Skip to main content

Advertisement

Log in

Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

This review aims to provide an update of the literature on the pharmacology and toxicology of mycophenolate in solid organ transplant recipients. Mycophenolate is now the antimetabolite of choice in immunosuppressant regimens in transplant recipients. The active drug moiety mycophenolic acid (MPA) is available as an ester pro-drug and an enteric-coated sodium salt. MPA is a competitive, selective and reversible inhibitor of inosine-5′-monophosphate dehydrogenase (IMPDH), an important rate-limiting enzyme in purine synthesis. MPA suppresses T and B lymphocyte proliferation; it also decreases expression of glycoproteins and adhesion molecules responsible for recruiting monocytes and lymphocytes to sites of inflammation and graft rejection; and may destroy activated lymphocytes by induction of a necrotic signal. Improved long-term allograft survival has been demonstrated for MPA and may be due to inhibition of monocyte chemoattractant protein 1 or fibroblast proliferation. Recent research also suggested a differential effect of mycophenolate on the regulatory T cell/helper T cell balance which could potentially encourage immune tolerance. Lower exposure to calcineurin inhibitors (renal sparing) appears to be possible with concomitant use of MPA in renal transplant recipients without undue risk of rejection. MPA displays large between- and within-subject pharmacokinetic variability. At least three studies have now reported that MPA exhibits nonlinear pharmacokinetics, with bioavailability decreasing significantly with increasing doses, perhaps due to saturable absorption processes or saturable enterohepatic recirculation. The role of therapeutic drug monitoring (TDM) is still controversial and the ability of routine MPA TDM to improve long-term graft survival and patient outcomes is largely unknown. MPA monitoring may be more important in high-immunological recipients, those on calcineurin-inhibitor-sparing regimens and in whom unexpected rejection or infections have occurred. The majority of pharmacodynamic data on MPA has been obtained in patients receiving MMF therapy in the first year after kidney transplantation. Low MPA area under the concentration time from 0 to 12 h post-dose (AUC0–12) is associated with increased incidence of biopsy-proven acute rejection although AUC0–12 optimal cut-off values vary across study populations. IMPDH monitoring to identify individuals at increased risk of rejection shows some promise but is still in the experimental stage. A relationship between MPA exposure and adverse events was identified in some but not all studies. Genetic variants within genes involved in MPA metabolism (UGT1A9, UGT1A8, UGT2B7), cellular transportation (SLCOB1, SLCO1B3, ABCC2) and targets (IMPDH) have been reported to effect MPA pharmacokinetics and/or response in some studies; however, larger studies across different ethnic groups that take into account genetic linkage and drug interactions that can alter a patient's phenotype are needed before any clinical recommendations based on patient genotype can be formulated. There is little data on the pharmacology and toxicology of MPA in older and paediatric transplant recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abadja F, Videcoq C, Alamartine E, Berthoux F, Mariat C (2009) Differential effect of cyclosporine and mycophenolic acid on the human regulatory T cells and TH-17 cells balance. Transplant Proc 41(8):3367–3370. doi:10.1016/j.transproceed.2009.08.031

    CAS  PubMed  Google Scholar 

  • Al-Absi AI, Cooke CR, Wall BM, Sylvestre P, Ismail MK, Mya M (2010) Patterns of injury in mycophenolate mofetil-related colitis. Transplant Proc 42(9):3591–3593. doi:10.1016/j.transproceed.2010.08.066

    CAS  PubMed  Google Scholar 

  • Allison AC, Eugui EM (1993) Immunosuppressive and other anti-rheumatic activities of mycophenolate mofetil. Agents Actions Suppl 44:165–188

    CAS  PubMed  Google Scholar 

  • Allison AC, Eugui EM (2005) Mechanisms of action of mycophenolate mofetil in preventing acute and chronic allograft rejection. Transplantation 80(Supplement):S181–S190. doi:10.1097/01.tp.0000186390.10150.66

    CAS  PubMed  Google Scholar 

  • Andrade Vila JH, da Silva JP, Guilhen CJ, Baumgratz JF, da Fonseca L (2008) Even low dose of mycophenolate mofetil in a mother recipient of heart transplant can seriously damage the fetus. Transplantation 86(2):369–370. doi:10.1097/TP.0b013e31817cf28a

    PubMed  Google Scholar 

  • Annapandian VM, Basu G, Mathew BS, Fleming DH, Jacob CK, John GT (2010) Can mycophenolic acid dose requirement during the first transplant help predict dosing for the second transplant? Nephrol Dial Transplant 25(10):3449–3452. doi:10.1093/ndt/gfq436

    PubMed  Google Scholar 

  • Arichi N, Kishikawa H, Mitsui Y et al (2009) Cluster outbreak of Pneumocystis pneumonia among kidney transplant patients within a single center. Transplant Proc 41(1):170–172. doi:10.1016/j.transproceed.2008.10.027

    CAS  PubMed  Google Scholar 

  • Arns W (2007) Noninfectious gastrointestinal (GI) complications of mycophenolic acid therapy: a consequence of local GI toxicity? Transplant Proc 39(1):88–93. doi:10.1016/j.transproceed.2006.10.189

    CAS  PubMed  Google Scholar 

  • Arns W, Sommerer C, Glander P et al (2013) A randomized trial of intensified versus standard dosing for enteric-coated mycophenolate sodium in de novo kidney transplant recipients: results at 1 year. Clin Nephrol 79(6):421–431. doi:10.5414/CN107908

    CAS  PubMed  Google Scholar 

  • Arslan H, Inci EK, Azap OK, Karakayali H, Torgay A, Haberal M (2007) Etiologic agents of diarrhea in solid organ recipients. Transpl Infect Dis 9(4):270–275. doi:10.1111/j.1399-3062.2007.00237.x

    CAS  PubMed  Google Scholar 

  • Asberg A, Jardine AG, Bignamini AA et al (2010) Effects of the intensity of immunosuppressive therapy on outcome of treatment for CMV disease in organ transplant recipients. Am J Transplant 10(8):1881–1888. doi:10.1111/j.1600-6143.2010.03114.x

    CAS  PubMed  Google Scholar 

  • Ashton-Chess J, Giral M, Soulillou JP, Brouard S (2009) Can immune monitoring help to minimize immunosuppression in kidney transplantation? Transpl Int 22(1):110–119. doi:10.1111/j.1432-2277.2008.00748.x

    PubMed  Google Scholar 

  • Atcheson BA, Taylor PJ, Mudge DW et al (2005) Mycophenolic acid pharmacokinetics and related outcomes early after renal transplant. Br J Clin Pharmacol 59(3):271–280. doi:10.1111/j.1365-2125.2004.02235.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baczkowska T, Sadowska A, Perkowska-Ptasinska A et al (2009) Optimal mycophenolic acid and mycophenolic acid glucuronide levels at the early period after kidney transplantation are the key contributors to improving long-term outcomes. Transplant Proc 41(8):3019–3023. doi:10.1016/j.transproceed.2009.08.009

    CAS  PubMed  Google Scholar 

  • Badowski M, Gurk-Turner C, Cangro C et al (2009) The impact of reduced immunosuppression on graft outcomes in elderly renal transplant recipients. Clin Transplant 23(6):930–937. doi:10.1111/j.1399-0012.2009.01028.x

    PubMed  Google Scholar 

  • Baraldo M, Cojutti PG, Isola M et al (2009) Validation of limited sampling strategy for estimation of mycophenolic acid exposure during the first year after heart transplantation. Transplant Proc 41(10):4277–4284. doi:10.1016/j.transproceed.2009.08.077

    CAS  PubMed  Google Scholar 

  • Barau C, Barrail-Tran A, Hemerziu B et al (2011) Optimization of the dosing regimen of mycophenolate mofetil in pediatric liver transplant recipients. Liver Transpl 17(10):1152–1158. doi:10.1002/lt.22364

    PubMed  Google Scholar 

  • Barau C, Furlan V, Debray D, Taburet AM, Barrail-Tran A (2012) Population pharmacokinetics of mycophenolic acid and dose optimization with limited sampling strategy in liver transplant children. Br J Clin Pharmacol 74(3):515–524. doi:10.1111/j.1365-2125.2012.04213.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barraclough KA, Staatz CE, Isbel NM, Johnson DW (2009) Therapeutic monitoring of mycophenolate in transplantation: is it justified? Curr Drug Metab 10(2):179–187

    CAS  PubMed  Google Scholar 

  • Barraclough KA, Isbel NM, Staatz CE (2010a) Evaluation of the mycophenolic acid exposure estimation methods used in the APOMYGERE, FDCC, and Opticept trials. Transplantation 90(1):44–51. doi:10.1097/TP.0b013e3181e06584

    CAS  PubMed  Google Scholar 

  • Barraclough KA, Lee KJ, Staatz CE (2010b) Pharmacogenetic influences on mycophenolate therapy. Pharmacogenomics 11(3):369–390. doi:10.2217/pgs.10.9

    CAS  PubMed  Google Scholar 

  • Barraclough KA, Isbel NM, Johnson DW et al (2012a) A limited sampling strategy for the simultaneous estimation of tacrolimus, mycophenolic acid and unbound prednisolone exposure in adult kidney transplant recipients. Nephrology (Carlton) 17(3):294–299. doi:10.1111/j.1440-1797.2011.01560.x

    CAS  Google Scholar 

  • Barraclough KA, Staatz CE, Johnson DW et al (2012b) Kidney transplant outcomes are related to tacrolimus, mycophenolic acid and prednisolone exposure in the first week. Transpl Int 25(11):1182–1193. doi:10.1111/j.1432-2277.2012.01553.x

    CAS  PubMed  Google Scholar 

  • Barrera-Pulido L, Alamo-Martínez JM, Marín-Gómez LM et al (2009) Switching from mycophenolate mofetil to enteric-coated mycophenolate sodium in liver transplant patients with gastrointestinal complications. Transplant Proc 41(6):2192–2194. doi:10.1016/j.transproceed.2009.06.004

    CAS  PubMed  Google Scholar 

  • Barrera-Pulido L, Espinosa-Aguilar MD, Marín D et al (2010) Influence of mycophenolate mofetil on preservation of kidney function in liver transplant patients. Transplant Proc 42(2):651–655. doi:10.1016/j.transproceed.2010.02.016

    CAS  PubMed  Google Scholar 

  • Beckebaum S, Armstrong VW, Cicinnati VR et al (2009) Pharmacokinetics of mycophenolic acid and its glucuronide metabolites in stable adult liver transplant recipients with renal dysfunction on a low-dose calcineurin inhibitor regimen and mycophenolate mofetil. Ther Drug Monit 31(2):205–210. doi:10.1097/FTD.0b013e31819743d9

    CAS  PubMed  Google Scholar 

  • Becker T, Foltys D, Bilbao I et al (2008) Patient outcomes in two steroid-free regimens using tacrolimus monotherapy after daclizumab induction and tacrolimus with mycophenolate mofetil in liver transplantation. Transplantation 86(12):1689–1694. doi:10.1097/TP.0b013e31818fff64

    CAS  PubMed  Google Scholar 

  • Behling KC, Foster DM, Edmonston TB, Witkiewicz AK (2009) Graft-versus-host disease-like pattern in mycophenolate mofetil related colon mucosal injury: role of fish in establishing the diagnosis. Case Rep Gastroenterol 3(3):418–423. doi:10.1159/000260903

    PubMed Central  PubMed  Google Scholar 

  • Bemelman FJ, de Maar EF, Press RR et al (2009) Minimization of maintenance immunosuppression early after renal transplantation: an interim analysis. Transplantation 88(3):421–428. doi:10.1097/TP.0b013e3181af1df6

    PubMed  Google Scholar 

  • Benichou AS, Blanchet B, Conti F et al (2010) Variability in free mycophenolic acid exposure in adult liver transplant recipients during the early posttransplantation period. J Clin Pharmacol 50(10):1202–1210. doi:10.1177/0091270009358084

    PubMed  Google Scholar 

  • Bererhi L, Pallet N, Zuber J et al (2012) Clinical and immunological features of very long-term survivors with a single renal transplant. Transpl Int 25(5):545–554. doi:10.1111/j.1432-2277.2012.01451.x

    CAS  PubMed  Google Scholar 

  • Betonico GN, Abbud M, Goloni-Bertollo EM, Pavarino-Bertelli E (2008) Pharmacogenetics of mycophenolate mofetil: a promising different approach to tailoring immunosuppression? J Nephrol 21(4):503–509

    CAS  PubMed  Google Scholar 

  • Betônico GN, Abbud-Filho M, Goloni-Bertollo EM et al (2008) Influence of UDP-glucuronosyltransferase polymorphisms on mycophenolate mofetil-induced side effects in kidney transplant patients. Transplant Proc 40(3):708–710. doi:10.1016/j.transproceed.2008.03.007

    PubMed  Google Scholar 

  • Bichari W, Bartiromo M, Mohey H et al (2009) Significant risk factors for occurrence of cancer after renal transplantation: a single center cohort study of 1265 cases. Transplant Proc 41(2):672–673. doi:10.1016/j.transproceed.2008.12.013

    CAS  PubMed  Google Scholar 

  • Bilodeau JF, Montambault P, Wolff JL, Lemire J, Masse M (2009) Evaluation of tolerability and ability to increase immunosuppression in renal transplant patients converted from mycophenolate mofetil to enteric-coated mycophenolate sodium. Transplant Proc 41(9):3683–3689. doi:10.1016/j.transproceed.2009.06.183

    CAS  PubMed  Google Scholar 

  • Bittner HB, Barten MJ, Binner C et al (2010) Preoperative introduction and maintenance immunosuppression therapy of oral-only tacrolimus, mycophenolate mofetil and steroids reduce acute rejection episodes after lung transplantation. Eur J Cardiothorac Surg 38(3):268–276. doi:10.1016/j.ejcts.2010.01.066

    PubMed  Google Scholar 

  • Blydt-Hansen TD, Gibson IW, Birk PE (2010) Histological progression of chronic renal allograft injury comparing sirolimus and mycophenolate mofetil-based protocols. A single-center, prospective, randomized, controlled study. Pediatr Transplant 14(7):909–918. doi:10.1111/j.1399-3046.2010.01374.x

    CAS  PubMed  Google Scholar 

  • Boddana P, Webb LH, Unsworth J, Brealey M, Bingham C, Harper SJ (2011) Hypogammaglobulinemia and bronchiectasis in mycophenolate mofetil-treated renal transplant recipients: an emerging clinical phenomenon? Clin Transplant 25(3):417–419. doi:10.1111/j.1399-0012.2010.01255.x

    CAS  PubMed  Google Scholar 

  • Böhler T, Canivet C, Galvani S et al (2008) Pharmacodynamic monitoring of the conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in stable kidney-allograft recipients. Int Immunopharmacol 8(5):769–773. doi:10.1016/j.intimp.2008.01.023

    PubMed  Google Scholar 

  • Bolin P, Tanriover B, Zibari GB et al (2007) Improvement in 3-month patient-reported gastrointestinal symptoms after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in renal transplant patients. Transplantation 84(11):1443–1451. doi:10.1097/01.tp.0000290678.06523.95

    CAS  PubMed  Google Scholar 

  • Bolin P, Gohh R, Kandaswamy R et al (2011) Mycophenolic acid in kidney transplant patients with diabetes mellitus: does the formulation matter? Transplant Rev (Orlando) 25(3):117–123. doi:10.1016/j.trre.2010.12.003

    Google Scholar 

  • Bouamar R, Hesselink DA, van Schaik RHN et al (2012) Mycophenolic acid-related diarrhea is not associated with polymorphisms in SLCO1B nor with ABCB1 in renal transplant recipients. Pharmacogenet Genom 22(6):399–407. doi:10.1097/FPC.0b013e32834a8650

    CAS  Google Scholar 

  • Bremer S, Mandla R, Vethe NT et al (2008) Expression of IMPDH1 and IMPDH2 after transplantation and initiation of immunosuppression. Transplantation 85(1):55–61. doi:10.1097/01.tp.0000296854.68123.03

    CAS  PubMed  Google Scholar 

  • Brewer JD, Colegio OR, Phillips PK et al (2009) Incidence of and risk factors for skin cancer after heart transplant. Arch Dermatol 145(12):1391–1396. doi:10.1001/archdermatol.2009.276

    PubMed  Google Scholar 

  • Brister K, Yau CL, Slakey D (2009) Enteric coating of mycophenolate reduces dosage adjustments. Transplant Proc 41(5):1657–1659. doi:10.1016/j.transproceed.2009.02.071

    CAS  PubMed  Google Scholar 

  • Bruchet NK, Ensom MH (2009) Limited sampling strategies for mycophenolic acid in solid organ transplantation: a systematic review. Expert Opin Drug Metab Toxicol 5(9):1079–1097. doi:10.1517/17425250903114182

    CAS  PubMed  Google Scholar 

  • Brum S, Nolasco F, Sousa J et al (2008) Leukopenia in kidney transplant patients with the association of valganciclovir and mycophenolate mofetil. Transplant Proc 40(3):752–754. doi:10.1016/j.transproceed.2008.02.048

    CAS  PubMed  Google Scholar 

  • Brunet M, Crespo M, Millán O et al (2007) Pharmacokinetics and pharmacodynamics in renal transplant recipients under treatment with cyclosporine and Myfortic. Transplant Proc 39(7):2160–2162. doi:10.1016/j.transproceed.2007.07.003

    CAS  PubMed  Google Scholar 

  • Budde K, Bauer S, Hambach P et al (2007a) Pharmacokinetic and pharmacodynamic comparison of enteric-coated mycophenolate sodium and mycophenolate mofetil in maintenance renal transplant patients. Am J Transplant 7(4):888–898. doi:10.1111/j.1600-6143.2006.01693.x

    CAS  PubMed  Google Scholar 

  • Budde K, Glander P, Krämer BK et al (2007b) Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes. Transplantation 83(4):417–424. doi:10.1097/01.tp.0000251969.72691.ea

    PubMed  Google Scholar 

  • Budde K, Tedesco-Silva H, Pestana JM et al (2007c) Enteric-coated mycophenolate sodium provides higher mycophenolic acid predose levels compared with mycophenolate mofetil: implications for therapeutic drug monitoring. Ther Drug Monit 29(3):381–384. doi:10.1097/FTD.0b013e318068619d

    CAS  PubMed  Google Scholar 

  • Bunnapradist S, Ambühl PM (2008) Impact of gastrointestinal-related side effects on mycophenolate mofetil dosing and potential therapeutic strategies. Clin Transplant 22(6):815–821. doi:10.1111/j.1399-0012.2008.00892.x

    PubMed  Google Scholar 

  • Bunnapradist S, Neri L, Wong W et al (2008) Incidence and risk factors for diarrhea following kidney transplantation and association with graft loss and mortality. Am J Kidney Dis 51(3):478–486. doi:10.1053/j.ajkd.2007.11.013

    PubMed  Google Scholar 

  • Burg M, Säemann MD, Wieser C, Kramer S, Fischer W, Lhotta K (2009) Enteric-coated mycophenolate sodium reduces gastrointestinal symptoms in renal transplant patients. Transplant Proc 41(10):4159–4164. doi:10.1016/j.transproceed.2009.08.078

    CAS  PubMed  Google Scholar 

  • Byrne R, Yost SE, Kaplan B (2011) Mycophenolate mofetil monitoring: is there evidence that it can improve outcomes? Clin Pharmacol Ther 90(2):204–206. doi:10.1038/clpt.2011.95

    CAS  PubMed  Google Scholar 

  • Campos SV, Strabelli TM, Amato Neto V et al (2008) Risk factors for Chagas’ disease reactivation after heart transplantation. J Heart Lung Transplant 27(6):597–602. doi:10.1016/j.healun.2008.02.017

    PubMed  Google Scholar 

  • Chaigne-Delalande B, Guidicelli G, Couzi L et al (2008) The immunosuppressor mycophenolic acid kills activated lymphocytes by inducing a nonclassical actin-dependent necrotic signal. J Immunol 181(11):7630–7638

    CAS  PubMed  Google Scholar 

  • Chen B, Gu Z, Chen H et al (2010) Establishment of high-performance liquid chromatography and enzyme multiplied immunoassay technology methods for determination of free mycophenolic acid and its application in Chinese liver transplant recipients. Ther Drug Monit 32(5):653–660. doi:10.1097/FTD.0b013e3181f01397

    CAS  PubMed  Google Scholar 

  • Chiarelli LR, Molinaro M, Libetta C et al (2010) Inosine monophosphate dehydrogenase variability in renal transplant patients on long-term mycophenolate mofetil therapy. Br J Clin Pharmacol 69(1):38–50. doi:10.1111/j.1365-2125.2009.03542.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciancio G, Burke GW, Gaynor JJ et al (2008) Randomized trial of mycophenolate mofetil versus enteric-coated mycophenolate sodium in primary renal transplant recipients given tacrolimus and daclizumab/thymoglobulin: one year follow-up. Transplantation 86(1):67–74. doi:10.1097/TP.0b013e3181734b4a

    CAS  PubMed  Google Scholar 

  • Cicinnati VR, Yu Z, Klein CG et al (2007) Clinical trial: switch to combined mycophenolate mofetil and minimal dose calcineurin inhibitor in stable liver transplant patients–assessment of renal and allograft function, cardiovascular risk factors and immune monitoring. Aliment Pharmacol Ther 26(9):1195–1208. doi:10.1111/j.1365-2036.2007.03466.x

    CAS  PubMed  Google Scholar 

  • Cicinnati VR, Hou J, Lindemann M et al (2009) Mycophenolic acid impedes the antigen presenting and lymph node homing capacities of human blood myeloid dendritic cells. Transplantation 88(4):504–513. doi:10.1097/TP.0b013e3181b0e608

    CAS  PubMed  Google Scholar 

  • Cofan F, Rosich E, Arias M, Torregrosa V, Oppenheimer F, Campistol JM (2007) Quality of life in renal transplant recipients following conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium. Transplant Proc 39(7):2179–2181. doi:10.1016/j.transproceed.2007.07.012

    CAS  PubMed  Google Scholar 

  • Cooper M, Deering KL, Slakey DP et al (2009) Comparing outcomes associated with dose manipulations of enteric-coated mycophenolate sodium versus mycophenolate mofetil in renal transplant recipients. Transplantation 88(4):514–520. doi:10.1097/TP.0b013e3181b0e65e

    CAS  PubMed  Google Scholar 

  • Copeland JW, Beaumont BW, Merrilees MJ, Pilmore HL (2007) Epithelial-to-mesenchymal transition of human proximal tubular epithelial cells: effects of rapamycin, mycophenolate, cyclosporin, azathioprine, and methylprednisolone. Transplantation 83(6):809–814. doi:10.1097/01.tp.0000255680.71816.aa

    CAS  PubMed  Google Scholar 

  • Craig JC, Webster AC, McDonald SP (2009) The case of azathioprine versus mycophenolate. Do different drugs really cause different transplant outcomes? Transplantation 87(6):803–804. doi:10.1097/TP.0b013e31819e86cd

    PubMed  Google Scholar 

  • Cransberg K, Cornelissen M, Lilien M, Van Hoeck K, Davin JC, Nauta J (2007) Maintenance immunosuppression with mycophenolate mofetil and corticosteroids in pediatric kidney transplantation: temporary benefit but not without risk. Transplantation 83(8):1041–1047. doi:10.1097/01.tp.0000260146.57898.9c

    CAS  PubMed  Google Scholar 

  • Cravedi P, Perna A, Ruggenenti P, Remuzzi G (2009) Mycophenolate mofetil versus azathioprine in organ transplantation. Am J Transplant 9(12):2856–2857. doi:10.1111/j.1600-6143.2009.02853.x

    CAS  PubMed  Google Scholar 

  • Daher Abdi Z, Essig M, Rizopoulos D et al (2013) Impact of longitudinal exposure to mycophenolic acid on acute rejection in renal-transplant recipients using a joint modeling approach. Pharmacol Res 72:52–60. doi:10.1016/j.phrs.2013.03.009

    CAS  PubMed  Google Scholar 

  • Dalal P, Grafals M, Chhabra D, Gallon L (2009) Mycophenolate mofetil: safety and efficacy in the prophylaxis of acute kidney transplantation rejection. Ther Clin Risk Manag 5(1):139–149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dandel M, Jasaityte R, Lehmkuhl H, Knosalla C, Hetzer R (2009) Maintenance immunosuppression with mycophenolate mofetil: long-term efficacy and safety after heart transplantation. Transplant Proc 41(6):2585–2588. doi:10.1016/j.transproceed.2009.06.031

    CAS  PubMed  Google Scholar 

  • Dantal J, Pohanka E (2007) Malignancies in renal transplantation: an unmet medical need. Nephrol Dial Transplant 22(Suppl 1):i4–i10. doi:10.1093/ndt/gfm085

    PubMed  Google Scholar 

  • Darji P, Vijayaraghavan R, Thiagarajan CM et al (2008) Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in renal transplant recipients with gastrointestinal tract disorders. Transplant Proc 40(7):2262–2267. doi:10.1016/j.transproceed.2008.07.041

    CAS  PubMed  Google Scholar 

  • Davies NM, Grinyó J, Heading R, Maes B, Meier-Kriesche HU, Oellerich M (2007) Gastrointestinal side effects of mycophenolic acid in renal transplant patients: a reappraisal. Nephrol Dial Transplant 22(9):2440–2448. doi:10.1093/ndt/gfm308

    CAS  PubMed  Google Scholar 

  • De Serres SA, Sayegh MH, Najafian N (2009) Immunosuppressive drugs and Tregs: a critical evaluation! Clin J Am Soc Nephrol 4(10):1661–1669. doi:10.2215/CJN.03180509

    PubMed  Google Scholar 

  • de Winter BC, Mathot RA, van Hest RM, van Gelder T (2007) Therapeutic drug monitoring of mycophenolic acid: does it improve patient outcome? Expert Opin Drug Metab Toxicol 3(2):251–261. doi:10.1517/17425255.3.2.251

    PubMed  Google Scholar 

  • de Winter BC, van Gelder T, Sombogaard F, Shaw LM, van Hest RM, Mathot RA (2009) Pharmacokinetic role of protein binding of mycophenolic acid and its glucuronide metabolite in renal transplant recipients. J Pharmacokinet Pharmacodyn. doi:10.1007/s10928-009-9136-6

    PubMed Central  PubMed  Google Scholar 

  • de Winter BC, Mathot RA, Sombogaard F, Vulto AG, van Gelder T (2011) Nonlinear relationship between mycophenolate mofetil dose and mycophenolic acid exposure: implications for therapeutic drug monitoring. Clin J Am Soc Nephrol 6(3):656–663. doi:10.2215/CJN.05440610

    PubMed Central  PubMed  Google Scholar 

  • Demirkiran A, Hendrikx TK, Baan CC, van der Laan LJ (2008) Impact of immunosuppressive drugs on CD4+ CD25+ FOXP3+ regulatory T cells: does in vitro evidence translate to the clinical setting? Transplantation 85(6):783–789. doi:10.1097/TP.0b013e318166910b

    CAS  PubMed  Google Scholar 

  • Demirkiran A, Sewgobind VD, van der Weijde J et al (2009) Conversion from calcineurin inhibitor to mycophenolate mofetil-based immunosuppression changes the frequency and phenotype of CD4+ FOXP3+ regulatory T cells. Transplantation 87(7):1062–1068. doi:10.1097/TP.0b013e31819d2032

    CAS  PubMed  Google Scholar 

  • Devyatko E, Dunkler D, Bohdjalian A et al (2008) Lymphocyte activation and correlation with IMPDH activity under therapy with mycophenolate mofetil. Clin Chim Acta 394(1–2):67–71. doi:10.1016/j.cca.2008.04.006

    CAS  PubMed  Google Scholar 

  • Díaz B, González Vilchez F, Almenar L et al (2007) Gastrointestinal complications in heart transplant patients: MITOS study. Transplant Proc 39(7):2397–2400. doi:10.1016/j.transproceed.2007.07.061

    PubMed  Google Scholar 

  • Doesch AO, Konstandin M, Celik S et al (2008) Epstein-Barr virus load in whole blood is associated with immunosuppression, but not with post-transplant lymphoproliferative disease in stable adult heart transplant patients. Transpl Int 21(10):963–971. doi:10.1111/j.1432-2277.2008.00709.x

    CAS  PubMed  Google Scholar 

  • Doesch AO, Müller S, Konstandin M et al (2010) Malignancies after heart transplantation: incidence, risk factors, and effects of calcineurin inhibitor withdrawal. Transplant Proc 42(9):3694–3699. doi:10.1016/j.transproceed.2010.07.107

    CAS  PubMed  Google Scholar 

  • Domhan S, Muschal S, Schwager C et al (2008) Molecular mechanisms of the antiangiogenic and antitumor effects of mycophenolic acid. Mol Cancer Ther 7(6):1656–1668. doi:10.1158/1535-7163.MCT-08-0193

    CAS  PubMed  Google Scholar 

  • Domhan S, Zeier M, Abdollahi A (2009) Immunosuppressive therapy and post-transplant malignancy. Nephrol Dial Transplant 24(4):1097–1103. doi:10.1093/ndt/gfn605

    PubMed  Google Scholar 

  • Doria C, Ramirez CB, Frank AM, Vaccino S, Fraser N, Marino IR (2009) Use of enteric-coated mycophenolate sodium in liver transplant patients with intestinal intolerance caused by mycophenolate mofetil. Clin Transplant 23(6):882–886. doi:10.1111/j.1399-0012.2009.01019.x

    PubMed  Google Scholar 

  • Dost D, van Leerdam ME, van Dekken H et al (2008) Crohn’s-like enterocolitis associated with mycophenolic acid treatment. Gut 57(9):1330. doi:10.1136/gut.2007.139972

    CAS  PubMed  Google Scholar 

  • Dostalek M, Court MH, Hazarika S, Akhlaghi F (2011) Diabetes mellitus reduces activity of human UDP-glucuronosyltransferase 2B7 in liver and kidney leading to decreased formation of mycophenolic acid acyl-glucuronide metabolite. Drug Metab Dispos 39(3):448–455. doi:10.1124/dmd.110.036608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dostalek M, Gohh RY, Akhlaghi F (2013) Inosine monophosphate dehydrogenase expression and activity are significantly lower in kidney transplant recipients with diabetes mellitus. Ther Drug Monit 35(3):374–383. doi:10.1097/FTD.0b013e3182852697

    CAS  PubMed  Google Scholar 

  • Duncan FJ, Wulff BC, Tober KL et al (2007) Clinically relevant immunosuppressants influence UVB-induced tumor size through effects on inflammation and angiogenesis. Am J Transplant 7(12):2693–2703. doi:10.1111/j.1600-6143.2007.02004.x

    CAS  PubMed  Google Scholar 

  • Dupuis R, Yuen A, Innocenti F (2012) The influence of UGT polymorphisms as biomarkers in solid organ transplantation. Clin Chim Acta 413(17–18):1318–1325. doi:10.1016/j.cca.2012.01.031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egli A, Köhli S, Dickenmann M, Hirsch HH (2009) Inhibition of polyomavirus BK-specific T-Cell responses by immunosuppressive drugs. Transplantation 88(10):1161–1168. doi:10.1097/TP.0b013e3181bca422

    CAS  PubMed  Google Scholar 

  • Elens L, Hesselink DA, van Schaik RHN, van Gelder T (2012) Pharmacogenetics in Kidney Transplantation Recent Updates and Potential Clinical Applications. Mol Diag Ther 16(6):331–345. doi:10.1007/s40291-012-0012-5

    CAS  Google Scholar 

  • Feichtiger H, Wieland E, Armstrong VW, Shipkova M (2010) The acyl glucuronide metabolite of mycophenolic acid induces tubulin polymerization in vitro. Clin Biochem 43(1–2):208–213. doi:10.1016/j.clinbiochem.2009.08.023

    CAS  PubMed  Google Scholar 

  • Fernández A, Villafruela J, Amezquita Y et al (2009) Mycophenolate mofetil absorption quotient: interest to clinical practice. Transplant Proc 41(6):2317–2319. doi:10.1016/j.transproceed.2009.06.108

    PubMed  Google Scholar 

  • Filler G, Buffo I (2007) Safety considerations with mycophenolate sodium. Expert Opin Drug Saf 6(4):445–449. doi:10.1517/14740338.6.4.445

    CAS  PubMed  Google Scholar 

  • Fleming DH, Mathew BS, Prasanna S, Annapandian VM, John GT (2011) A possible simplification for the estimation of area under the curve (AUC) of enteric-coated mycophenolate sodium in renal transplant patients receiving tacrolimus. Ther Drug Monit 33(2):165–170. doi:10.1097/FTD.0b013e31820c16f8

    CAS  PubMed  Google Scholar 

  • Fourtounas C, Dousdampanis P, Sakellaraki P et al (2010) Different immunosuppressive combinations on T-cell regulation in renal transplant recipients. Am J Nephrol 32(1):1–9. doi:10.1159/000313940

    PubMed  Google Scholar 

  • Frimat L, Cassuto-Viguier E, Provôt F et al (2010) Long-Term impact of cyclosporin reduction with mmf treatment in chronic allograft dysfunction: Referenece study 3-year follow up. J Transplant. doi:10.1155/2010/402750

    PubMed Central  PubMed  Google Scholar 

  • Fujiyama N, Miura M, Satoh S et al (2009) Influence of carboxylesterase 2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Xenobiotica 39(5):407–414. doi:10.1080/00498250902807338

    CAS  PubMed  Google Scholar 

  • Fukuda T, Goebel J, Thogersen H et al (2011) Inosine Monophosphate Dehydrogenase (IMPDH) Activity as a Pharmacodynamic Biomarker of Mycophenolic Acid Effects in Pediatric Kidney Transplant Recipients. J Clinic Pharmacol 51(3):309–320. doi:10.1177/0091270010368542

    CAS  Google Scholar 

  • Galiwango PJ, Delgado DH, Yan R et al (2008) Mycophenolate mofetil dose reduction for gastrointestinal intolerance is associated with increased rates of rejection in heart transplant patients. J Heart Lung Transplant 27(1):72–77. doi:10.1016/j.healun.2007.10.012

    PubMed  Google Scholar 

  • Garat A, Cardenas CL, Lionet A et al (2011) Inter-ethnic variability of three functional polymorphisms affecting the IMPDH2 gene. Mol Biol Rep 38(8):5185–5188. doi:10.1007/s11033-010-0668-z

    CAS  PubMed  Google Scholar 

  • Gaston RS, Kaplan B, Shah T et al (2009) Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the opticept trial. Am J Transplant 9(7):1607–1619. doi:10.1111/j.1600-6143.2009.02668.x

    CAS  PubMed  Google Scholar 

  • Geng F, Jiao Z, Dao YJ et al (2012) The association of the UGT1A8, SLCO1B3 and ABCC2/ABCG2 genetic polymorphisms with the pharmacokinetics of mycophenolic acid and its phenolic glucuronide metabolite in Chinese individuals. Clin Chim Acta 413(7–8):683–690. doi:10.1016/j.cca.2011.12.003

    PubMed  Google Scholar 

  • Gensburger O, Picard N, Marquet P (2009) Effect of mycophenolate acyl-glucuronide on human recombinant type 2 inosine monophosphate dehydrogenase. Clin Chem 55(5):986–993. doi:10.1373/clinchem.2008.113936

    CAS  PubMed  Google Scholar 

  • Gensburger O, Van Schaik RH, Picard N et al (2010) Polymorphisms in type I and II inosine monophosphate dehydrogenase genes and association with clinical outcome in patients on mycophenolate mofetil. Pharmacogenet Genomics 20(9):537–543. doi:10.1097/FPC.0b013e32833d8cf5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Germani G, Pleguezuelo M, Villamil F et al (2009) Azathioprine in liver transplantation: a reevaluation of its use and a comparison with mycophenolate mofetil. Am J Transplant 9(8):1725–1731. doi:10.1111/j.1600-6143.2009.02705.x

    CAS  PubMed  Google Scholar 

  • Ghafari A, Noori-Majelan N (2008) Anemia among long-term renal transplant recipients. Transplant Proc 40(1):186–188. doi:10.1016/j.transproceed.2007.12.004

    CAS  PubMed  Google Scholar 

  • Ghio L, Ferraresso M, Zacchello G et al (2009) Longitudinal evaluation of mycophenolic acid pharmacokinetics in pediatric kidney transplant recipients. The role of post-transplant clinical and therapeutic variables. Clin Transplant 23(2):264–270. doi:10.1111/j.1399-0012.2008.00932.x

    PubMed  Google Scholar 

  • Glander P, Sommerer C, Arns W et al (2010) Pharmacokinetics and pharmacodynamics of intensified versus standard dosing of mycophenolate sodium in renal transplant patients. Clin J Am Soc Nephrol 5(3):503–511. doi:10.2215/cjn.06050809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Golshayan D, Pascual M, Vogt B (2009) Mycophenolic acid formulations in adult renal transplantation—update on efficacy and tolerability. Ther Clin Risk Manag 5(4):341–351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gourishankar S, Houde I, Keown PA et al (2010) The clear study: a 5-day, 3-g loading dose of mycophenolate mofetil versus standard 2-g dosing in renal transplantation. Clin J Am Soc Nephrol 5(7):1282–1289. doi:10.2215/CJN.09091209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grenda R, Prokurat S, Ciechanowicz A, Piatosa B, Kaliciński P (2009) Evaluation of the genetic background of standard-immunosuppressant-related toxicity in a cohort of 200 paediatric renal allograft recipients–a retrospective study. Ann Transplant 14(3):18–24

    CAS  PubMed  Google Scholar 

  • Grinyó JM, Cruzado JM (2009) Mycophenolate mofetil and calcineurin-inhibitor reduction: recent progress. Am J Transplant 9(11):2447–2452. doi:10.1111/j.1600-6143.2009.02812.x

    PubMed  Google Scholar 

  • Grinyo J, Vanrenterghem Y, Nashan B et al (2008) Association of four DNA polymorphisms with acute rejection after kidney transplantation. Transpl Int 21(9):879–891. doi:10.1111/j.1432-2277.2008.00679.x

    CAS  PubMed  Google Scholar 

  • Groetzner J, Kaczmarek I, Schirmer J et al (2008) Calcineurin inhibitor withdrawal and conversion to mycophenolate mofetil and steroids in cardiac transplant recipients with chronic renal failure: a word of caution. Clin Transplant 22(5):587–593. doi:10.1111/j.1399-0012.2008.00828.x

    PubMed  Google Scholar 

  • Gu Z, Chen B, Song Y et al (2012) Pharmacokinetics of free mycophenolic acid and limited sampling strategy for the estimation of area under the curve in liver transplant patients. Eur J Pharm Sci 47(4):636–641. doi:10.1016/j.ejps.2012.08.001

    CAS  PubMed  Google Scholar 

  • Guba M, Rentsch M, Wimmer CD et al (2008) Calcineurin-inhibitor avoidance in elderly renal allograft recipients using ATG and basiliximab combined with mycophenolate mofetil. Transpl Int 21(7):637–645. doi:10.1111/j.1432-2277.2008.00658.x

    CAS  PubMed  Google Scholar 

  • Guillet BA, Simon NS, Purgus R et al (2010) Population pharmacokinetics analysis of mycophenolic acid in adult kidney transplant patients with chronic graft dysfunction. Ther Drug Monit 32(4):427–432. doi:10.1097/FTD.0b013e3181e6b54d

    CAS  PubMed  Google Scholar 

  • Hamour IM, Lyster HS, Burke MM, Rose ML, Banner NR (2007) Mycophenolate mofetil may allow cyclosporine and steroid sparing in de novo heart transplant patients. Transplantation 83(5):570–576. doi:10.1097/01.tp.0000253883.52525.7c

    CAS  PubMed  Google Scholar 

  • Hanvesakul R, Kubal C, Jham S et al (2008) Increased incidence of infections following the late introduction of mycophenolate mofetil in renal transplant recipients. Nephrol Dial Transplant 23(12):4049–4053. doi:10.1093/ndt/gfn387

    CAS  PubMed  Google Scholar 

  • Hao C, Anwei M, Bing C et al (2008) Monitoring mycophenolic acid pharmacokinetic parameters in liver transplant recipients: prediction of occurrence of leukopenia. Liver Transpl 14(8):1165–1173. doi:10.1002/lt.21600

    PubMed  Google Scholar 

  • Hauser G, Bubic I, Vlahovic-Palcevski V, Spanjol J, Stimac D (2013) Mycophenolate mofetil induced severe, life threatening lower gastrointestinal bleeding—case report. Nefrologia 33(1):146–147. doi:10.3265/Nefrologia.pre2012.Jun.11512

    PubMed  Google Scholar 

  • Haywood S, Abecassis M, Levitsky J (2011) The renal benefit of mycophenolate mofetil after liver transplantation. Clin Transplant 25(1):E88–E95. doi:10.1111/j.1399-0012.2010.01339.x

    CAS  PubMed  Google Scholar 

  • Heidt S, Roelen DL, Eijsink C, van Kooten C, Claas FH, Mulder A (2008) Effects of immunosuppressive drugs on purified human B cells: evidence supporting the use of MMF and rapamycin. Transplantation 86(9):1292–1300. doi:10.1097/TP.0b013e3181874a36

    CAS  PubMed  Google Scholar 

  • Heller T, van Gelder T, Budde K et al (2007) Plasma concentrations of mycophenolic acid acyl glucuronide are not associated with diarrhea in renal transplant recipients. Am J Transplant 7(7):1822–1831. doi:10.1111/j.1600-6143.2007.01859.x

    CAS  PubMed  Google Scholar 

  • Herlenius G, Felldin M, Nordén G et al (2010) Conversion from calcineurin inhibitor to either mycophenolate mofetil or sirolimus improves renal function in liver transplant recipients with chronic kidney disease: results of a prospective randomized trial. Transplant Proc 42(10):4441–4448. doi:10.1016/j.transproceed.2010.09.113

    CAS  PubMed  Google Scholar 

  • Herrero JI, Benlloch S, Bernardos A et al (2007) Gastrointestinal complications in liver transplant recipients: MITOS study. Transplant Proc 39(7):2311–2313. doi:10.1016/j.transproceed.2007.06.012

    CAS  PubMed  Google Scholar 

  • Holmes MV, Caplin B, Atkinson C et al (2009) Prospective monitoring of Epstein-Barr virus DNA in adult renal transplant recipients during the early posttransplant period: role of mycophenolate mofetil. Transplantation 87(6):852–856. doi:10.1097/TP.0b013e318199f983

    CAS  PubMed  Google Scholar 

  • Iacob S, Cicinnati VR, Hilgard P et al (2007) Predictors of graft and patient survival in hepatitis C virus (HCV) recipients: model to predict HCV cirrhosis after liver transplantation. Transplantation 84(1):56–63. doi:10.1097/01.tp.0000267916.36343.ca

    PubMed  Google Scholar 

  • Irish W, Arcona S, Gifford RJ, Baillie GM, Cooper M (2010) Enteric-coated mycophenolate sodium versus mycophenolate mofetil maintenance immunosuppression: outcomes analysis of the United Network for Organ Sharing/Organ Procurement and Transplantation Network database. Transplantation 90(1):23–30. doi:10.1097/TP.0b013e3181de9193

    CAS  PubMed  Google Scholar 

  • Jacobson PA, Schladt D, Oetting WS et al (2011) Genetic determinants of mycophenolate-related anemia and leukopenia after transplantation. Transplantation 91(3):309–316. doi:10.1097/TP.0b013e318200e971

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jakes AD, Roy A, Veerasamy M, Bhandari S (2013) Case report: crohn’s-like mycophenolate-induced colitis, a fallout in steroid-free regimens. Transplant Proc 45(2):842–844. doi:10.1016/j.transproceed.2012.11.003

    CAS  PubMed  Google Scholar 

  • Jensen CJ, Shrivastava S, Taber DJ et al (2011) A critical analysis of racial difference with mycophenolate mofetil (MMF) dosing, clinical outcomes and adverse effects in pediatric kidney transplant patients. Clin Transplant 25(4):534–540. doi:10.1111/j.1399-0012.2010.01304.x

    CAS  PubMed  Google Scholar 

  • Johnson LA, Oetting WS, Basu S, Prausa S, Matas A, Jacobson PA (2008) Pharmacogenetic effect of the UGT polymorphisms on mycophenolate is modified by calcineurin inhibitors. Eur J Clin Pharmacol 64(11):1047–1056. doi:10.1007/s00228-008-0501-y

    CAS  PubMed  Google Scholar 

  • Kaczmarek I, Bigdeli AK, Vogeser M et al (2008) Defining algorithms for efficient therapeutic drug monitoring of mycophenolate mofetil in heart transplant recipients. Ther Drug Monit 30(4):419–427. doi:10.1097/FTD.0b013e31817d7064

    CAS  PubMed  Google Scholar 

  • Kagaya H, Miura M, Satoh S et al (2008) No pharmacokinetic interactions between mycophenolic acid and tacrolimus in renal transplant recipients. J Clin Pharm Ther 33(2):193–201. doi:10.1111/j.1365-2710.2008.00906.x

    CAS  PubMed  Google Scholar 

  • Kagaya H, Miura M, Saito M, Habuchi T, Satoh S (2010) Correlation of IMPDH1 gene polymorphisms with subclinical acute rejection and mycophenolic acid exposure parameters on Day 28 after renal transplantation. Basic Clin Pharmacol Toxicol 107(2):631–636. doi:10.1111/j.1742-7843.2010.00542.x

    CAS  PubMed  Google Scholar 

  • Kamar N, Rostaing L (2008) Negative impact of one-year anemia on long-term patient and graft survival in kidney transplant patients receiving calcineurin inhibitors and mycophenolate mofetil. Transplantation 85(8):1120–1124. doi:10.1097/TP.0b013e31816a8a1f

    CAS  PubMed  Google Scholar 

  • Kamar N, Glander P, Nolting J et al (2009a) Pharmacodynamic evaluation of the first dose of mycophenolate mofetil before kidney transplantation. Clin J Am Soc Nephrol 4(5):936–942. doi:10.2215/CJN.04860908

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamar N, Marquet P, Gandia P et al (2009b) Mycophenolic acid 12-hour area under the curve in de novo liver transplant patients given mycophenolate mofetil at fixed versus concentration-controlled doses. Ther Drug Monit 31(4):451–456. doi:10.1097/FTD.0b013e3181aa776e

    CAS  PubMed  Google Scholar 

  • Kaplan B, Gaston RS, Meier-Kriesche HU, Bloom RD, Shaw LM (2010) Mycophenolic acid exposure in high- and low-weight renal transplant patients after dosing with mycophenolate mofetil in the Opticept trial. Ther Drug Monit 32(2):224–227. doi:10.1097/FTD.0b013e3181d18baa

    CAS  PubMed  Google Scholar 

  • Keshtkar-Jahromi M, Argani H, Rahnavardi M et al (2008) Antibody response to influenza immunization in kidney transplant recipients receiving either azathioprine or mycophenolate: a controlled trial. Am J Nephrol 28(4):654–660. doi:10.1159/000119742

    CAS  PubMed  Google Scholar 

  • Khalkhali HR, Ghafari A, Hajizadeh E, Kazemnejad A (2010) Risk factors of long-term graft loss in renal transplant recipients with chronic allograft dysfunction. Exp Clin Transplant 8(4):277–282

    PubMed  Google Scholar 

  • Kiberd BA, Wrobel M, Dandavino R, Keown P, Gourishankar S (2011) The role of proton pump inhibitors on early mycophenolic acid exposure in kidney transplantation: evidence from the CLEAR study. Ther Drug Monit 33(1):120–123. doi:10.1097/FTD.0b013e318206a1b1

    CAS  PubMed  Google Scholar 

  • Knight SR, Morris PJ (2008) Does the evidence support the use of mycophenolate mofetil therapeutic drug monitoring in clinical practice? A systematic review. Transplantation 85(12):1675–1685. doi:10.1097/TP.0b013e3181744199

    CAS  PubMed  Google Scholar 

  • Knight SR, Russell NK, Barcena L, Morris PJ (2009) Mycophenolate mofetil decreases acute rejection and may improve graft survival in renal transplant recipients when compared with azathioprine: a systematic review. Transplantation 87(6):785–794. doi:10.1097/TP.0b013e3181952623

    CAS  PubMed  Google Scholar 

  • Kofler S, Deutsch MA, Bigdeli AK et al (2009a) Proton pump inhibitor co-medication reduces mycophenolate acid drug exposure in heart transplant recipients. J Heart Lung Transplant 28(6):605–611. doi:10.1016/j.healun.2009.03.006

    PubMed  Google Scholar 

  • Kofler S, Shvets N, Bigdeli AK et al (2009b) Proton pump inhibitors reduce mycophenolate exposure in heart transplant recipients-a prospective case-controlled study. Am J Transplant 9(7):1650–1656. doi:10.1111/j.1600-6143.2009.02682.x

    CAS  PubMed  Google Scholar 

  • Kornberg A, Küpper B, Wilberg J et al (2007) Conversion to mycophenolate mofetil for modulating recurrent hepatitis C in liver transplant recipients. Transpl Infect Dis 9(4):295–301. doi:10.1111/j.1399-3062.2007.00228.x

    CAS  PubMed  Google Scholar 

  • Kornberg A, Küpper B, Thrum K et al (2011) Sustained renal response to mycophenolate mofetil and CNI taper promotes survival in liver transplant patients with CNI-related renal dysfunction. Dig Dis Sci 56(1):244–251. doi:10.1007/s10620-010-1386-z

    CAS  PubMed  Google Scholar 

  • Kurata Y, Kato M, Kuzuya T et al (2009) Pretransplant pharmacodynamic analysis of immunosuppressive agents using CFSE-based T-cell proliferation assay. Clin Pharmacol Ther 86(3):285–289. doi:10.1038/clpt.2009.61

    CAS  PubMed  Google Scholar 

  • Kuypers DR, de Jonge H, Naesens M et al (2008) Current target ranges of mycophenolic acid exposure and drug-related adverse events: a 5-year, open-label, prospective, clinical follow-up study in renal allograft recipients. Clin Ther 30(4):673–683

    CAS  PubMed  Google Scholar 

  • Kuypers DR, Ekberg H, Grinyo J et al (2009) Mycophenolic acid exposure after administration of mycophenolate mofetil in the presence and absence of cyclosporin in renal transplant recipients. Clin Pharmacokinet 48(5):329–341. doi:10.2165/00003088-200948050-00005

    CAS  PubMed  Google Scholar 

  • Kuypers DR, Bammens B, Claes K, Evenepoel P, Vanrenterghem Y (2010) Maintenance immunosuppressive agents as risk factors for BK virus nephropathy: the need for true drug exposure measurements. Transplantation 89(10):1296–1297; author reply 1297–1298 doi:10.1097/TP.0b013e3181d84c66

  • Langone A, Doria C, Greenstein S et al (2013) Does reduction in mycophenolic acid dose compromise efficacy regardless of tacrolimus exposure level? An analysis of prospective data from the Mycophenolic Renal Transplant (MORE) Registry. Clin Transplant 27(1):15–24. doi:10.1111/j.1399-0012.2012.01694.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Le Meur Y, Buchler M, Thierry A et al (2007) Individualized mycophenolate mofetil dosing based on drug exposure significantly improves patient outcomes after renal transplantation. Am J Transplant 7(11):2496–2503. doi:10.1111/j.1600-6143.2007.01983.x

    PubMed  Google Scholar 

  • Le Meur Y, Thierry A, Glowacki F et al (2011) Early steroid withdrawal and optimization of mycophenolic acid exposure in kidney transplant recipients receiving mycophenolate mofetil. Transplantation 92(11):1244–1251. doi:10.1097/TP.0b013e318234e134

    PubMed  Google Scholar 

  • Lee S, Shin M, Kim E et al (2010a) Mycophenolic acid trough level measurements and clinical outcomes in kidney transplantation recipients on a fixed dose (1.5 g/d) of mycophenolate mofetil in Korea. Transplant Proc 42(3):793–796. doi:10.1016/j.transproceed.2010.02.061

    CAS  PubMed  Google Scholar 

  • Lee YH, Woo JH, Choi SJ, Ji JD, Song GG (2010b) Induction and maintenance therapy for lupus nephritis: a systematic review and meta-analysis. Lupus 19(6):703–710. doi:10.1177/0961203309357763

    CAS  PubMed  Google Scholar 

  • Lee S, de Boer WB, Subramaniam K, Kumarasinghe MP (2013) Pointers and pitfalls of mycophenolate-associated colitis. J Clin Pathol 66(1):8–11. doi:10.1136/jclinpath-2012-200888

    PubMed  Google Scholar 

  • Lim DG, Joe IY, Park YH et al (2007) Effect of immunosuppressants on the expansion and function of naturally occurring regulatory T cells. Transpl Immunol 18(2):94–100. doi:10.1016/j.trim.2007.05.005

    CAS  PubMed  Google Scholar 

  • Luan FL, Schaubel DE, Zhang H et al (2008) Impact of immunosuppressive regimen on survival of kidney transplant recipients with hepatitis C. Transplantation 85(11):1601–1606. doi:10.1097/TP.0b013e3181722f3a

    CAS  PubMed  Google Scholar 

  • Machnicki G, Ricci JF, Brennan DC, Schnitzler MA (2008) Economic impact and long-term graft outcomes of mycophenolate mofetil dosage modifications following gastrointestinal complications in renal transplant recipients. Pharmacoecon 26(11):951–967

    Google Scholar 

  • Mak A, Cheak AA, Tan JY, Su HC, Ho RC, Lau CS (2009) Mycophenolate mofetil is as efficacious as, but safer than, cyclophosphamide in the treatment of proliferative lupus nephritis: a meta-analysis and meta-regression. Rheumatol 48(8):944–952. doi:10.1093/rheumatology/kep120

    CAS  Google Scholar 

  • Manitpisitkul W, Drachenberg C, Ramos E et al (2009) Maintenance immunosuppressive agents as risk factors for BK virus nephropathy: a case-control study. Transplantation 88(1):83–88. doi:10.1097/TP.0b013e3181aa8d93

    PubMed  Google Scholar 

  • Manitpisitkul W, Wilson NS, Haririan A (2010) Immunosuppressive agents as risk factors for BK virus nephropathy: an overview and update. Expert Opin Drug Saf 9(6):959–969. doi:10.1517/14740338.2010.495714

    CAS  PubMed  Google Scholar 

  • Maripuri S, Kasiske BL (2014) The role of mycophenolate mofetil in kidney transplantation revisited. Transplant Rev (Orlando) 28(1):26–31. doi:10.1016/j.trre.2013.10.005

    Google Scholar 

  • Michelon H, Konig J, Durrbach A et al (2010) SLCO1B1 genetic polymorphism influences mycophenolic acid tolerance in renal transplant recipients. Pharmacogenom 11(12):1703–1713. doi:10.2217/pgs.10.132

    CAS  Google Scholar 

  • Millán O, Rafael-Valdivia L, Torrademé E et al (2013) Intracellular IFN-γ and IL-2 expression monitoring as surrogate markers of the risk of acute rejection and personal drug response in de novo liver transplant recipients. Cytokine 61(2):556–564. doi:10.1016/j.cyto.2012.10.026

    PubMed  Google Scholar 

  • Minmin S, Zhidong G, Hao C et al (2010) Correlation between pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients. J Clin Pharmacol 50(12):1388–1396. doi:10.1177/0091270009359526

    PubMed  Google Scholar 

  • Mino Y, Naito T, Otsuka A et al (2009) Cyclosporine concentration-dependent increase in concentration ratio of mycophenolic acid acyl and phenol glucuronides to mycophenolic acid in stable kidney transplant recipients. Clin Biochem 42(7–8):595–601. doi:10.1016/j.clinbiochem.2008.11.013

    CAS  PubMed  Google Scholar 

  • Mino Y, Naito T, Otsuka A et al (2011) Cyclosporine alters correlation between free and total mycophenolic acid in kidney transplant recipients in the initial phase. J Clin Pharm Ther 36(2):217–224. doi:10.1111/j.1365-2710.2010.01168.x

    CAS  PubMed  Google Scholar 

  • Miura M, Satoh S, Inoue K et al (2007) Influence of SLCO1B1, 1B3, 2B1 and ABCC2 genetic polymorphisms on mycophenolic acid pharmacokinetics in Japanese renal transplant recipients. Eur J Clin Pharmacol 63(12):1161–1169. doi:10.1007/s00228-007-0380-7

    CAS  PubMed  Google Scholar 

  • Miura M, Kagaya H, Satoh S et al (2008) Influence of drug transporters and UGT polymorphisms on pharmacokinetics of phenolic glucuronide metabolite of mycophenolic acid in Japanese renal transplant recipients. Ther Drug Monit 30(5):559–564. doi:10.1097/FTD.0b013e3181838063

    CAS  PubMed  Google Scholar 

  • Molina BD, Leiro MG, Pulpón LA et al (2010) Incidence and risk factors for nonmelanoma skin cancer after heart transplantation. Transplant Proc 42(8):3001–3005. doi:10.1016/j.transproceed.2010.08.003

    CAS  PubMed  Google Scholar 

  • Molinaro M, Chiarelli LR, Biancone L et al (2013) Monitoring of inosine monophosphate dehydrogenase activity and expression during the early period of mycophenolate mofetil therapy in de novo renal transplant patients. Drug Metab Pharmacokinet 28(2):109–117

    CAS  PubMed  Google Scholar 

  • Moore J, Middleton L, Cockwell P et al (2009) Calcineurin inhibitor sparing with mycophenolate in kidney transplantation: a systematic review and meta-analysis. Transplantation 87(4):591–605. doi:10.1097/TP.0b013e318195a421

    CAS  PubMed  Google Scholar 

  • Morath C, Reuter H, Simon V et al (2008) Effects of mycophenolic acid on human fibroblast proliferation, migration and adhesion in vitro and in vivo. Am J Transplant 8(9):1786–1797. doi:10.1111/j.1600-6143.2008.02322.x

    CAS  PubMed  Google Scholar 

  • Mourer JS, Ewe SH, Mallat MJ et al (2012a) Late calcineurin inhibitor withdrawal prevents progressive left ventricular diastolic dysfunction in renal transplant recipients. Transplantation 94(7):721–728. doi:10.1097/TP.0b013e3182603297

    CAS  PubMed  Google Scholar 

  • Mourer JS, Hartigh J, van Zwet EW, Mallat MJ, Dubbeld J, de Fijter JW (2012b) Randomized trial comparing late concentration-controlled calcineurin inhibitor or mycophenolate mofetil withdrawal. Transplantation 93(9):887–894. doi:10.1097/TP.0b013e31824ad60a

    CAS  PubMed  Google Scholar 

  • Mudge DW, Atcheson BA, Taylor PJ, Pillans PI, Johnson DW (2004) Severe toxicity associated with a markedly elevated mycophenolic acid free fraction in a renal transplant recipient. Ther Drug Monitor 26(4):453–455

    Google Scholar 

  • Musuamba FT, Mourad M, Haufroid V et al (2012) A simultaneous d-optimal designed study for population pharmacokinetic analyses of mycophenolic Acid and tacrolimus early after renal transplantation. J Clin Pharmacol 52(12):1833–1843. doi:10.1177/0091270011423661

    CAS  PubMed  Google Scholar 

  • Musuamba FT, Mourad M, Haufroid V et al (2013) Statistical tools for dose individualization of mycophenolic acid and tacrolimus co-administered during the first month after renal transplantation. Br J Clin Pharmacol 75(5):1277–1288. doi:10.1111/bcp.12007

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naesens M, de Loor H, Vanrenterghem Y, Kuypers DR (2007a) The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. Transplantation 84(3):362–373. doi:10.1097/01.tp.0000276936.14041.6c

    CAS  PubMed  Google Scholar 

  • Naesens M, Verbeke K, Vanrenterghem Y, Kuypers D (2007b) Effects of gastric emptying on oral mycophenolic acid pharmacokinetics in stable renal allograft recipients. Br J Clin Pharmacol 63(5):541–547. doi:10.1111/j.1365-2125.2006.02813.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naito T, Mino Y, Otsuka A et al (2009) Impact of calcineurin inhibitors on urinary excretion of mycophenolic acid and its glucuronide in kidney transplant recipients. J Clin Pharmacol 49(6):710–718. doi:10.1177/0091270009335003

    CAS  PubMed  Google Scholar 

  • Nankivell BJ, Wavamunno MD, Borrows RJ et al (2007) Mycophenolate mofetil is associated with altered expression of chronic renal transplant histology. Am J Transplant 7(2):366–376

    CAS  PubMed  Google Scholar 

  • Nashan B, Saliba F, Durand F et al (2009) Pharmacokinetics, efficacy, and safety of mycophenolate mofetil in combination with standard-dose or reduced-dose tacrolimus in liver transplant recipients. Liver Transpl 15(2):136–147. doi:10.1002/lt.21657

    PubMed  Google Scholar 

  • Neff RT, Hurst FP, Falta EM et al (2008) Progressive multifocal leukoencephalopathy and use of mycophenolate mofetil after kidney transplantation. Transplantation 86(10):1474–1478. doi:10.1097/TP.0b013e31818b62c8

    PubMed  Google Scholar 

  • Ohmann EL, Burckart GJ, Brooks MM et al (2010) Genetic polymorphisms influence mycophenolate mofetil-related adverse events in pediatric heart transplant patients. J Heart Lung Transplant 29(5):509–516. doi:10.1016/j.healun.2009.11.602

    PubMed  Google Scholar 

  • Opelz G, Döhler B, Study CT (2009) Influence of immunosuppressive regimens on graft survival and secondary outcomes after kidney transplantation. Transplantation 87(6):795–802. doi:10.1097/TP.0b013e318199c1c7

    CAS  PubMed  Google Scholar 

  • Oremus M, Zeidler J, Ensom MH et al (2008) Utility of monitoring mycophenolic acid in solid organ transplant patients. Evid Rep Technol Assess (Full Rep) 164:1–131

    Google Scholar 

  • Orlando G, Baiocchi L, Cardillo A et al (2007) Switch to 1.5 grams MMF monotherapy for CNI-related toxicity in liver transplantation is safe and improves renal function, dyslipidemia, and hypertension. Liver Transpl 13(1):46–54. doi:10.1002/lt.20926

    PubMed  Google Scholar 

  • Pape L, Ahlenstiel T (2009) Is EC-MPS effective in reducing GI toxicity of MPA? At what price? Pediatr Transplant 13(6):659–660. doi:10.1111/j.1399-3046.2009.01207.x

    PubMed  Google Scholar 

  • Pape L, Ahlenstiel T, Kreuzer M, Ehrich JH (2008) Improved gastrointestinal symptom burden after conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in kidney transplanted children. Pediatr Transplant 12(6):640–642

    CAS  PubMed  Google Scholar 

  • Parant F, Rivet C, Boulieu R et al (2009) Age-related variability of mycophenolate mofetil exposure in stable pediatric liver transplant recipients and influences of donor characteristics. Ther Drug Monit 31(6):727–733. doi:10.1097/FTD.0b013e3181c01d07

    CAS  PubMed  Google Scholar 

  • Parfitt JR, Jayakumar S, Driman DK (2008) Mycophenolate mofetil-related gastrointestinal mucosal injury: variable injury patterns, including graft-versus-host disease-like changes. Am J Surg Pathol 32(9):1367–1372

    PubMed  Google Scholar 

  • Patel CG, Ogasawara K, Akhlaghi F (2013) Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus. Xenobiotica 43(3):229–235. doi:10.3109/00498254.2012.713531

    CAS  PubMed  Google Scholar 

  • Picard N (2013) The pharmacokinetic interaction between mycophenolic acid and cyclosporine revisited: a commentary on “Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus”. Xenobiotica 43(9):836–838. doi:10.3109/00498254.2012.761742

    CAS  PubMed  Google Scholar 

  • Picard N, Marquet P (2011) The influence of pharmacogenetics and cofactors on clinical outcomes in kidney transplantation. Expert Opin Drug Metab Toxicol 7(6):731–743. doi:10.1517/17425255.2011.570260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Picard N, Yee SW, Woillard JB et al (2010) The role of organic anion-transporting polypeptides and their common genetic variants in mycophenolic acid pharmacokinetics. Clin Pharmacol Ther 87(1):100–108. doi:10.1038/clpt.2009.205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prausa SE, Fukuda T, Maseck D et al (2009) UGT genotype may contribute to adverse events following medication with mycophenolate mofetil in pediatric kidney transplant recipients. Clin Pharmacol Ther 85(5):495–500. doi:10.1038/clpt.2009.3

    CAS  PubMed  Google Scholar 

  • Premaud A, Rousseau A, Le Meur Y et al (2010) Feasibility of, and critical paths for mycophenolate mofetil Bayesian dose adjustment: pharmacological re-appraisal of a concentration-controlled versus fixed-dose trial in renal transplant recipients. Pharmacol Res 61(2):167–174. doi:10.1016/j.phrs.2009.09.006

    CAS  PubMed  Google Scholar 

  • Prémaud A, Rousseau A, Johnson G et al (2011) Inhibition of T-cell activation and proliferation by mycophenolic acid in patients awaiting liver transplantation: PK/PD relationships. Pharmacol Res 63(5):432–438. doi:10.1016/j.phrs.2011.01.005

    PubMed  Google Scholar 

  • Rath T, Küpper M (2009) Comparison of inosine-monophosphate-dehydrogenase activity in patients with enteric-coated mycophenolate sodium or mycophenolate mofetil after renal transplantation. Transplant Proc 41(6):2524–2528. doi:10.1016/j.transproceed.2009.06.124

    CAS  PubMed  Google Scholar 

  • Reine PA, Vethe NT, Kongsgaard UE et al (2013) Mycophenolate pharmacokinetics and inosine monophosphate dehydrogenase activity in liver transplant recipients with an emphasis on therapeutic drug monitoring. Scand J Clin Lab Invest 73(2):117–124. doi:10.3109/00365513.2012.745947

    CAS  PubMed  Google Scholar 

  • Remuzzi G, Cravedi P, Costantini M et al (2007) Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J Am Soc Nephrol 18(6):1973–1985. doi:10.1681/ASN.2006101153

    CAS  PubMed  Google Scholar 

  • Rerolle JP, Szelag JC, Le Meur Y (2007) Unexpected rate of severe leucopenia with the association of mycophenolate mofetil and valganciclovir in kidney transplant recipients. Nephrol Dial Transplant 22(2):671–672. doi:10.1093/ndt/gfl539

    CAS  PubMed  Google Scholar 

  • Reyes H, Hernandez AM, Valverde S et al (2010) Efficacy and safety of conversion of mycophenolate mofetil to enteric-coated mycophenolate sodium in Mexican renal transplant children. Pediatr Transplant 14(6):746–752. doi:10.1111/j.1399-3046.2010.01326.x

    CAS  PubMed  Google Scholar 

  • Sabbatini M, Capone D, Gallo R et al (2009) EC-MPS permits lower gastrointestinal symptom burden despite higher MPA exposure in patients with severe MMF-related gastrointestinal side-effects. Fundam Clin Pharmacol 23(5):617–624. doi:10.1111/j.1472-8206.2009.00711.x

    CAS  PubMed  Google Scholar 

  • Saint-Marcoux F, Vandierdonck S, Premaud A, Debord J, Rousseau A, Marquet P (2011) Large scale analysis of routine dose adjustments of mycophenolate mofetil based on global exposure in renal transplant patients. Ther Drug Monit 33(3):285–294

    PubMed Central  PubMed  Google Scholar 

  • Salifu MO, Jindal RM (2009) Mycophenolate mofetil dosage modifications following gastrointestinal complications in renal transplant patients. Expert Rev Pharmacoecon Outcomes Res 9(1):29–32. doi:10.1586/14737167.9.1.29

    PubMed  Google Scholar 

  • Sánchez-Fructuoso AI, de la Higuera MA, Giorgi M et al (2009a) Inadequate mycophenolic acid exposure and acute rejection in kidney transplantation. Transplant Proc 41(6):2104–2105. doi:10.1016/j.transproceed.2009.05.015

    PubMed  Google Scholar 

  • Sánchez-Fructuoso AI, Maestro ML, Calvo N et al (2009b) The prevalence of uridine diphosphate-glucuronosyltransferase 1A9 (UGT1A9) gene promoter region single-nucleotide polymorphisms T-275A and C-2152T and its influence on mycophenolic acid pharmacokinetics in stable renal transplant patients. Transplant Proc 41(6):2313–2316. doi:10.1016/j.transproceed.2009.06.038

    PubMed  Google Scholar 

  • Sankatsing SU, Prins JM, Yong SL et al (2008) Mycophenolate mofetil inhibits T-cell proliferation in kidney transplant recipients without lowering intracellular dGTP and GTP. Transpl Int 21(11):1066–1071. doi:10.1111/j.1432-2277.2008.00739.x

    CAS  PubMed  Google Scholar 

  • Sanquer S, Maison P, Tomkiewicz C et al (2008) Expression of inosine monophosphate dehydrogenase type I and type II after mycophenolate mofetil treatment: a 2-year follow-up in kidney transplantation. Clin Pharmacol Ther 83(2):328–335. doi:10.1038/sj.clpt.6100300

    CAS  PubMed  Google Scholar 

  • Selbst MK, Ahrens WA, Robert ME, Friedman A, Proctor DD, Jain D (2009) Spectrum of histologic changes in colonic biopsies in patients treated with mycophenolate mofetil. Mod Pathol 22(6):737–743. doi:10.1038/modpathol.2009.44

    CAS  PubMed  Google Scholar 

  • Shah T, Tellez-Corrales E, Yang JW et al (2011) The pharmacokinetics of enteric-coated mycophenolate sodium and its gastrointestinal side effects in de novo renal transplant recipients of Hispanic ethnicity. Ther Drug Monit 33(1):45–49. doi:10.1097/FTD.0b013e31820271c3

    CAS  PubMed  Google Scholar 

  • Shin M, Moon JI, Kim JM et al (2010) Pharmacokinetics of mycophenolic acid in living donor liver transplantation. Transplant Proc 42(3):846–853. doi:10.1016/j.transproceed.2010.03.004

    CAS  PubMed  Google Scholar 

  • Shui H, Gao P, Si X, Ding G (2010) Mycophenolic acid inhibits albumin-induced MCP-1 expression in renal tubular epithelial cells through the p38 MAPK pathway. Mol Biol Rep 37(4):1749–1754. doi:10.1007/s11033-009-9599-y

    CAS  PubMed  Google Scholar 

  • Sobiak J, Kaminska J, Glyda M, Duda G, Chrzanowska M (2013) Effect of mycophenolate mofetil on hematological side effects incidence in renal transplant recipients. Clin Transpl 27(4):E407–E414. doi:10.1111/ctr.12164

    CAS  Google Scholar 

  • Sollinger HW, Sundberg AK, Leverson G, Voss BJ, Pirsch JD (2010) Mycophenolate mofetil versus enteric-coated mycophenolate sodium: a large, single-center comparison of dose adjustments and outcomes in kidney transplant recipients. Transplantation 89(4):446–451. doi:10.1097/TP.0b013e3181ca860d

    CAS  PubMed  Google Scholar 

  • Sombogaard F, Peeters AM, Baan CC et al (2009a) Inosine monophosphate dehydrogenase messenger RNA expression is correlated to clinical outcomes in mycophenolate mofetil-treated kidney transplant patients, whereas inosine monophosphate dehydrogenase activity is not. Ther Drug Monit 31(5):549–556. doi:10.1097/FTD.0b013e3181b7a9d0

    CAS  PubMed  Google Scholar 

  • Sombogaard F, van Schaik RH, Mathot RA et al (2009b) Interpatient variability in IMPDH activity in MMF-treated renal transplant patients is correlated with IMPDH type II 3757T>C polymorphism. Pharmacogenet Genomics 19(8):626–634. doi:10.1097/FPC.0b013e32832f5f1b

    CAS  PubMed  Google Scholar 

  • Sommerer C, Müller-Krebs S, Schaier M et al (2010) Pharmacokinetic and pharmacodynamic analysis of enteric-coated mycophenolate sodium: limited sampling strategies and clinical outcome in renal transplant patients. Br J Clin Pharmacol 69(4):346–357. doi:10.1111/j.1365-2125.2009.03612.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sommerer C, Glander P, Arns W et al (2011) Safety and Efficacy of Intensified Versus Standard Dosing Regimens of Enteric-Coated Mycophenolate Sodium in De Novo Renal Transplant Patients. Transplantation 91(7):779–785. doi:10.1097/TP.0b013e31820d3b9b

    CAS  PubMed  Google Scholar 

  • Staatz C, Tett S (2007) Clinical pharmacokinetics and pharmacodynamics of mycophenolate in solid organ transplant recipients. Clin Pharmacokinet 46(1):13–58

    CAS  PubMed  Google Scholar 

  • Staatz CE, Tett SE (2011) Maximum A Posteriori Bayesian Estimation of Mycophenolic Acid Area Under the Concentration-Time Curve: is This Clinically Useful for Dosage Prediction Yet? Clin Pharmacokinet 50(12):759–772

    CAS  PubMed  Google Scholar 

  • Stingl J, Bartels H, Viviani R, Lehmann M, Brockmoller J (2014) Relevance of UDP-glucuronosyltransferase polymorphisms for drug dosing: a quantitative systematic review. Pharmacol Ther 141(1):92–116. doi:10.1016/j.pharmthera.2013.09.002

    CAS  PubMed  Google Scholar 

  • Stracke S, Shipkova M, Mayer J et al (2012) Pharmacokinetics and pharmacodynamics of mycophenolate sodium (EC-MPS) co-administered with cyclosporine in the early-phase post-kidney transplantation. Clin Transplant 26(1):57–66. doi:10.1111/j.1399-0012.2011.01403.x

    CAS  PubMed  Google Scholar 

  • Takemoto SK, Pinsky BW, Schnitzler MA et al (2007) A retrospective analysis of immunosuppression compliance, dose reduction and discontinuation in kidney transplant recipients. Am J Transplant 7(12):2704–2711. doi:10.1111/j.1600-6143.2007.01966.x

    CAS  PubMed  Google Scholar 

  • Tedesco-Silva H, Felipe CR, Park SI et al (2010) Randomized crossover study to assess the inter- and intrasubject variability of morning mycophenolic acid concentrations from enteric-coated mycophenolate sodium and mycophenolate mofetil in stable renal transplant recipients. Clin Transplant 24(4):E116–E123. doi:10.1111/j.1399-0012.2009.01183.x

    PubMed  Google Scholar 

  • Teperman L, Moonka D, Sebastian A et al (2013) Calcineurin inhibitor-free mycophenolate mofetil/sirolimus maintenance in liver transplantation: the randomized spare-the-nephron trial. Liver Transpl 19(7):675–689. doi:10.1002/lt.23658

    PubMed  Google Scholar 

  • Tett SE, Saint-Marcoux F, Staatz CE et al (2011) Mycophenolate, clinical pharmacokinetics, formulations, and methods for assessing drug exposure. Transplant Rev (Orlando) 25(2):47–57. doi:10.1016/j.trre.2010.06.001

    Google Scholar 

  • Ting LSL, Benoit-Biancamano MO, Bernard O, Riggs KW, Guillemette C, Ensom MHH (2010) Pharmacogenetic impact of UDP-glucuronosyltransferase metabolic pathway and multidrug resistance-associated protein 2 transport pathway on mycophenolic acid in thoracic transplant recipients: an exploratory study. Pharmacother 30(11):1097–1108

    CAS  Google Scholar 

  • Tornatore KM, Sudchada P, Dole K et al (2011) Mycophenolic acid pharmacokinetics during maintenance immunosuppression in African American and caucasian renal transplant recipients. J Clin Pharmacol 51(8):1213–1222. doi:10.1177/0091270010382909

    CAS  PubMed  Google Scholar 

  • Tornatore KM, Sudchada P, Attwood K et al (2013) Race and drug formulation influence on mycophenolic acid pharmacokinetics in stable renal transplant recipients. J Clin Pharmacol 53(3):285–293. doi:10.1177/0091270012447814

    PubMed  Google Scholar 

  • van Agteren M, Armstrong VW, van Schaik RH et al (2008) AcylMPAG plasma concentrations and mycophenolic acid-related side effects in patients undergoing renal transplantation are not related to the UGT2B7-840G>A gene polymorphism. Ther Drug Monit 30(4):439–444. doi:10.1097/FTD.0b013e318180c709

    PubMed  Google Scholar 

  • van Gelder T (2011) Therapeutic drug monitoring for mycophenolic acid is value for (little) money. Clin Pharmacol Ther 90(2):203–204. doi:10.1038/clpt.2011.96

    PubMed  Google Scholar 

  • van Gelder T, Hilbrands LB, Vanrenterghem Y et al (1999) A randomized double-blind, multicenter plasma concentration controlled study of the safety and efficacy of oral mycophenolate mofetil for the prevention of acute rejection after kidney transplantation. Transplantation 68(2):261–266

    PubMed  Google Scholar 

  • van Gelder T, Silva HT, de Fijter JW et al (2008) Comparing mycophenolate mofetil regimens for de novo renal transplant recipients: the fixed-dose concentration-controlled trial. Transplantation 86(8):1043–1051. doi:10.1097/TP.0b013e318186f98a

    PubMed  Google Scholar 

  • van Gelder T, Tedesco Silva H, de Fijter JW et al (2010) Renal transplant patients at high risk of acute rejection benefit from adequate exposure to mycophenolic acid. Transplantation 89(5):595–599. doi:10.1097/TP.0b013e3181ca7d84

    PubMed  Google Scholar 

  • van Gelder T, Silva HT, de Fijter H et al (2011) How delayed graft function impacts exposure to mycophenolic acid in patients after renal transplantation. Ther Drug Monit 33(2):155–164. doi:10.1097/FTD.0b013e31820c0a96

    PubMed  Google Scholar 

  • van Schaik RH, van Agteren M, de Fijter JW et al (2009) UGT1A9 -275T>A/-2152C>T polymorphisms correlate with low MPA exposure and acute rejection in MMF/tacrolimus-treated kidney transplant patients. Clin Pharmacol Ther 86(3):319–327. doi:10.1038/clpt.2009.83

    PubMed  Google Scholar 

  • Vanhove T, Kuypers D, Claes KJ et al (2013) Reasons for dose reduction of mycophenolate mofetil during the first year after renal transplantation and its impact on graft outcome. Transpl Int 26(8):813–821. doi:10.1111/tri.12133

    CAS  PubMed  Google Scholar 

  • Vethe NT, Bremer S, Rootwelt H, Bergan S (2008) Pharmacodynamics of mycophenolic acid in CD4(+) Cells: a single-dose study of IMPDH and purine nucleotide responses in healthy individuals. TherDrug Monit 30(6):647–655. doi:10.1097/FTD.0b013e31818955c3

    CAS  Google Scholar 

  • Wang J, Yang JW, Zeevi A et al (2008) IMPDH1 gene polymorphisms and association with acute rejection in renal transplant patients. Clin Pharmacol Ther 83(5):711–717. doi:10.1038/sj.clpt.6100347

    CAS  PubMed  Google Scholar 

  • Woillard JB, Rerolle JP, Picard N et al (2010) Risk of diarrhoea in a long-term cohort of renal transplant patients given mycophenolate mofetil: the significant role of the UGT1A8 2 variant allele. Br J Clin Pharmacol 69(6):675–683. doi:10.1111/j.1365-2125.2010.03625.x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xia ZW, Jun CY, Hao C, Bing C, Min SM, Jie XJ (2010) The occurrence of diarrhea not related to the pharmacokinetics of MPA and its metabolites in liver transplant patients. Eur J Clin Pharmacol 66(7):671–679. doi:10.1007/s00228-010-0833-2

    CAS  PubMed  Google Scholar 

  • Yang JW, Lee PH, Hutchinson IV, Pravica V, Shah T, Min DI (2009) Genetic Polymorphisms of MRP2 and UGT2B7 and Gastrointestinal Symptoms in Renal Transplant Recipients Taking Mycophenolic Acid. Ther Drug Monit 31(5):542–548

    CAS  PubMed  Google Scholar 

  • Zhao W, Fakhoury M, Deschenes G et al (2010) Population pharmacokinetics and pharmacogenetics of mycophenolic acid following administration of mycophenolate mofetil in de novo pediatric renal-transplant patients. J Clin Pharmacol 50(11):1280–1291. doi:10.1177/0091270009357429

    CAS  PubMed  Google Scholar 

  • Zhu B, Chen N, Lin Y et al (2007) Mycophenolate mofetil in induction and maintenance therapy of severe lupus nephritis: a meta-analysis of randomized controlled trials. Nephrol Dial Transplant 22(7):1933–1942. doi:10.1093/ndt/gfm066

    CAS  PubMed  Google Scholar 

  • Zuk DM, Pearson GJ (2009) Monitoring of mycophenolate mofetil in orthotopic heart transplant recipients–a systematic review. Transplant Rev (Orlando) 23(3):171–177. doi:10.1016/j.trre.2009.02.002

    Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine E. Staatz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staatz, C.E., Tett, S.E. Pharmacology and toxicology of mycophenolate in organ transplant recipients: an update. Arch Toxicol 88, 1351–1389 (2014). https://doi.org/10.1007/s00204-014-1247-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-014-1247-1

Keywords

Navigation