Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Patients with Autoimmune Disease

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Mycophenolic acid (MPA), the active drug moiety of mycophenolate, is a potent immunosuppressant agent, which is increasingly being used in the treatment of patients with various autoimmune diseases. An understanding of the pharmacokinetics and pharmacodynamics of mycophenolate in this population should assist the clinician with rational dosage decisions. This review aims to provide an overview of the published literature on the clinical pharmacokinetics of mycophenolate in autoimmune disease and a briefer summary of current pharmacodynamic knowledge, and to identify areas of potential future research in this field. A literature search was conducted using PubMed and EMBASE databases as well as bibliographies of relevant articles and ‘on-line early’ pages of key journals. Twenty-six pharmacokinetic/pharmacodynamic studies of mycophenolate in people with autoimmune disease were identified and appraised. Twenty-two of these studies used non-compartmental analysis techniques and four used population modelling methods to estimate mycophenolate pharmacokinetic parameters. Seven studies linked mycophenolate exposure to treatment outcomes. Only four studies measured free (unbound) as well as total mycophenolate exposure and only two studies characterised MPA disposition following enteric-coated mycophenolate sodium (EC-MPS) administration. Across all studies MPA displayed erratic and complex pharmacokinetics with substantial between-subject variability. Based on total drug measurement, the dose-normalised MPA area under the plasma concentration-time curve (AUC) from 0 to 12 h post-dose (AUC12) varied at least five- to ten-fold between subjects. Typical values for apparent oral clearance (CL/F) of MPA during nonlinear mixed–effects modelling ranged from 8.3 to 25.3 L/h. Patient renal function, serum albumin levels, sex, ethnicity, food intake, concurrent administration of interacting drugs such as antacids, metal-containing medications and proton pump inhibitors and polymorphisms in genes encoding uridine diphosphate glucuronosyltransferase were identified in some studies as having a significant influence on the pharmacokinetics of mycophenolate. Typical MPA CL/F values in autoimmune disease patients were generally slightly lower than values published previously in population pharmacokinetic studies involving renal allograft recipients, possibly because of usage of ciclosporin, poorer renal function or lower serum albumin levels in the renal transplant cohort. In a single crossover study involving ten subjects only, significantly higher MPA AUC12 and maximum MPA concentration (C max) and lower MPA CL/F were reported following EC-MPS administration compared to mycophenolate mofetil administration. MPA exposure correlated well with treatment efficacy in patients with autoimmune disease (response to treatment, active disease and disease markers); however the relationship between MPA exposure and adverse events (infectious episodes, haematological toxicity and gastrointestinal symptoms) was unclear. Further investigation is required in autoimmune diseases such as chronic plaque psoriasis and rheumatoid arthritis and following EC-MPS administration. The extent of within-subject variability in the pharmacokinetics of mycophenolate is largely unknown and potential covariate influences need to be confirmed in studies with large subject numbers. A relationship between MPA and MPA metabolite exposure and toxicity needs to be established. The contribution of pharmacogenetics to the pharmacokinetics and pharmacodynamics of mycophenolate warrants further investigation, as does the utility of therapeutic drug monitoring. Dosing to achieve a target MPA AUC12 >35 mg·h/L is likely to lead to better efficacy outcomes in patients with autoimmune disease (rather than just giving standard doses, which lead to a wide range of exposures). However, the relationship between mycophenolate exposure and toxicity requires further investigation to determine the upper end of a target AUC range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davidson A, Diamond B. Autoimmune diseases. N Engl J Med. 2001;345(5):340–50.

    Article  PubMed  CAS  Google Scholar 

  2. Allison AC, Eugui EM. Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation. 2005;80(Suppl):S181–90.

    Article  PubMed  CAS  Google Scholar 

  3. Allison AC. Mechanisms of action of mycophenolate mofetil. Lupus. 2005;14(3):2–8.

    Article  Google Scholar 

  4. Appel GB, Contreras G, Dooley MA, et al. Mycophenolate mofetil versus cyclophosphamide for induction treatment of lupus nephritis. J Am Soc Nephrol. 2009;20(5):1103–12.

    Article  PubMed  CAS  Google Scholar 

  5. Chan TM, Li FK, Tang CS, et al. Efficacy of mycophenolate mofetil in patients with diffuse proliferative lupus nephritis. Hong Kong-Guangzhou Nephrology Study Group. N Engl J Med. 2000;343(16):1156–62.

    Article  PubMed  CAS  Google Scholar 

  6. Chan TM, Tse KC, Tang CS, et al. Long-term study of mycophenolate mofetil as continuous induction and maintenance treatment for diffuse proliferative lupus nephritis. J Am Soc Nephrol. 2005;16(4):1076–84.

    Article  PubMed  CAS  Google Scholar 

  7. Contreras G, Pardo V, Leclercq B, et al. Sequential therapies for proliferative lupus nephritis. N Engl J Med. 2004;350(10):971–80.

    Article  PubMed  CAS  Google Scholar 

  8. Dooley MA, Jayne D, Ginzler EM, et al. Mycophenolate versus azathioprine as maintenance therapy for lupus nephritis. N Engl J Med. 2011;365(20):1886–95.

    Article  PubMed  CAS  Google Scholar 

  9. El-Shafey EM, Abdou SH, Shareef MM. Is mycophenolate mofetil superior to pulse intravenous cyclophosphamide for induction therapy of proliferative lupus nephritis in Egyptian patients? Clin Exp Nephrol. 2010 14(3):214–21.

  10. Ginzler EM, Dooley MA, Aranow C, et al. Mycophenolate mofetil or intravenous cyclophosphamide for lupus nephritis. N Engl J Med. 2005;353(21):2219–28.

    Article  PubMed  CAS  Google Scholar 

  11. Ginzler EM, Wofsy D, Isenberg D, et al. Nonrenal disease activity following mycophenolate mofetil or intravenous cyclophosphamide as induction treatment for lupus nephritis: findings in a multicenter, prospective, randomized, open-label, parallel-group clinical trial. Arthritis Rheum. 2010;62(1):211–21.

    Article  PubMed  CAS  Google Scholar 

  12. Houssiau FA, D’Cruz D, Sangle S, et al. Azathioprine versus mycophenolate mofetil for long-term immunosuppression in lupus nephritis: results from the MAINTAIN Nephritis Trial. Ann Rheum Dis. 2010;69(12):2083–9.

    Article  PubMed  CAS  Google Scholar 

  13. Li X, Ren H, Zhang Q, et al. Mycophenolate mofetil or tacrolimus compared with intravenous cyclophosphamide in the induction treatment for active lupus nephritis. Nephrol Dial Transplant 2012;27(4):1467–72.

    Article  PubMed  CAS  Google Scholar 

  14. Ong LM, Hooi LS, Lim TO, et al. Randomized controlled trial of pulse intravenous cyclophosphamide versus mycophenolate mofetil in the induction therapy of proliferative lupus nephritis. Nephrology (Carlton). 2005;10(5):504–10.

    Article  CAS  Google Scholar 

  15. Stoenoiu MS, Aydin S, Tektonidou M, et al. Repeat kidney biopsies fail to detect differences between azathioprine and mycophenolate mofetil maintenance therapy for lupus nephritis: data from the MAINTAIN Nephritis Trial. Nephrol Dial Transplant 2011;27(5):1924–30.

    Article  PubMed  CAS  Google Scholar 

  16. Wang J, Hu W, Xie H, et al. Induction therapies for class IV lupus nephritis with non-inflammatory necrotizing vasculopathy: mycophenolate mofetil or intravenous cyclophosphamide. Lupus. 2007;16(9):707–12.

    Article  PubMed  Google Scholar 

  17. Frisch G, Lin J, Rosenstock J, et al. Mycophenolate mofetil (MMF) vs placebo in patients with moderately advanced IgA nephropathy: a double-blind randomized controlled trial. Nephrol Dial Transplant 2005;20(10):2139–45.

    Article  PubMed  CAS  Google Scholar 

  18. Liu XW, Li DM, Xu GS, et al. Comparison of the therapeutic effects of leflunomide and mycophenolate mofetil in the treatment of immunoglobulin A nephropathy manifesting with nephrotic syndrome. Int J Clin Pharmacol Ther. 2010;48(8):509–13.

    PubMed  CAS  Google Scholar 

  19. Maes BD, Oyen R, Claes K, et al. Mycophenolate mofetil in IgA nephropathy: results of a 3-year prospective placebo-controlled randomized study. Kidney Int. 2004;65(5):1842–9.

    Article  PubMed  CAS  Google Scholar 

  20. Tang S, Leung JC, Chan LY, et al. Mycophenolate mofetil alleviates persistent proteinuria in IgA nephropathy. Kidney Int. 2005;68(2):802–12.

    Article  PubMed  CAS  Google Scholar 

  21. Tang SC, Tang AW, Wong SS, et al. Long-term study of mycophenolate mofetil treatment in IgA nephropathy. Kidney Int. 2010;77(6):543–9.

    Article  PubMed  CAS  Google Scholar 

  22. Han F, Liu G, Zhang X, et al. Effects of mycophenolate mofetil combined with corticosteroids for induction therapy of microscopic polyangiitis. Am J Nephrol. 2011;33(2):185–92.

    Article  PubMed  CAS  Google Scholar 

  23. Hu W, Liu C, Xie H, et al. Mycophenolate mofetil versus cyclophosphamide for inducing remission of ANCA vasculitis with moderate renal involvement. Nephrol Dial Transplant 2008;23(4):1307–12.

    Article  PubMed  CAS  Google Scholar 

  24. Hiemstra TF, Walsh M, Mahr A, et al. Mycophenolate mofetil vs azathioprine for remission maintenance in antineutrophil cytoplasmic antibody-associated vasculitis: a randomized controlled trial. JAMA. 2010;304(21):2381–8.

    Article  PubMed  CAS  Google Scholar 

  25. Beissert S, Mimouni D, Kanwar AJ, et al. Treating pemphigus vulgaris with prednisone and mycophenolate mofetil: a multicenter, randomized, placebo-controlled trial. J Invest Dermatol. 2010;130(8):2041–8.

    Article  PubMed  CAS  Google Scholar 

  26. Beissert S, Werfel T, Frieling U, et al. A comparison of oral methylprednisolone plus azathioprine or mycophenolate mofetil for the treatment of pemphigus. Arch Dermatol. 2006;142(11):1447–54.

    Article  PubMed  CAS  Google Scholar 

  27. Chams-Davatchi C, Esmaili N, Daneshpazhooh M, et al. Randomized controlled open-label trial of four treatment regimens for pemphigus vulgaris. J Am Acad Dermatol. 2007;57(4):622–8.

    Article  PubMed  Google Scholar 

  28. Ioannides D, Apalla Z, Lazaridou E, et al. Evaluation of mycophenolate mofetil as a steroid-sparing agent in pemphigus: a randomized, prospective study. J Eur Acad Dermatol Venereol. 2011;26(7):855–60.

    Article  PubMed  CAS  Google Scholar 

  29. Akhyani M, Chams-Davatchi C, Hemami MR, et al. Efficacy and safety of mycophenolate mofetil vs. methotrexate for the treatment of chronic plaque psoriasis. J Eur Acad Dermatol Venereol. 2010;24(12):1447–51.

    Article  PubMed  CAS  Google Scholar 

  30. Beissert S, Pauser S, Sticherling M, et al. A comparison of mycophenolate mofetil with ciclosporine for the treatment of chronic plaque-type psoriasis. Dermatology. 2009;219(2):126–32.

    Article  PubMed  CAS  Google Scholar 

  31. The Muscle Study Group. A trial of mycophenolate mofetil with prednisone as initial immunotherapy in myasthenia gravis. Neurology. 2008;71:394–9.

    Article  CAS  Google Scholar 

  32. Meriggioli MN, Rowin J, Richman JG, et al. Mycophenolate mofetil for myasthenia gravis: a double-blind, placebo-controlled pilot study. Ann N Y Acad Sci. 2003;998:494–9.

    Article  PubMed  CAS  Google Scholar 

  33. Sanders DB, Hart IK, Mantegazza R, et al. An international, phase III, randomized trial of mycophenolate mofetil in myasthenia gravis. Neurology. 2008;71(6):400–6.

    Article  PubMed  CAS  Google Scholar 

  34. Etemadifar M, Kazemi M, Chitsaz A, et al. Mycophenolate mofetil in combination with interferon beta-1a in the treatment of relapsing-remitting multiple sclerosis: a preliminary study. J Res Med Sci. 2011;16(1):1–5.

    PubMed  CAS  Google Scholar 

  35. Frohman EM, Cutter G, Remington G, et al. A randomized, blinded, parallel-group, pilot trial of mycophenolate mofetil (CellCept) compared with interferon beta-1a (Avonex) in patients with relapsing-remitting multiple sclerosis. Ther Adv Neurol Disord. 2010;3(1):15–28.

    Article  PubMed  CAS  Google Scholar 

  36. Remington GM, Treadaway K, Frohman T, et al. A one-year prospective, randomized, placebo-controlled, quadruple-blinded, phase II safety pilot trial of combination therapy with interferon beta-1a and mycophenolate mofetil in early relapsing-remitting multiple sclerosis (TIME MS). Ther Adv Neurol Disord. 2010;3(1):3–13.

    Article  PubMed  CAS  Google Scholar 

  37. Budde K, Durr M, Liefeldt L, et al. Enteric-coated mycophenolate sodium. Expert Opin Drug Saf. 2010;9(6):981–94.

    Article  PubMed  CAS  Google Scholar 

  38. Budde K, Bauer S, Hambach P, et al. Pharmacokinetic and pharmacodynamic comparison of enteric-coated mycophenolate sodium and mycophenolate mofetil in maintenance renal transplant patients. Am J Transplant 2007;7(4):888–98.

    Article  PubMed  CAS  Google Scholar 

  39. Cattaneo D, Cortinovis M, Baldelli S, et al. Pharmacokinetics of mycophenolate sodium and comparison with the mofetil formulation in stable kidney transplant recipients. Clin J Am Soc Nephrol. 2007;2(6):1147–55.

    Article  PubMed  CAS  Google Scholar 

  40. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet. 2007;46(1):13–58.

    Article  PubMed  CAS  Google Scholar 

  41. Picard N, Ratanasavanh D, Premaud A, et al. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acid phase II metabolism. Drug Metab Dispos. 2005;33(1):139–46.

    Article  PubMed  CAS  Google Scholar 

  42. Uwai Y, Motohashi H, Tsuji Y, et al. Interaction and transport characteristics of mycophenolic acid and its glucuronide via human organic anion transporters hOAT1 and hOAT3. Biochem Pharmacol. 2007;74(1):161–8.

    Article  PubMed  CAS  Google Scholar 

  43. Wolff NA, Burckhardt BC, Burckhardt G, et al. Mycophenolic acid (MPA) and its glucuronide metabolites interact with transport systems responsible for excretion of organic anions in the basolateral membrane of the human kidney. Nephrol Dial Transplant 2007;22(9):2497–503.

    Article  PubMed  CAS  Google Scholar 

  44. Barraclough KA, Lee KJ, Staatz CE. Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics. 2010;11(3):369–90.

    Article  PubMed  CAS  Google Scholar 

  45. Miura M, Satoh S, Inoue K, et al. Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007;63(12):1161–9.

    Article  PubMed  CAS  Google Scholar 

  46. Miura M, Kagaya H, Satoh S, et al. Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther Drug Monit. 2008;30(5):559–64.

    Article  PubMed  CAS  Google Scholar 

  47. Picard N, Yee SW, Woillard JB, et al. The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther. 2010;87(1):100–8.

    Article  PubMed  CAS  Google Scholar 

  48. Geng F, Jiao Z, Dao YJ, et al. The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals. Clin Chim Acta. 2012;413(7–8):683–90.

    PubMed  Google Scholar 

  49. Naesens M, Kuypers DR, Verbeke K, et al. Multidrug resistance protein 2 genetic polymorphisms influence mycophenolic acid exposure in renal allograft recipients. Transplantation. 2006;82(8):1074–84.

    Article  PubMed  CAS  Google Scholar 

  50. Lloberas N, Torras J, Cruzado JM, et al. Influence of MRP2 on MPA pharmacokinetics in renal transplant recipients-results of the Pharmacogenomic Substudy within the Symphony Study. Nephrol Dial Transplant 2011;26(11):3784–93.

    Article  PubMed  CAS  Google Scholar 

  51. Shaw LM, Korecka M, Venkataramanan R, et al. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant 2003;3(5):534–42.

    Article  PubMed  CAS  Google Scholar 

  52. Tett SE, Saint-Marcoux F, Staatz CE, et al. Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplant Rev (Orlando). 2011;25(2):47–57.

    Article  Google Scholar 

  53. van Gelder T, Le Meur Y, Shaw LM, et al. Therapeutic drug monitoring of mycophenolate mofetil in transplantation. Ther Drug Monit. 2006;28(2):145–54.

    Article  PubMed  CAS  Google Scholar 

  54. Kuypers DR, Le Meur Y, Cantarovich M, et al. Consensus report on therapeutic drug monitoring of mycophenolic acid in solid organ transplantation. Clin J Am Soc Nephrol. 2010;5(2):341–58.

    Article  PubMed  CAS  Google Scholar 

  55. de Winter BC, Neumann I, van Hest RM, et al. Limited sampling strategies for therapeutic drug monitoring of mycophenolate mofetil therapy in patients with autoimmune disease. Ther Drug Monit. 2009;31(3):382–90.

    Article  PubMed  CAS  Google Scholar 

  56. Sherwin CM, Sagcal-Gironella AC, Fukuda T, et al. Development of population PK model with enterohepatic circulation for mycophenolic acid in patients with childhood-onset systemic lupus erythematosus. Br J Clin Pharmacol. 2011;73(5):727–40.

    Article  CAS  Google Scholar 

  57. Sam WJ, Joy MS. Population pharmacokinetics of mycophenolic acid and metabolites in patients with glomerulonephritis. Ther Drug Monit. 2010;32(5):594–605.

    Article  PubMed  CAS  Google Scholar 

  58. Zahr N, Amoura Z, Debord J, et al. Pharmacokinetic study of mycophenolate mofetil in patients with systemic lupus erythematosus and design of Bayesian estimator using limited sampling strategies. Clin Pharmacokinet. 2008;47(4):277–84.

    Article  PubMed  CAS  Google Scholar 

  59. Neumann I, Haidinger M, Jager H, et al. Pharmacokinetics of mycophenolate mofetil in patients with autoimmune diseases compared renal transplant recipients. J Am Soc Nephrol. 2003;14(3):721–7.

    Article  PubMed  CAS  Google Scholar 

  60. Joy MS, Hilliard T, Hu Y, et al. Influence of clinical and demographic variables on mycophenolic acid pharmacokinetics in antineutrophil cytoplasmic antibody-associated vasculitis. Ann Pharmacother. 2009;43(6):1020–7.

    Article  PubMed  CAS  Google Scholar 

  61. Joy MS, Boyette T, Hu Y, et al. Effects of uridine diphosphate glucuronosyltransferase 2B7 and 1A7 pharmacogenomics and patient clinical parameters on steady-state mycophenolic acid pharmacokinetics in glomerulonephritis. Eur J Clin Pharmacol. 2010;66(11):1119–30.

    Article  PubMed  CAS  Google Scholar 

  62. Mino Y, Naito T, Shimoyama K. Pharmacokinetic variability of mycophenolic acid and its glucuronide in systemic lupus erythematosus patients in remission maintenance phase. Biol Pharm Bull. 2011;34(5):755–9.

    Article  PubMed  CAS  Google Scholar 

  63. Joy MS, Hilliard T, Hu Y, et al. Pharmacokinetics of mycophenolic acid in patients with lupus nephritis. Pharmacotherapy. 2009;29(1):7–16.

    Article  PubMed  CAS  Google Scholar 

  64. Bullingham R, Shah J, Goldblum R, et al. Effects of food and antacid on the pharmacokinetics of single doses of mycophenolate mofetil in rheumatoid arthritis patients. Br J Clin Pharmacol. 1996;41(6):513–6.

    Article  PubMed  CAS  Google Scholar 

  65. Schaier M, Scholl C, Scharpf D, et al. Proton pump inhibitors interfere with the immunosuppressive potency of mycophenolate mofetil. Rheumatology (Oxford). 2010;49(11):2061–7.

    Article  PubMed  CAS  Google Scholar 

  66. Fukuda T, Brunner HI, Sagcal-Gironella AC, et al. Nonsteroidal anti-inflammatory drugs may reduce enterohepatic recirculation of mycophenolic acid in patients with childhood-onset systemic lupus erythematosus. Ther Drug Monit. 2011;33(5):658–62.

    PubMed  CAS  Google Scholar 

  67. Mino Y, Naito T, Matsushita T, et al. Comparison of pharmacokinetics of mycophenolic acid and its glucuronide between patients with lupus nephritis and with kidney transplantation. Ther Drug Monit. 2008;30(6):656–61.

    Article  PubMed  CAS  Google Scholar 

  68. Neumann I, Fuhrmann H, Kanzler M, et al. Pharmacokinetics of enteric-coated mycophenolate sodium: comparative study in patients with autoimmune disease and renal allograft. Expert Opin Pharmacother. 2008;9(6):879–86.

    Article  PubMed  CAS  Google Scholar 

  69. de Winter BCM, Mathot RAA, Sombogaard F, et al. Differences in clearance of mycophenolic acid among renal transplant recipients and patients with autoimmune disease. Ther Drug Monit. 2010;32:606–15.

    Article  PubMed  CAS  Google Scholar 

  70. Djabarouti S, Duffau P, Lazaro E, et al. Therapeutic drug monitoring of mycophenolate mofetil and enteric-coated mycophenolate sodium in patients with systemic lupus erythematosus. Expert Opin Pharmacother. 2010;11(5):689–99.

    Article  PubMed  CAS  Google Scholar 

  71. Lertdumrongluk P, Somparn P, Kittanamongkolchai W, et al. Pharmacokinetics of mycophenolic acid in severe lupus nephritis. Kidney Int. 2010;78(4):389–95.

    Article  PubMed  CAS  Google Scholar 

  72. Filler G, Sharma AP, Levy DM, et al. Random pharmacokinetic profiles of EC-MPS in children with autoimmune disease. Pediatr Rheumatol Online J. 2010;8(1):1.

    Article  PubMed  Google Scholar 

  73. Czock D, Rasche FM, Carius A, et al. Pharmacokinetics and pharmacodynamics of mycophenolic acid after enteric-coated mycophenolate versus mycophenolate mofetil in patients with progressive IgA nephritis. J Clin Pharmacol. 2007;47(7):850–9.

    Article  PubMed  CAS  Google Scholar 

  74. Filler G, Hansen M, LeBlanc C, et al. Pharmacokinetics of mycophenolate mofetil for autoimmune disease in children. Pediatr Nephrol. 2003;18(5):445–9.

    PubMed  Google Scholar 

  75. Sagcal-Gironella AC, Fukuda T, Wiers K, et al. Pharmacokinetics and pharmacodynamics of mycophenolic acid and their relation to response to therapy of childhood-onset systemic lupus erythematosus. Semin Arthritis Rheum. 2011;40(4):307–13.

    Article  PubMed  CAS  Google Scholar 

  76. Djabarouti S, Breilh D, Duffau P, et al. Steady-state mycophenolate mofetil pharmacokinetic parameters enable prediction of systemic lupus erythematosus clinical flares: an observational cohort study. Arthritis Res Ther. 2010;12(6):R217.

    Article  PubMed  CAS  Google Scholar 

  77. Zahr N, Arnaud L, Marquet P, et al. Mycophenolic acid area under the curve correlates with disease activity in lupus patients treated with mycophenolate mofetil. Arthritis Rheum. 2010;62(7):2047–54.

    PubMed  CAS  Google Scholar 

  78. Mino Y, Naito T, Shimoyama K, et al. Effective plasma concentrations of mycophenolic acid and its glucuronide in systemic lupus erythematosus patients in the remission-maintenance phase. J Clin Pharm Ther. 2012;37(2):217–20.

    Article  PubMed  CAS  Google Scholar 

  79. Roland M, Barbet C, Paintaud G, et al. Mycophenolate mofetil in patients with systemic lupus erythematosus: a prospective pharmacokinetic study. Lupus. 2009;18(5):441–7.

    Article  PubMed  CAS  Google Scholar 

  80. Neumann I, Fuhrmann H, Fang IF, et al. Association between mycophenolic acid 12-h trough levels and clinical endpoints in patients with autoimmune disease on mycophenolate mofetil. Nephrol Dial Transplant 2008;23(11):3514–20.

    Article  PubMed  CAS  Google Scholar 

  81. Dauden E, Pedraz J, Alvarez-Ruiz S, et al. Therapeutic drug monitoring of mycophenolic acid in patients with psoriasis. Eur J Dermatol. 2010;20(3):321–2.

    Google Scholar 

  82. Shum B, Duffull SB, Taylor PJ, et al. Population pharmacokinetic analysis of mycophenolic acid in renal transplant recipients following oral administration of mycophenolate mofetil. Br J Clin Pharmacol. 2003;56(2):188–97.

    Article  PubMed  CAS  Google Scholar 

  83. Le Guellec C, Bourgoin H, Buchler M, et al. Population pharmacokinetics and Bayesian estimation of mycophenolic acid concentrations in stable renal transplant patients. Clin Pharmacokinet. 2004;43(4):253–66.

    Article  PubMed  Google Scholar 

  84. Staatz CE, Duffull SB, Kiberd B, et al. Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol. 2005;61(7):507–16.

    Article  PubMed  CAS  Google Scholar 

  85. van Hest RM, van Gelder T, Vulto AG, et al. Population pharmacokinetics of mycophenolic acid in renal transplant recipients. Clin Pharmacokinet. 2005;44(10):1083–96.

    Article  PubMed  Google Scholar 

  86. Payen S, Zhang D, Maisin A, et al. Population pharmacokinetics of mycophenolic acid in kidney transplant pediatric and adolescent patients. Ther Drug Monit. 2005;27(3):378–88.

    Article  PubMed  CAS  Google Scholar 

  87. Cremers S, Schoemaker R, Scholten E, et al. Characterizing the role of enterohepatic recycling in the interactions between mycophenolate mofetil and calcineurin inhibitors in renal transplant patients by pharmacokinetic modelling. Br J Clin Pharmacol. 2005;60(3):249–56.

    Article  PubMed  CAS  Google Scholar 

  88. van Hest RM, van Gelder T, Bouw R, et al. Time-dependent clearance of mycophenolic acid in renal transplant recipients. Br J Clin Pharmacol. 2007;63(6):741–52.

    Article  PubMed  CAS  Google Scholar 

  89. Musuamba FT, Rousseau A, Bosmans JL, et al. Limited sampling models and Bayesian estimation for mycophenolic acid area under the curve prediction in stable renal transplant patients co-medicated with ciclosporin or sirolimus. Clin Pharmacokinet. 2009;48(11):745–58.

    Article  PubMed  CAS  Google Scholar 

  90. Zhao W, Fakhoury M, Deschenes G, et al. Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol. 2010;50(11):1280–91.

    Article  PubMed  CAS  Google Scholar 

  91. Musuamba FT, Mourad M, Haufroid V, et al. A simultaneous d-optimal designed study for population pharmacokinetic analyses of mycophenolic acid and tacrolimus early after renal transplantation. J Clin Pharmacol. 2012;52(12):1833–43.

    Article  PubMed  CAS  Google Scholar 

  92. de Winter BC, van Gelder T, Glander P, et al. Population pharmacokinetics of mycophenolic acid : a comparison between enteric-coated mycophenolate sodium and mycophenolate mofetil in renal transplant recipients. Clin Pharmacokinet. 2008;47(12):827–38.

    Article  PubMed  Google Scholar 

  93. Sam WJ, Akhlaghi F, Rosenbaum SE. Population pharmacokinetics of mycophenolic acid and its 2 glucuronidated metabolites in kidney transplant recipients. J Clin Pharmacol. 2009;49(2):185–95.

    Article  PubMed  CAS  Google Scholar 

  94. van Hest RM, Mathot RA, Pescovitz MD, et al. Explaining variability in mycophenolic acid exposure to optimize mycophenolate mofetil dosing: a population pharmacokinetic meta-analysis of mycophenolic acid in renal transplant recipients. J Am Soc Nephrol. 2006;17(3):871–80.

    Article  PubMed  CAS  Google Scholar 

  95. Naesens M, de Loor H, Vanrenterghem Y, et al. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. Transplantation. 2007;84(3):362–73.

    Article  PubMed  CAS  Google Scholar 

  96. Borrows R, Chusney G, James A, et al. Determinants of mycophenolic acid levels after renal transplantation. Ther Drug Monit. 2005;27(4):442–50.

    Article  PubMed  CAS  Google Scholar 

  97. Gonzalez-Roncero FM, Gentil MA, Brunet M, et al. Pharmacokinetics of mycophenolate mofetil in kidney transplant patients with renal insufficiency. Transplant Proc. 2005;37(9):3749–51.

    Article  PubMed  CAS  Google Scholar 

  98. Naito T, Shinno K, Maeda T, et al. Effects of calcineurin inhibitors on pharmacokinetics of mycophenolic acid and its glucuronide metabolite during the maintenance period following renal transplantation. Biol Pharm Bull. 2006;29(2):275–80.

    Article  PubMed  CAS  Google Scholar 

  99. Cho EK, Han DJ, Kim SC, et al. Pharmacokinetic study of mycophenolic acid in Korean kidney transplant patients. J Clin Pharmacol. 2004;44(7):743–50.

    Article  PubMed  CAS  Google Scholar 

  100. Akhlaghi F, Patel CG, Zuniga XP, et al. Pharmacokinetics of mycophenolic acid and metabolites in diabetic kidney transplant recipients. Ther Drug Monit. 2006;28(1):95–101.

    Article  PubMed  CAS  Google Scholar 

  101. Atcheson BA, Taylor PJ, Kirkpatrick CM, et al. Free mycophenolic acid should be monitored in renal transplant recipients with hypoalbuminemia. Ther Drug Monit. 2004;26(3):284–6.

    Article  PubMed  CAS  Google Scholar 

  102. Pescovitz MD, Guasch A, Gaston R, et al. Equivalent pharmacokinetics of mycophenolate mofetil in African-American and Caucasian male and female stable renal allograft recipients. Am J Transplant 2003;3(12):1581–6.

    Article  PubMed  CAS  Google Scholar 

  103. Zicheng Y, Peijun Z, Da X, et al. Investigation on pharmacokinetics of mycophenolic acid in Chinese adult renal transplant patients. Br J Clin Pharmacol. 2006;62(4):446–52.

    Article  PubMed  CAS  Google Scholar 

  104. Morissette P, Albert C, Busque S, et al. In vivo higher glucuronidation of mycophenolic acid in male than in female recipients of a cadaveric kidney allograft and under immunosuppressive therapy with mycophenolate mofetil. Ther Drug Monit. 2001;23(5):520–5.

    Article  PubMed  CAS  Google Scholar 

  105. Rost D, Kopplow K, Gehrke S, et al. Gender-specific expression of liver organic anion transporters in rat. Eur J Clin Invest. 2005;35(10):635–43.

    Article  PubMed  CAS  Google Scholar 

  106. Suzuki T, Zhao YL, Nadai M, et al. Gender-related differences in expression and function of hepatic P-glycoprotein and multidrug resistance-associated protein (Mrp2) in rats. Life Sci. 2006;79(5):455–61.

    Article  PubMed  CAS  Google Scholar 

  107. Isenberg D, Appel GB, Contreras G, et al. Influence of race/ethnicity on response to lupus nephritis treatment: the ALMS study. Rheumatology (Oxford). 2010;49(1):128–40.

    Article  PubMed  Google Scholar 

  108. Tornatore KM, Sudchada P, Dole K, et al. Mycophenolic acid pharmacokinetics during maintenance immunosuppression in African American and Caucasian renal transplant recipients. J Clin Pharmacol. 2011;51(8):1213–22.

    Article  PubMed  CAS  Google Scholar 

  109. Tornatore KM, Sudchada P, Attwood K, et al. Race and drug formulation influence on mycophenolic acid pharmacokinetics in stable renal transplant recipients. J Clin Pharmacol. 2012 [Epub ahead of print]

  110. Wang Q, Bhardwaj RK, Herrera-Ruiz D, et al. Expression of multiple drug resistance conferring proteins in normal Chinese and Caucasian small and large intestinal tissue samples. Mol Pharm. 2004;1(6):447–54.

    Google Scholar 

  111. Shipkova M, Armstrong VW, Oellerich M, et al. Mycophenolate mofetil in organ transplantation: focus on metabolism, safety and tolerability. Expert Opin Drug Metab Toxicol. 2005;1(3):505–26.

    Article  PubMed  CAS  Google Scholar 

  112. Budde K, Glander P, Diekmann F, et al. Review of the immunosuppressant enteric-coated mycophenolate sodium. Expert Opin Pharmacother. 2004;5(6):1333–45.

    Article  PubMed  CAS  Google Scholar 

  113. Miura M, Satoh S, Inoue K, et al. Influence of lansoprazole and rabeprazole on mycophenolic acid pharmacokinetics one year after renal transplantation. Ther Drug Monit. 2008;30(1):46–51.

    Article  PubMed  CAS  Google Scholar 

  114. Kofler S, Shvets N, Bigdeli AK, et al. Proton pump inhibitors reduce mycophenolate exposure in heart transplant recipients—a prospective case-controlled study. Am J Transplant 2009;9(7):1650–6.

    Article  PubMed  CAS  Google Scholar 

  115. Kofler S, Deutsch MA, Bigdeli AK, et al. Proton pump inhibitor co-medication reduces mycophenolate acid drug exposure in heart transplant recipients. J Heart Lung Transplant 2009;28(6):605–11.

    Article  PubMed  Google Scholar 

  116. Rupprecht K, Schmidt C, Raspe A, et al. Bioavailability of mycophenolate mofetil and enteric-coated mycophenolate sodium is differentially affected by pantoprazole in healthy volunteers. J Clin Pharmacol. 2009;49(10):1196–201.

    Article  PubMed  CAS  Google Scholar 

  117. Doesch AO, Mueller S, Konstandin M, et al. Proton pump inhibitor co-medication reduces active drug exposure in heart transplant recipients receiving mycophenolate mofetil. Transplant Proc. 2010;42(10):4243–6.

    Article  PubMed  CAS  Google Scholar 

  118. Kofler S, Wolf C, Shvets N, et al. The proton pump inhibitor pantoprazole and its interaction with enteric-coated mycophenolate sodium in transplant recipients. J Heart Lung Transplant 2011;30(5):565–71.

    Article  PubMed  Google Scholar 

  119. David-Neto E, Takaki KM, Agena F, et al. Diminished mycophenolic Acid exposure caused by omeprazole may be clinically relevant in the first week posttransplantation. Ther Drug Monit. 2012;34(3):331–6.

    Article  PubMed  CAS  Google Scholar 

  120. Kees MG, Steinke T, Moritz S, et al. Omeprazole impairs the absorption of mycophenolate mofetil but not of enteric-coated mycophenolate sodium in healthy volunteers. J Clin Pharmacol. 2012;52(8):1265–72.

    Article  PubMed  CAS  Google Scholar 

  121. Kato R, Ooi K, Ikura-Mori M, et al. Impairment of mycophenolate mofetil absorption by calcium polycarbophil. J Clin Pharmacol. 2002;42(11):1275–80.

    Article  PubMed  CAS  Google Scholar 

  122. Morii M, Ueno K, Ogawa A, et al. Impairment of mycophenolate mofetil absorption by iron ion. Clin Pharmacol Ther. 2000;68(6):613–6.

    Article  PubMed  CAS  Google Scholar 

  123. Lorenz M, Wolzt M, Weigel G, et al. Ferrous sulfate does not affect mycophenolic acid pharmacokinetics in kidney transplant patients. Am J Kidney Dis. 2004;43(6):1098–103.

    Article  PubMed  CAS  Google Scholar 

  124. Mudge DW, Atcheson B, Taylor PJ, et al. The effect of oral iron admiinistration on mycophenolate mofetil absorption in renal transplant recipients: a randomized, controlled trial. Transplantation. 2004;77(2):206–9.

    Article  PubMed  CAS  Google Scholar 

  125. Gelone DK, Park JM, Lake KD. Lack of an effect of oral iron administration on mycophenolic acid pharmacokinetics in stable renal transplant recipients. Pharmacotherapy. 2007;27(9):1272–8.

    Article  PubMed  CAS  Google Scholar 

  126. Ducray PS, Banken L, Gerber M, et al. Absence of an interaction between iron and mycophenolate mofetil absorption. Br J Clin Pharmacol. 2006;62(4):492–5.

    Article  PubMed  CAS  Google Scholar 

  127. Soars MG, Petullo DM, Eckstein JA, et al. An assessment of udp-glucuronosyltransferase induction using primary human hepatocytes. Drug Metab Dispos. 2004;32(1):140–8.

    Article  PubMed  CAS  Google Scholar 

  128. Kanou M, Usui T, Ueyama H, et al. Stimulation of transcriptional expression of human UDP-glucuronosyltransferase 1A1 by dexamethasone. Mol Biol Rep. 2004;31(3):151–8.

    Article  PubMed  CAS  Google Scholar 

  129. Djebli N, Picard N, Rerolle JP, et al. Influence of the UGT2B7 promoter region and exon 2 polymorphisms and comedications on Acyl-MPAG production in vitro and in adult renal transplant patients. Pharmacogenet Genomics. 2007;17(5):321–30.

    Article  PubMed  CAS  Google Scholar 

  130. Cattaneo D, Perico N, Gaspari F, et al. Glucocorticoids interfere with mycophenolate mofetil bioavailability in kidney transplantation. Kidney Int. 2002;62(3):1060–7.

    Article  PubMed  CAS  Google Scholar 

  131. Kuypers DR, Claes K, Evenepoel P, et al. Long-term changes in mycophenolic acid exposure in combination with tacrolimus and corticosteroids are dose dependent and not reflected by trough plasma concentration: a prospective study in 100 de novo renal allograft recipients. J Clin Pharmacol. 2003;43(8):866–80.

    Article  PubMed  CAS  Google Scholar 

  132. Gregoor PJ, de Sevaux RG, Hene RJ, et al. Effect of cyclosporine on mycophenolic acid trough levels in kidney transplant recipients. Transplantation. 1999;68(10):1603–6.

    Article  PubMed  CAS  Google Scholar 

  133. Lam S, Partovi N, Ting LS, et al. Corticosteroid interactions with cyclosporine, tacrolimus, mycophenolate, and sirolimus: fact or fiction? Ann Pharmacother. 2008;42(7):1037–47.

    Google Scholar 

  134. Levesque E, Delage R, Benoit-Biancamano MO, et al. The impact of UGT1A8, UGT1A9, and UGT2B7 genetic polymorphisms on the pharmacokinetic profile of mycophenolic acid after a single oral dose in healthy volunteers. Clin Pharmacol Ther. 2007;81(3):392–400.

    Article  PubMed  CAS  Google Scholar 

  135. Baldelli S, Merlini S, Perico N, et al. C-440T/T-331C polymorphisms in the UGT1A9 gene affect the pharmacokinetics of mycophenolic acid in kidney transplantation. Pharmacogenomics. 2007;8(9):1127–41.

    Article  PubMed  CAS  Google Scholar 

  136. van Schaik RH, van Agteren M, de Fijter JW, et al. UGT1A9 −275T>A/−2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther. 2009;86(3):319–27.

    Article  PubMed  CAS  Google Scholar 

  137. Kagaya H, Inoue K, Miura M, et al. Influence of UGT1A8 and UGT2B7 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol. 2007;63(3):279–88.

    Article  PubMed  CAS  Google Scholar 

  138. Zhang WX, Chen B, Jin Z, et al. Influence of uridine diphosphate (UDP)-glucuronosyltransferases and ABCC2 genetic polymorphisms on the pharmacokinetics of mycophenolic acid and its metabolites in Chinese renal transplant recipients. Xenobiotica. 2008;38(11):1422–36.

    Article  PubMed  CAS  Google Scholar 

  139. Ting LS, Benoit-Biancamano MO, Bernard O, et al. Pharmacogenetic impact of UDP-glucuronosyltransferase metabolic pathway and multidrug resistance-associated protein 2 transport pathway on mycophenolic acid in thoracic transplant recipients: an exploratory study. Pharmacotherapy. 2010;30(11):1097–108.

    Article  PubMed  CAS  Google Scholar 

  140. Kuypers DR, Naesens M, Vermeire S, et al. The impact of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T on early mycophenolic acid dose-interval exposure in de novo renal allograft recipients. Clin Pharmacol Ther. 2005;78(4):351–61.

    Article  PubMed  CAS  Google Scholar 

  141. Kuypers DR, de Jonge H, Naesens M, et al. Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther. 2008;30(4):673–83.

    Article  PubMed  CAS  Google Scholar 

  142. Sanchez-Fructuoso AI, Maestro ML, Calvo N, et al. The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant Proc. 2009;41(6):2313–6.

    Google Scholar 

  143. Johnson LA, Oetting WS, Basu S, et al. Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur J Clin Pharmacol. 2008;64(11):1047–56.

    Article  PubMed  CAS  Google Scholar 

  144. de Winter BC, Mathot RA, Sombogaard F, et al. Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring. Clin J Am Soc Nephrol. 2011;6(3):656–63.

    Article  PubMed  CAS  Google Scholar 

  145. Budde K, Tedesco-Silva H, Pestana JM, et al. Enteric-coated mycophenolate sodium provides higher mycophenolic acid predose levels compared with mycophenolate mofetil: implications for therapeutic drug monitoring. Ther Drug Monit. 2007;29(3):381–4.

    Article  PubMed  CAS  Google Scholar 

  146. Hummel M, Yonan N, Ross H, et al. Pharmacokinetics and variability of mycophenolic acid from enteric-coated mycophenolate sodium compared with mycophenolate mofetil in de novo heart transplant recipients. Clin Transplant. 2007;21(1):18–23.

    Google Scholar 

  147. Tedesco-Silva H, Felipe CR, Park SI, et al. Randomized crossover study to assess the inter- and intrasubject variability of morning mycophenolic acid concentrations from enteric-coated mycophenolate sodium and mycophenolate mofetil in stable renal transplant recipients. Clin Transplant. 2010;24(4):E116–23.

    Google Scholar 

  148. Ojogho O, Sahney S, Cutler D, et al. Mycophenolate mofetil in pediatric renal transplantation: non-induction vs. induction with basiliximab. Pediatr Transplant 2005;9(1):80–3.

    Article  PubMed  CAS  Google Scholar 

  149. Hocker B, Weber LT, Bunchman T, et al. Mycophenolate mofetil suspension in pediatric renal transplantation: three-year data from the tricontinental trial. Pediatr Transplant 2005;9(4):504–11.

    Article  PubMed  CAS  Google Scholar 

  150. Lobritto SJ, Rosenthal P, Bouw R, et al. Pharmacokinetics of mycophenolate mofetil in stable pediatric liver transplant recipients receiving mycophenolate mofetil and cyclosporine. Liver Transplant 2007;13(11):1570–5.

    Article  Google Scholar 

  151. Ghio L, Ferraresso M, Zacchello G, et al. Longitudinal evaluation of mycophenolic acid pharmacokinetics in pediatric kidney transplant recipients. The role of post-transplant clinical and therapeutic variables. Clin Transplant. 2009;23(2):264–70.

    Google Scholar 

  152. Bhatia M, Militano O, Jin Z, et al. An age-dependent pharmacokinetic study of intravenous and oral mycophenolate mofetil in combination with tacrolimus for GVHD prophylaxis in pediatric allogeneic stem cell transplantation recipients. Biol Blood Marrow Transplant 2010;16(3):333–43.

    Article  PubMed  CAS  Google Scholar 

  153. Filler G, Foster J, Berard R, et al. Age-dependency of mycophenolate mofetil dosing in combination with tacrolimus after pediatric renal transplantation. Transplant Proc. 2004;36(5):1327–31.

    Article  PubMed  CAS  Google Scholar 

  154. Weber LT, Shipkova M, Armstrong VW, et al. The pharmacokinetic-pharmacodynamic relationship for total and free mycophenolic acid in pediatric renal transplant recipients: a report of the German Study Group on mycophenolate mofetil therapy. J Am Soc Nephrol. 2002;13(3):759–68.

    PubMed  Google Scholar 

  155. Ishizaki J, Tsuda T, Suga Y, et al. Change in pharmacokinetics of mycophenolic acid as a function of age in rats and effect of coadministered amoxicillin/clavulanate. Biol Pharm Bull. 2012;35(7):1009–13.

    Article  PubMed  CAS  Google Scholar 

  156. Kearns GL, Abdel-Rahman SM, Alander SW, et al. Developmental pharmacology–drug disposition, action, and therapy in infants and children. N Engl J Med. 2003;349(12):1157–67.

    Article  PubMed  CAS  Google Scholar 

  157. Filler G. Value of therapeutic drug monitoring of MMF therapy in pediatric transplantation. Pediatr Transplant 2006;10(6):707–11.

    Article  PubMed  CAS  Google Scholar 

  158. Le Meur Y, Buchler M, Thierry A, et al. Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 2007;7(11):2496–503.

    Article  PubMed  CAS  Google Scholar 

  159. van Gelder T, Silva HT, de Fijter JW, et al. Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation. 2008;86(8):1043–51.

    Article  PubMed  CAS  Google Scholar 

  160. Gaston RS, Kaplan B, Shah T, et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the opticept trial. Am J Transplant 2009;9(7):1607–19.

    Article  PubMed  CAS  Google Scholar 

  161. Sanchez-Fructuoso AI, de la Higuera MA, Giorgi M, et al. Inadequate mycophenolic acid exposure and acute rejection in kidney transplantation. Transplant Proc. 2009;41(6):2104–5

    Google Scholar 

  162. Lu YP, Zhu YC, Liang MZ, et al. Therapeutic drug monitoring of mycophenolic acid can be used as predictor of clinical events for kidney transplant recipients treated with mycophenolate mofetil. Transplant Proc. 2006;38(7):2048–50.

    Article  PubMed  CAS  Google Scholar 

  163. Pawinski T, Durlik M, Szlaska I, et al. The weight of pharmacokinetic parameters for mycophenolic acid in prediction of rejection outcome: the receiver operating characteristic curve analysis. Transplant Proc. 2006;38(1):86–9.

    Google Scholar 

  164. Pawinski T, Durlik M, Szlaska I, et al. Comparison of mycophenolic acid pharmacokinetic parameters in kidney transplant patients within the first 3 months post-transplant. J Clin Pharm Ther. 2006;31(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  165. Okamoto M, Wakabayashi Y, Higuchi A, et al. Therapeutic drug monitoring of mycophenolic acid in renal transplant recipients. Transplant Proc. 2005;37(2):859–60.

    Article  PubMed  CAS  Google Scholar 

  166. Lu YP, Lin B, Liang MZ, et al. Correlation of mycophenolic acid pharmacokinetic parameters with side effects in Chinese kidney transplant recipients treated with mycophenolate mofetil. Transplant Proc. 2004;36(7):2079–81.

    Article  PubMed  CAS  Google Scholar 

  167. Tredger JM, Brown NW, Adams J, et al. Monitoring mycophenolate in liver transplant recipients: toward a therapeutic range. Liver Transplant 2004;10(4):492–502.

    Article  Google Scholar 

  168. Kiberd BA, Lawen J, Fraser AD, et al. Early adequate mycophenolic acid exposure is associated with less rejection in kidney transplantation. Am J Transplant 2004;4(7):1079–83.

    Article  PubMed  CAS  Google Scholar 

  169. Kuypers DR, Claes K, Evenepoel P. Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin Pharmacol Ther. 2004;75(5):434–47.

    Article  PubMed  CAS  Google Scholar 

  170. Borrows R, Chusney G, Loucaidou M, et al. Mycophenolic acid 12-h trough level monitoring in renal transplantation: association with acute rejection and toxicity. Am J Transplant 2006;6(1):121–8.

    Article  PubMed  CAS  Google Scholar 

  171. Mudge DW, Atcheson BA, Taylor PJ, et al. Severe toxicity associated with a markedly elevated mycophenolic acid free fraction in a renal transplant recipient. Ther Drug Monit. 2004;26(4):453–5.

    Article  PubMed  Google Scholar 

  172. Atcheson BA, Taylor PJ, Mudge DW, et al. Mycophenolic acid pharmacokinetics and related outcomes early after renal transplant. Br J Clin Pharmacol. 2005;59(3):271–80.

    Article  PubMed  CAS  Google Scholar 

  173. Satoh S, Tada H, Murakami M, et al. The influence of mycophenolate mofetil versus azathioprine and mycophenolic acid pharmacokinetics on the incidence of acute rejection and infectious complications after renal transplantation. Transplant Proc. 2005;37(4):1751–3.

    Article  PubMed  CAS  Google Scholar 

  174. Wang J, Yang JW, Zeevi A, et al. IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther. 2008;83(5):711–7.

    Article  PubMed  CAS  Google Scholar 

  175. Gensburger O, Van Schaik RH, Picard N, et al. Polymorphisms in type I and II inosine monophosphate dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil. Pharmacogenet Genomics. 2010;20(9):537–43.

    Article  PubMed  CAS  Google Scholar 

  176. Kagaya H, Miura M, Saito M, et al. Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on day 28 after renal transplantation. Basic Clin Pharmacol Toxicol. 2010;107(2):631–6.

    Article  PubMed  CAS  Google Scholar 

  177. Sombogaard F, van Schaik RH, Mathot RA, et al. Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T>C polymorphism. Pharmacogenet Genomics. 2009;19(8):626–34.

    Article  PubMed  CAS  Google Scholar 

  178. Grinyo J, Vanrenterghem Y, Nashan B, et al. Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transplant Int. 2008;21(9):879–91.

    Article  CAS  Google Scholar 

  179. Martiny D, Macours P, Cotton F, et al. Reliability of mycophenolic acid monitoring by an enzyme multiplied immunoassay technique. Clin Lab. 2010;56(7–8):345–53.

    PubMed  Google Scholar 

  180. Irtan S, Azougagh S, Monchaud C, et al. Comparison of high-performance liquid chromatography and enzyme-multiplied immunoassay technique to monitor mycophenolic acid in paediatric renal recipients. Pediatr Nephrol. 2008;23(10):1859–65.

    Article  PubMed  Google Scholar 

  181. Premaud A, Rousseau A, Le Meur Y, et al. Comparison of liquid chromatography-tandem mass spectrometry with a commercial enzyme-multiplied immunoassay for the determination of plasma MPA in renal transplant recipients and consequences for therapeutic drug monitoring. Ther Drug Monit. 2004;26(6):609–19.

    Article  PubMed  CAS  Google Scholar 

  182. Weber LT, Shipkova M, Armstrong VW, et al. Comparison of the Emit immunoassay with HPLC for therapeutic drug monitoring of mycophenolic acid in pediatric renal-transplant recipients on mycophenolate mofetil therapy. Clin Chem. 2002;48(3):517–25.

    PubMed  CAS  Google Scholar 

  183. Barraclough KA, Isbel NM, Franklin ME, et al. Evaluation of limited sampling strategies for mycophenolic acid after mycophenolate mofetil intake in adult kidney transplant recipients. Ther Drug Monit. 2010;32(6):723–33.

    Article  PubMed  CAS  Google Scholar 

  184. Staatz CE, Tett SE. Maximum a posteriori Bayesian estimation of mycophenolic acid area under the concentration-time curve: is this clinically useful for dosage prediction yet? Clin Pharmacokinet. 2011;50(12):759–72.

    Article  PubMed  CAS  Google Scholar 

  185. Raggi MC, Siebert SB, Steimer W, et al. Customized mycophenolate dosing based on measuring inosine-monophosphate dehydrogenase activity significantly improves patients’ outcomes after renal transplantation. Transplantation. 2010;90(12):1536–41.

    Article  PubMed  CAS  Google Scholar 

  186. Chiarelli LR, Molinaro M, Libetta C, et al. Inosine monophosphate dehydrogenase variability in renal transplant patients on long-term mycophenolate mofetil therapy. Br J Clin Pharmacol. 2010;69(1):38–50.

    Article  PubMed  CAS  Google Scholar 

  187. Glander P, Hambach P, Liefeldt L, et al. Inosine 5′-monophosphate dehydrogenase activity as a biomarker in the field of transplantation. Clin Chim Acta. 2012;413(17–18):1391–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A. Abd Rahman is currently supported by a scholarship granted by the Malaysian Ministry of Higher Education. C. Staatz has been a member of an investigative team that previously received research support from a Cellcept Australia Research Grant. No author has any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Staatz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd Rahman, A.N., Tett, S.E. & Staatz, C.E. Clinical Pharmacokinetics and Pharmacodynamics of Mycophenolate in Patients with Autoimmune Disease. Clin Pharmacokinet 52, 303–331 (2013). https://doi.org/10.1007/s40262-013-0039-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-013-0039-8

Keywords

Navigation