Skip to main content
Log in

Significant Effects of Renal Function on Mycophenolic Acid Total Clearance in Pediatric Kidney Transplant Recipients with Population Pharmacokinetic Modeling

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Mycophenolic acid (MPA) is an immunosuppressant commonly prescribed in pediatric kidney transplantation to prevent graft rejection. Large variabilities in MPA plasma exposures have been observed in this population, which could result in severe adverse effects. The majority of the MPA pharmacokinetic data have been reported in adult populations, whereas information in pediatric patients is still very limited. The objective of this study was to establish a novel, nonlinear mixed-effects model for MPA and investigate the clinical variables affecting MPA population pharmacokinetics in pediatric kidney transplant recipients.

Methods

Data were collected retrospectively from pediatric kidney transplant patients (≤ 18 years when MPA concentrations were initially collected; on oral administration of mycophenolate mofetil) in Calgary, Alberta, Canada. Nonlinear mixed-effect modeling was conducted using stochastic approximation expectation-maximization in Monolix 2021R2 (Lixoft SAS, France) to determine population pharmacokinetic estimates, interindividual variabilities, and interoccasional variabilities. Covariate models were constructed using the Model Proposal function in Monolix in conjunction with a systematic stepwise inclusion/elimination protocol. The best model was selected based on objective function values, relative standard errors, goodness-of-fit plots, prediction-corrected visual predictive checks, and numerical predictive checks.

Results

A total of 50 pediatric kidney transplant patients (25 female) with 219 MPA plasma concentration–time profiles were included. The average age (± standard deviation) and posttransplant time for the sample population were 12.8 ± 4.8 years and 762 ± 1160 days, respectively. The majority of study subjects (i.e., > 85% based on all occasions) were co-administered tacrolimus. A two-compartment, first-order absorption with lag time and linear elimination structural model with lognormal distributed proportional residual errors best described the MPA concentration–time data. The absorption rate constant (2.52 h−1 or 0.042 min−1), lag time (0.166 h or 9.96 min), volumes of distributions of the central (22.8 L) and peripheral (216 L) compartments, and intercompartment clearance (17.6 L h−1 or 0.293 L min−1) were consistent with literature values; whereas total MPA clearance (0.72 L h−1 or 0.012 L min−1) was relatively reduced, likely due to the general lack of cyclosporine interactions and the stabilized graft functions from significantly longer posttransplant time in our sample population. Of the clinical variables tested, only estimated glomerular filtration rate (eGFR) was identified a significant covariate affecting total MPA clearance with a positive, exponential relationship. The final population pharmacokinetic model was successfully evaluated/validated using a variety of complementary methods.

Conclusion

We have successfully constructed and validated a novel population pharmacokinetic model of MPA in pediatric kidney transplant patients. A positive, nonlinear relationship between eGFR and total MPA clearance identified in our model is likely attributed to multiple concurrent mechanisms, which warrant further systematic investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bergan S, Brunet M, Hesselink DA, Johnson-Davis KL, Kunicki PK, Lemaitre F, et al. Personalized therapy for mycophenolate: consensus report by the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. Ther Drug Monit. 2021;43(2):150–200. https://doi.org/10.1097/FTD.0000000000000871.

    Article  CAS  PubMed  Google Scholar 

  2. Rong Y, Colbourne P, Gourishankar S, Kiang TKL. Significant correlations between p-cresol sulfate and mycophenolic acid plasma concentrations in adult kidney transplant recipients. Clin Drug Investig. 2022;42(3):207–19. https://doi.org/10.1007/s40261-022-01121-1.

    Article  CAS  PubMed  Google Scholar 

  3. Rong Y, Jun H, Kiang TKL. Population pharmacokinetics of mycophenolic acid in paediatric patients. Br J Clin Pharmacol. 2021;87(4):1730–57. https://doi.org/10.1111/bcp.14590.

    Article  CAS  PubMed  Google Scholar 

  4. Rong Y, Kiang TKL. Mechanisms of metabolism interaction between p-cresol and mycophenolic acid. Toxicol Sci. 2020;173(2):267–79. https://doi.org/10.1093/toxsci/kfz231.

    Article  CAS  PubMed  Google Scholar 

  5. Rong Y, Mayo P, Ensom MHH, Kiang TKL. Population pharmacokinetics of mycophenolic acid co-administered with tacrolimus in corticosteroid-free adult kidney transplant patients. Clin Pharmacokinet. 2019;58(11):1483–95. https://doi.org/10.1007/s40262-019-00771-3.

    Article  CAS  PubMed  Google Scholar 

  6. Rong Y, Patel V, Kiang TKL. Recent lessons learned from population pharmacokinetic studies of mycophenolic acid: physiological, genomic, and drug interactions leading to the prediction of drug effects. Expert Opin Drug Metab Toxicol. 2022;17(12):1369–406. https://doi.org/10.1080/17425255.2021.2027906.

    Article  Google Scholar 

  7. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58. https://doi.org/10.2165/00003088-200746010-00002.

    Article  CAS  PubMed  Google Scholar 

  8. Filler G, Alvarez-Elias AC, McIntyre C, Medeiros M. The compelling case for therapeutic drug monitoring of mycophenolate mofetil therapy. Pediatr Nephrol. 2017;32(1):21–9. https://doi.org/10.1007/s00467-016-3352-2.

    Article  PubMed  Google Scholar 

  9. Tonshoff B, David-Neto E, Ettenger R, Filler G, van Gelder T, Goebel J, et al. Pediatric aspects of therapeutic drug monitoring of mycophenolic acid in renal transplantation. Transplant Rev. 2011;25(2):78–89. https://doi.org/10.1016/j.trre.2011.01.001.

    Article  Google Scholar 

  10. Filler G, Feber J. The transplanted child: new immunosuppressive agents and the need for pharmacokinetic monitoring. Paediatr Child Health. 2002;7(8):525–32. https://doi.org/10.1093/pch/7.8.525.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Medeiros M, Castaneda-Hernandez G, Ross CJ, Carleton BC. Use of pharmacogenomics in pediatric renal transplant recipients. Front Genet. 2015;6:41. https://doi.org/10.3389/fgene.2015.00041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Downing HJ, Pirmohamed M, Beresford MW, Smyth RL. Paediatric use of mycophenolate mofetil. Br J Clin Pharmacol. 2013;75(1):45–59. https://doi.org/10.1111/j.1365-2125.2012.04305.x.

    Article  CAS  PubMed  Google Scholar 

  13. Weber LT, Lamersdorf T, Shipkova M, Niedmann PD, Wiesel M, Zimmerhackl LB, et al. Area under the plasma concentration-time curve for total, but not for free, mycophenolic acid increases in the stable phase after renal transplantation: a longitudinal study in pediatric patients. German study group on mycophenolate mofetil therapy in pediatric renal transplant recipients. Ther Drug Monit. 1999;21(5):498–506. https://doi.org/10.1097/00007691-199910000-00002.

    Article  CAS  PubMed  Google Scholar 

  14. Weber LT, Shipkova M, Lamersdorf T, Niedmann PD, Wiesel M, Mandelbaum A, et al. Pharmacokinetics of mycophenolic acid (MPA) and determinants of MPA free fraction in pediatric and adult renal transplant recipients. German study group on mycophenolate mofetil therapy in pediatric renal transplant recipients. J Am Soc Nephrol. 1998;9(8):1511–20. https://doi.org/10.1681/ASN.V981511.

    Article  CAS  PubMed  Google Scholar 

  15. Kiang TKL, Ensom MHH. Exposure-toxicity relationships of mycophenolic acid in adult kidney transplant patients. Clin Pharmacokinet. 2019;58(12):1533–52. https://doi.org/10.1007/s40262-019-00802-z.

    Article  CAS  PubMed  Google Scholar 

  16. Staatz CE, Tett SE. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol. 2014;88(7):1351–89. https://doi.org/10.1007/s00204-014-1247-1.

    Article  CAS  PubMed  Google Scholar 

  17. Ehren R, Schijvens AM, Hackl A, Schreuder MF, Weber LT. Therapeutic drug monitoring of mycophenolate mofetil in pediatric patients: novel techniques and current opinion. Expert Opin Drug Metab Toxicol. 2021;17(2):201–13. https://doi.org/10.1080/17425255.2021.1843633.

    Article  CAS  PubMed  Google Scholar 

  18. Picard N, Ratanasavanh D, Premaud A, Le Meur Y, Marquet P. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33(1):139–46. https://doi.org/10.1124/dmd.104.001651.

    Article  CAS  PubMed  Google Scholar 

  19. Shipkova M, Armstrong VW, Wieland E, Niedmann PD, Schutz E, Brenner-Weiss G, et al. Identification of glucoside and carboxyl-linked glucuronide conjugates of mycophenolic acid in plasma of transplant recipients treated with mycophenolate mofetil. Br J Pharmacol. 1999;126(5):1075–82. https://doi.org/10.1038/sj.bjp.0702399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Picard N, Cresteil T, Premaud A, Marquet P. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit. 2004;26(6):600–8. https://doi.org/10.1097/00007691-200412000-00004.

    Article  CAS  PubMed  Google Scholar 

  21. Sherwin CM, Fukuda T, Brunner HI, Goebel J, Vinks AA. The evolution of population pharmacokinetic models to describe the enterohepatic recycling of mycophenolic acid in solid organ transplantation and autoimmune disease. Clin Pharmacokinet. 2011;50(1):1–24. https://doi.org/10.2165/11536640-000000000-00000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiang TKL, Ensom MHH. Population pharmacokinetics of mycophenolic acid: an update. Clin Pharmacokinet. 2018;57(5):547–58. https://doi.org/10.1007/s40262-017-0593-6.

    Article  CAS  PubMed  Google Scholar 

  23. Abd Rahman AN, Tett SE, Staatz CE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in patients with autoimmune disease. Clin Pharmacokinet. 2013;52(5):303–31. https://doi.org/10.1007/s40262-013-0039-8.

    Article  CAS  PubMed  Google Scholar 

  24. Dong M, Fukuda T, Vinks AA. Optimization of mycophenolic acid therapy using clinical pharmacometrics. Drug Metab Pharmacokinet. 2014;29(1):4–11. https://doi.org/10.2133/dmpk.dmpk-13-rv-112.

    Article  CAS  PubMed  Google Scholar 

  25. Staatz CE, Tett SE. Maximum a posteriori Bayesian estimation of mycophenolic acid area under the concentration-time curve: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2011;50(12):759–72. https://doi.org/10.2165/11596380-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang D, Chow DS. Clinical pharmacokinetics of mycophenolic acid in hematopoietic stem cell transplantation recipients. Eur J Drug Metab Pharmacokinet. 2017;42(2):183–9. https://doi.org/10.1007/s13318-016-0378-6.

    Article  CAS  PubMed  Google Scholar 

  27. Zwart TC, Guchelaar HJ, van der Boog PJM, Swen JJ, van Gelder T, de Fijter JW, et al. Model-informed precision dosing to optimise immunosuppressive therapy in renal transplantation. Drug Discov Today. 2021. https://doi.org/10.1016/j.drudis.2021.06.001.

    Article  PubMed  Google Scholar 

  28. Kiang TK, Sherwin CM, Spigarelli MG, Ensom MH. Fundamentals of population pharmacokinetic modelling: modelling and software. Clin Pharmacokinet. 2012;51(8):515–25. https://doi.org/10.2165/11634080-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  29. Sherwin CM, Kiang TK, Spigarelli MG, Ensom MH. Fundamentals of population pharmacokinetic modelling: validation methods. Clin Pharmacokinet. 2012;51(9):573–90. https://doi.org/10.2165/11634200-000000000-00000. https://doi.org/10.1007/BF03261932

  30. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometr Syst Pharmacol. 2012;1:e6. https://doi.org/10.1038/psp.2012.4.

    Article  CAS  Google Scholar 

  31. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometr Syst Pharmacol. 2013;2:e38. https://doi.org/10.1038/psp.2013.14.

    Article  CAS  Google Scholar 

  32. Barau C, Furlan V, Debray D, Taburet AM, Barrail-Tran A. Population pharmacokinetics of mycophenolic acid and dose optimization with limited sampling strategy in liver transplant children. Br J Clin Pharmacol. 2012;74(3):515–24. https://doi.org/10.1111/j.1365-2125.2012.04213.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong M, Fukuda T, Cox S, de Vries MT, Hooper DK, Goebel J, et al. Population pharmacokinetic-pharmacodynamic modelling of mycophenolic acid in paediatric renal transplant recipients in the early post-transplant period. Br J Clin Pharmacol. 2014;78(5):1102–12. https://doi.org/10.1111/bcp.12426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kim H, Long-Boyle J, Rydholm N, Orchard PJ, Tolar J, Smith AR, et al. Population pharmacokinetics of unbound mycophenolic acid in pediatric and young adult patients undergoing allogeneic hematopoietic cell transplantation. J Clin Pharmacol. 2012;52(11):1665–75. https://doi.org/10.1177/0091270011422814.

    Article  CAS  PubMed  Google Scholar 

  35. Payen S, Zhang D, Maisin A, Popon M, Bensman A, Bouissou F, et al. Population pharmacokinetics of mycophenolic acid in kidney transplant pediatric and adolescent patients. Ther Drug Monit. 2005;27(3):378–88. https://doi.org/10.1097/01.ftd.0000159784.25872.f6.

    Article  CAS  PubMed  Google Scholar 

  36. Premaud A, Weber LT, Tonshoff B, Armstrong VW, Oellerich M, Urien S, et al. Population pharmacokinetics of mycophenolic acid in pediatric renal transplant patients using parametric and nonparametric approaches. Pharmacol Res. 2011;63(3):216–24. https://doi.org/10.1016/j.phrs.2010.10.017.

    Article  CAS  PubMed  Google Scholar 

  37. Saint-Marcoux F, Guigonis V, Decramer S, Gandia P, Ranchin B, Parant F, et al. Development of a Bayesian estimator for the therapeutic drug monitoring of mycophenolate mofetil in children with idiopathic nephrotic syndrome. Pharmacol Res. 2011;63(5):423–31. https://doi.org/10.1016/j.phrs.2011.01.009.

    Article  CAS  PubMed  Google Scholar 

  38. Sherwin CM, Sagcal-Gironella AC, Fukuda T, Brunner HI, Vinks AA. Development of population PK model with enterohepatic circulation for mycophenolic acid in patients with childhood-onset systemic lupus erythematosus. Br J Clin Pharmacol. 2012;73(5):727–40. https://doi.org/10.1111/j.1365-2125.2011.04140.x.

    Article  CAS  PubMed  Google Scholar 

  39. Woillard JB, Bader-Meunier B, Salomon R, Ranchin B, Decramer S, Fischbach M, et al. Pharmacokinetics of mycophenolate mofetil in children with lupus and clinical findings in favour of therapeutic drug monitoring. Br J Clin Pharmacol. 2014;78(4):867–76. https://doi.org/10.1111/bcp.12392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zeng L, Blair EY, Nath CE, Shaw PJ, Earl JW, Stephen K, et al. Population pharmacokinetics of mycophenolic acid in children and young people undergoing blood or marrow and solid organ transplantation. Br J Clin Pharmacol. 2010;70(4):567–79. https://doi.org/10.1111/j.1365-2125.2010.03734.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao W, Elie V, Baudouin V, Bensman A, Andre JL, Brochard K, et al. Population pharmacokinetics and Bayesian estimator of mycophenolic acid in children with idiopathic nephrotic syndrome. Br J Clin Pharmacol. 2010;69(4):358–66. https://doi.org/10.1111/j.1365-2125.2010.03615.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao W, Fakhoury M, Deschenes G, Roussey G, Brochard K, Niaudet P, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol. 2010;50(11):1280–91. https://doi.org/10.1177/0091270009357429.

    Article  CAS  PubMed  Google Scholar 

  43. Wang G, Ye Q, Huang Y, Lu J, Xu H, Li Z. Population pharmacokinetics of mycophenolic acid in pediatric patients with juvenile dermatomyositis and optimization of limited sampling strategy. Xenobiotica. 2021;51(2):167–76. https://doi.org/10.1080/00498254.2020.1819579.

    Article  CAS  PubMed  Google Scholar 

  44. Wei Y, Wu D, Chen Y, Dong C, Qi J, Wu Y, et al. Population pharmacokinetics of mycophenolate mofetil in pediatric patients early after liver transplantation. Front Pharmacol. 2022;13:1002628. https://doi.org/10.3389/fphar.2022.1002628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nuttall FQ. Body mass index: obesity, BMI, and health: a critical review. Nutr Today. 2015;50(3):117–28. https://doi.org/10.1097/NT.0000000000000092.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mosteller RD. Simplified calculation of body-surface area. N Engl J Med. 1987;317(17):1098. https://doi.org/10.1056/NEJM198710223171717.

    Article  CAS  PubMed  Google Scholar 

  47. Schwartz GJ, Munoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629–37. https://doi.org/10.1681/ASN.2008030287.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lixoft. Monolix Suite 2021R2. 2021 [cited 2023 March 12]. Available from: https://lixoft.com/products/monolix/.

  49. Rong Y, Mayo P, Ensom MHH, Kiang TKL. Population pharmacokinetic analysis of immediate-release oral tacrolimus co-administered with mycophenolate mofetil in corticosteroid-free adult kidney transplant recipients. Eur J Drug Metab Pharmacokinet. 2019;44(3):409–22. https://doi.org/10.1007/s13318-018-0525-3.

    Article  CAS  PubMed  Google Scholar 

  50. Jun H, Rong Y, Yih C, Ho J, Cheng W, Kiang TKL. Comparisons of four protein-binding models characterizing the pharmacokinetics of unbound phenytoin in adult patients using non-linear mixed-effects modeling. Drugs R D. 2020;20(4):343–58. https://doi.org/10.1007/s40268-020-00323-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69. https://doi.org/10.1208/s12248-009-9133-0.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Filler G. Abbreviated mycophenolic acid AUC from C0, C1, C2, and C4 is preferable in children after renal transplantation on mycophenolate mofetil and tacrolimus therapy. Transpl Int. 2004;17(3):120–5. https://doi.org/10.1007/s00147-003-0678-z.

    Article  CAS  PubMed  Google Scholar 

  53. van Gelder T. How cyclosporine reduces mycophenolic acid exposure by 40% while other calcineurin inhibitors do not. Kidney Int. 2021;100(6):1185–9. https://doi.org/10.1016/j.kint.2021.06.036.

    Article  CAS  PubMed  Google Scholar 

  54. Weber LT, Hoecker B, Armstrong VW, Oellerich M, Tonshoff B. Long-term pharmacokinetics of mycophenolic acid in pediatric renal transplant recipients over 3 years posttransplant. Ther Drug Monit. 2008;30(5):570–5. https://doi.org/10.1097/FTD.0b013e31818752d9.

    Article  CAS  PubMed  Google Scholar 

  55. Okour M, Jacobson PA, Ahmed MA, Israni AK, Brundage RC. Mycophenolic acid and its metabolites in kidney transplant recipients: a semimechanistic enterohepatic circulation model to improve estimating exposure. J Clin Pharmacol. 2018;58(5):628–39. https://doi.org/10.1002/jcph.1064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Riglet F, Bertrand J, Barrail-Tran A, Verstuyft C, Michelon H, Benech H, et al. Population pharmacokinetic model of plasma and cellular mycophenolic acid in kidney transplant patients from the CIMTRE study. Drugs R D. 2020;20(4):331–42. https://doi.org/10.1007/s40268-020-00319-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mooij MG, Schwarz UI, de Koning BA, Leeder JS, Gaedigk R, Samsom JN, et al. Ontogeny of human hepatic and intestinal transporter gene expression during childhood: age matters. Drug Metab Dispos. 2014;42(8):1268–74. https://doi.org/10.1124/dmd.114.056929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Filler G, Foster J, Berard R, Mai I, Lepage N. Age-dependency of mycophenolate mofetil dosing in combination with tacrolimus after pediatric renal transplantation. Transplant Proc. 2004;36(5):1327–31. https://doi.org/10.1016/j.transproceed.2004.05.043.

    Article  CAS  PubMed  Google Scholar 

  59. Badee J, Qiu N, Collier AC, Takahashi RH, Forrest WF, Parrott N, et al. Characterization of the ontogeny of hepatic UDP-glucuronosyltransferase enzymes based on glucuronidation activity measured in human liver microsomes. J Clin Pharmacol. 2019;59(Suppl 1):S42–55. https://doi.org/10.1002/jcph.1493.

    Article  CAS  PubMed  Google Scholar 

  60. Martial LC, Jacobs BA, Cornelissen EA, de Haan AF, Koch BC, Burger DM, et al. Pharmacokinetics and target attainment of mycophenolate in pediatric renal transplant patients. Pediatr Transplant. 2016;20(4):492–9. https://doi.org/10.1111/petr.12695.

    Article  CAS  PubMed  Google Scholar 

  61. Weber LT, Shipkova M, Armstrong VW, Wagner N, Schutz E, Mehls O, et al. The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German study group on mycophenolate mofetil therapy. J Am Soc Nephrol. 2002;13(3):759–68. https://doi.org/10.1681/ASN.V133759.

    Article  PubMed  Google Scholar 

  62. Ghio L, Ferraresso M, Zacchello G, Murer L, Ginevri F, Belingheri M, et al. Longitudinal evaluation of mycophenolic acid pharmacokinetics in pediatric kidney transplant recipients. The role of post-transplant clinical and therapeutic variables. Clin Transplant. 2009;23(2):264–70. https://doi.org/10.1111/j.1399-0012.2008.00932.x.

    Article  PubMed  Google Scholar 

  63. de Winter BC, van Gelder T, Sombogaard F, Shaw LM, van Hest RM, Mathot RA. Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn. 2009;36(6):541–64. https://doi.org/10.1007/s10928-009-9136-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. de Winter BC, Mathot RA, Sombogaard F, Vulto AG, van Gelder T. Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring. Clin J Am Soc Nephrol. 2011;6(3):656–63. https://doi.org/10.2215/CJN.05440610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Naesens M, de Loor H, Vanrenterghem Y, Kuypers DR. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. Transplantation. 2007;84(3):362–73. https://doi.org/10.1097/01.tp.0000276936.14041.6c.

    Article  CAS  PubMed  Google Scholar 

  66. Prokopienko AJ, Nolin TD. Microbiota-derived uremic retention solutes: perpetrators of altered nonrenal drug clearance in kidney disease. Expert Rev Clin Pharmacol. 2018;11(1):71–82. https://doi.org/10.1080/17512433.2018.1378095.

    Article  CAS  PubMed  Google Scholar 

  67. van Hest RM, van Gelder T, Bouw R, Goggin T, Gordon R, Mamelok RD, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol. 2007;63(6):741–52. https://doi.org/10.1111/j.1365-2125.2006.02841.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the pharmacy students/interns who participated in the data collection process and Dr. Julian Midgley who advised on the data organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony K. L. Kiang.

Ethics declarations

Funding

No funding was associated with this study.

Conflict of interest

Yan Rong, Jenny Wichart, Lorraine Hamiwka, and Tony Kiang declare that they have no conflict of interests.

Availability of data and material

Original data are available from the corresponding author on reasonable request.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Conjoint Health Research Ethics Board at the University of Calgary (REB19-2080) and the University of Alberta Research Ethics Boards (RES0047102).

Consent to participate

Not applicable due to the retrospective nature of this study as approved by the ethics protocols.

Consent for publication

Granted by the ethics protocols.

Code availability

Not applicable.

Author contributions

All authors contributed to study conception and design. Data collection was performed by JW and LH. Data analysis and model construction were performed by YR and TK. YR prepared the initial manuscript draft and edited subsequent versions based on guidance from TK. All authors edited the manuscript, and the final version was submitted by TK.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Wichart, J., Hamiwka, L. et al. Significant Effects of Renal Function on Mycophenolic Acid Total Clearance in Pediatric Kidney Transplant Recipients with Population Pharmacokinetic Modeling. Clin Pharmacokinet 62, 1289–1303 (2023). https://doi.org/10.1007/s40262-023-01280-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-023-01280-0

Navigation