, Cingoranelli SJ, Houson HA, Jaskowski L, et al. Evaluation of [89Zr]Zr-DFO-2Rs15d nanobody for imaging of HER2-positive breast cancer. Mol Pharm. 2023;20(9):4629–39.

    Article  CAS  PubMed  Google Scholar 

  173. Liu Y, Xu T, Vorobyeva A, Loftenius A, Bodenko V, Orlova A, et al. Radionuclide therapy of HER2-expressing xenografts using [177Lu]Lu-ABY-027 affibody molecule alone and in combination with trastuzumab. Cancers (Basel). 2023;15(9):2409.

    Article  CAS  PubMed  Google Scholar 

  174. Chung SK, Vargas DB, Chandler CS, Katugampola S, Veach DR, McDevitt MR, et al. Efficacy of HER2-targeted intraperitoneal 225Ac α-pretargeted radioimmunotherapy for small-volume ovarian peritoneal carcinomatosis. J Nucl Med. 2023;64(9):1439–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Hoffman SLV, Mixdorf JC, Kwon O, Johnson TR, Makvandi M, Lee H, et al. Preclinical studies of a PARP targeted, Meitner-Auger emitting, theranostic radiopharmaceutical for metastatic ovarian cancer. Nucl Med Biol. 2023;122–123: 108368.

    Article  PubMed  Google Scholar 

  176. Destro G, Chen Z, Chan CY, Fraser C, Dias G, Mosley M, et al. A radioiodinated rucaparib analogue as an Auger electron emitter for cancer therapy. Nucl Med Biol. 2023;116–117: 108312.

    Article  PubMed  Google Scholar 

  177. Chan CY, Chen Z, Guibbal F, Dias G, Destro G, O’Neill E, et al. [123I]CC1: a PARP-targeting, auger electron-emitting radiopharmaceutical for radionuclide therapy of cancer. J Nucl Med. 2023;64(12):1965–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Pirovano G, Jannetti SA, Carter LM, Sadique A, Kossatz S, Guru N, et al. Targeted brain tumor radiotherapy using an auger emitter. Clin Cancer Res. 2020;26(12):2871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Wilson T, Pirovano G, Xiao G, Samuels Z, Roberts S, Viray T, et al. PARP-targeted auger therapy in p53 mutant colon cancer xenograft mouse models. Mol Pharm. 2021;18(9):3418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Ndlovu H, Lawal I, Mokoala K, Disenyane D, Nkambule N, Bassa S, et al. Imaging PARP upregulation with [123I]I-PARPi SPECT/CT in small cell neuroendocrine carcinoma. J Nucl Med. 2023. https://doi.org/10.2967/jnumed.123.266348.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismaheel O. Lawal.

Ethics declarations

Funding

No funds, grants, or other support was received.

Conflict of Interest

I.O.L, S.O.A., H.N., K.M.G.M., S.S.M., and M.M.S. have no competing interests to declare that are relevant to the content of this article.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Author Contributions

Literature review: I.O.L. and S.O.A. Initial draft of manuscript: I.O.L. and S.O.A. Critical review and editing of manuscript: I.O.L., S.O.A., H.N., K.M.G.M., S.S.M., and M.M.S.

Data Availability

Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.

Code Availability

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lawal, I.O., Abubakar, S.O., Ndlovu, H. et al. Advances in Radioligand Theranostics in Oncology. Mol Diagn Ther (2024). https://doi.org/10.1007/s40291-024-00702-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40291-024-00702-4

Navigation