Skip to main content
Log in

Quantitative Prediction of Drug Interactions Caused by Cytochrome P450 2B6 Inhibition or Induction

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Numerous drugs have the potential to be affected by cytochrome P450 (CYP) 2B6-mediated drug–drug interactions (DDIs).

Objectives

In this work, we extend a static approach to the prediction of the extent of pharmacokinetics DDIs between substrates and inhibitors or inducers of CYP2B6.

Methods

This approach is based on the calculation of two parameters (the contribution ratio [CR], representing the fraction of dose of the substrate metabolized via this pathway and the inhibitory or inducing potency of the perpetrator [IR or IC, respectively]) calculated from the area under the concentration–time curve (AUC) ratios obtained in in-vivo DDI studies.

Results

Forty-eight studies involving 5 substrates, 11 inhibitors and 18 inducers of CYP2B6 (overall 15 inhibition and 33 induction studies) were divided into test and validation sets and considered for estimation of the parameters. The proposed approach demonstrated a fair accuracy for predicting the extent of DDI related to CYP2B6 inhibition and induction, all predictions related to the validation test (N = 18) being 50–200% of the observed ratios.

Conclusions

This methodology can be used for proposing initial dose adaptations to be adopted, for example in clinical use or for designing DDI studies involving this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Desta Z, El-Boraie A, Gong L, Somogyi AA, Lauschke VM, Dandara C, et al. PharmVar GeneFocus: CYP2B6. Clin Pharmacol Ther. 2021;110(1):82–97.

    CAS  PubMed  Google Scholar 

  2. Wang H, Tompkins L. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab. 2008;9(7):598–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pelkonen O, Turpeinen M, Hakkola J, Honkakoski P, Hukkanen J, Raunio H. Inhibition and induction of human cytochrome P450 enzymes: current status. Arch Toxicol. 2008;82(10):667–715.

    CAS  PubMed  Google Scholar 

  4. Mo S-L, Liu Y-H, Duan W, Wei M, Kanwar J, Zhou S-F. Substrate specificity, regulation, and polymorphism of human cytochrome P450 2B6. Curr Drug Metab. 2009;10(7):730–53.

    CAS  PubMed  Google Scholar 

  5. Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B. 2016;6(5):413–25.

    PubMed  PubMed Central  Google Scholar 

  6. Rendic S. Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev. 2002;34(1–2):83–448.

    CAS  PubMed  Google Scholar 

  7. Tornio A, Backman JT. Cytochrome P450 in pharmacogenetics: an update. Adv Pharmacol. 2018;83:3–32.

    CAS  PubMed  Google Scholar 

  8. Desta Z, Gammal RS, Gong L, Whirl-Carrillo M, Gaur AH, Sukasem C, Hockings J, Myers A, Swart M, Tyndale RF, Masimirembwa C, Iwuchukwu OF, Chirwa S, Lennox J, Gaedigk A, Klein TE, Haas DW. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2B6 and efavirenz-containing antiretroviral therapy. Clin Pharmacol Ther. 2019;106(4):726–33.

    PubMed  Google Scholar 

  9. Krayenbühl JC, Vozeh S, Kondo-Oestreicher M, Dayer P. Drug-drug interactions of new active substances: mibefradil example. Eur J Clin Pharmacol. 1999;55(8):559–65.

    PubMed  Google Scholar 

  10. Peters SA, Dolgos H. Requirements to establishing confidence in physiologically based pharmacokinetic (PBPK) models and overcoming some of the challenges to meeting them. Clin Pharmacokinet. 2019;58(11):1355–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Frechen S, Rostami-Hodjegan A. Quality assurance of PBPK modeling platforms and guidance on building, evaluating, verifying and applying PBPK models prudently under the umbrella of qualification: why, when, what, how and by whom? Pharm Res. 2022. https://doi.org/10.1007/s11095-022-03250-w.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Reddy VP, Walker M, Sharma P, Ballard P, Vishwanathan K. Development, verification, and prediction of osimertinib drug-drug interactions using PBPK modeling approach to inform drug label. CPT Pharmacometrics Syst Pharmacol. 2018;7(5):321–30.

    Google Scholar 

  13. Obach RS, Walsky RL, Venkatakrishnan K, Gaman EA, Houston JB, Tremaine LM. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther. 2006;316(1):336–48.

    CAS  PubMed  Google Scholar 

  14. Ohno Y, Hisaka A, Suzuki H. General framework for the quantitative prediction of CYP3A4-mediated oral drug interactions based on the AUC increase by coadministration of standard drugs. Clin Pharmacokinet. 2007;46(8):681–96.

    CAS  PubMed  Google Scholar 

  15. Ohno Y, Hisaka A, Ueno M, Suzuki H. General framework for the prediction of oral drug interactions caused by CYP3A4 induction from in vivo information. Clin Pharmacokinet. 2008;47(10):669–80.

    CAS  PubMed  Google Scholar 

  16. Tod M, Goutelle S, Clavel-Grabit F, Nicolas G, Charpiat B. Quantitative prediction of cytochrome P450 (CYP) 2D6-mediated drug interactions. Clin Pharmacokinet. 2011;50(8):519–30.

    CAS  PubMed  Google Scholar 

  17. Goutelle S, Bourguignon L, Bleyzac N, Berry J, Clavel-Grabit F, Tod M. In vivo quantitative prediction of the effect of gene polymorphisms and drug interactions on drug exposure for CYP2C19 substrates. AAPS J. 2013;15(2):415–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Castellan AC, Tod M, Gueyffier F, Audars M, Cambriels F, Kassaï B, Nony P, Genophar Working Group. Quantitative prediction of the impact of drug interactions and genetic polymorphisms on cytochrome P450 2C9 substrate exposure. Clin Pharmacokinet. 2013;52(3):199–209.

    CAS  PubMed  Google Scholar 

  19. Gabriel L, Tod M, Goutelle S. Quantitative prediction of drug interactions caused by CYP1A2 inhibitors and inducers. Clin Pharmacokinet. 2016;55(8):977–90.

    CAS  PubMed  Google Scholar 

  20. Di Paolo V, Ferrari FM, Poggesi I, Quintieri L. A quantitative approach to the prediction of drug-drug interactions mediated by cytochrome P450 2C8 inhibition. Expert Opin Drug Metab Toxicol. 2021;17(11):1345–52.

    PubMed  Google Scholar 

  21. Fan L, Wang JC, Jiang F, Tan ZR, Chen Y, Li Q, Zhang W, Wang G, Lei HP, Hu DL, Wang D, Zhou HH. Induction of cytochrome P450 2B6 activity by the herbal medicine baicalin as measured by bupropion hydroxylation. Eur J Clin Pharmacol. 2009;65(4):403–9.

    CAS  PubMed  Google Scholar 

  22. Kustra R, Corrigan B, Dunn J, Duncan B, Hsyu P-H. Lack of effect of cimetidine on the pharmacokinetics of sustained-release bupropion. J Clin Pharmacol. 1999;39(11):1184–8.

    CAS  PubMed  Google Scholar 

  23. Turpeinen M, Tolonen A, Uusitalo J, Jalonen J, Pelkonen O, Laine K. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2005;77(6):553–9.

    CAS  PubMed  Google Scholar 

  24. Jiang F, Desta Z, Shon JH, Yeo CW, Kim HS, Liu KH, Bae SK, Lee SS, Flockhart DA, Shin JG. Effects of clopidogrel and itraconazole on the disposition of efavirenz and its hydroxyl metabolites: exploration of a novel CYP2B6 phenotyping index. Br J Clin Pharmacol. 2013;75(1):244–53.

    CAS  PubMed  Google Scholar 

  25. McCance-Katz EF, Gruber VA, Beatty G, Lum P, Ma Q, Difrancesco R, Hochreiter J, Wallace PK, Faiman MD, Morse GD. Interaction of disulfiram with antiretroviral medications: efavirenz increases while atazanavir decreases disulfiram effect on enzymes of alcohol metabolism. Am J Addict. 2014;23(2):137–44.

    PubMed  Google Scholar 

  26. Palovaara S, Pelkonen O, Uusitalo J, Lundgren S, Laine K. Inhibition of cytochrome P450 2B6 activity by hormone replacement therapy and oral contraceptive as measured by bupropion hydroxylation. Clin Pharmacol Ther. 2003;74(4):326–33.

    CAS  PubMed  Google Scholar 

  27. Schmid Y, Rickli A, Schaffner A, Duthaler U, Grouzmann E, Hysek CM, Liechti ME. Interactions between bupropion and 3,4-methylenedioxymethamphetamine in healthy subjects. J Pharmacol Exp Ther. 2015;353(1):102–11.

    CAS  PubMed  Google Scholar 

  28. Kirby BJ, Collier AC, Kharasch ED, Dixit V, Desai P, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of HIV protease inhibitors 2: in vivo induction and in vitro to in vivo correlation of induction of cytochrome P450 1A2, 2B6, and 2C9 by ritonavir or nelfinavir. Drug Metab Dispos. 2011;39(12):2329–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Evaluation D, Documents A. Center for drug evaluation and application number: 2010;(2004):21–3.

  30. Wang J, Zhang ZY, Lu S, Powers D, Kansra V, Wang X. Effects of rolapitant administered orally on the pharmacokinetics of dextromethorphan (CYP2D6), tolbutamide (CYP2C9), omeprazole (CYP2C19), efavirenz (CYP2B6), and repaglinide (CYP2C8) in healthy subjects. Support Care Cancer. 2019;27(3):819–27.

    PubMed  Google Scholar 

  31. Peltoniemi MA, Saari TI, Hagelberg NM, Reponen P, Turpeinen M, Laine K, Neuvonen PJ, Olkkola KT. Exposure to oral S-ketamine is unaffected by itraconazole but greatly increased by ticlopidine. Clin Pharmacol Ther. 2011;90(2):296–302.

    CAS  PubMed  Google Scholar 

  32. Kharasch ED, Stubbert K. Role of cytochrome P4502B6 in methadone metabolism and clearance. J Clin Pharmacol. 2013;53(3):305–13.

    PubMed  PubMed Central  Google Scholar 

  33. Desta Z, Metzger IF, Thong N, Lu JBL, Callaghan JT, Skaar TC, Flockhart DA, Galinsky RE. Inhibition of cytochrome P450 2B6 activity by voriconazole profiled using efavirenz disposition in healthy volunteers. Antimicrob Agents Chemother. 2016;60(11):6813–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ji P, Damle B, Xie J, Unger SE, Grasela DM, Kaul S. Pharmacokinetic interaction between efavirenz and carbamazepine after multiple-dose administration in healthy subjects. J Clin Pharmacol. 2008;48(8):948–56.

    CAS  PubMed  Google Scholar 

  35. Fda. CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 212839Orig1s000 OTHER REVIEW(S).

  36. Robertson SM, Maldarelli F, Natarajan V, Formentini E, Alfaro RM, Penzak SR. Efavirenz induces CYP2B6-mediated hydroxylation of bupropion in healthy subjects. J Acquir Immune Defic Syndr. 2008;49(5):513–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kharasch ED, Whittington D, Ensign D, Hoffer C, Bedynek PS, Campbell S, Stubbert K, Crafford A, London A, Kim T. Mechanism of efavirenz influence on methadone pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2012;91(4):673–84.

    CAS  PubMed  Google Scholar 

  38. Fahmi OA, Shebley M, Palamanda J, Sinz MW, Ramsden D, Einolf HJ, Chen L, Wang H. Evaluation of CYP2B6 induction and prediction of clinical drug-drug interactions: considerations from the IQ Consortium induction working group—an industry perspective. Drug Metab Dispos. 2016;44(10):1720–30.

    CAS  PubMed  Google Scholar 

  39. Gao L, He Y, Tang J, Yin J, Huang Z, Liu F, Ouyang D, Chen X, Zhang W, Liu Z, Zhou H. Genetic variants of pregnane X receptor (PXR) and CYP2B6 affect the induction of bupropion hydroxylation by sodium ferulate. PLoS ONE. 2013;8(6):e62489.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yamazaki T, Desai A, Goldwater R, Han D, Howieson C, Akhtar S, Kowalski D, Lademacher C, Pearlman H, Rammelsberg D, Townsend R. Pharmacokinetic effects of isavuconazole coadministration with the cytochrome P450 enzyme substrates bupropion, repaglinide, caffeine, dextromethorphan, and methadone in healthy subjects. Clin Pharmacol drug Dev. 2017;6(1):54–65.

    CAS  PubMed  Google Scholar 

  41. Pharmacology C. Center for Drug Evaluation and Clinical Pharmacology and Biopharmaceutics Review ( S ). Food Drug Adm. 2009;1–5.

  42. Hogeland GW, Swindells S, McNabb JC, Kashuba ADM, Yee GC, Lindley CM. Lopinavir/ritonavir reduces bupropion plasma concentrations in healthy subjects. Clin Pharmacol Ther. 2007;81(1):69–75.

    CAS  PubMed  Google Scholar 

  43. Qin WJ, Zhang W, Liu ZQ, Chen XP, Tan ZR, Hu DL, Wang D, Fan L, Zhou HH. Rapid clinical induction of bupropion hydroxylation by metamizole in healthy Chinese men. Br J Clin Pharmacol. 2012;74(6):999–1004.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Veldkamp AI, Harris M, Montaner JSG, Moyle G, Gazzard B, Youle M, Johnson M, Kwakkelstein MO, Carlier H, van Leeuwen R, Beijnen JH, Lange JM, Reiss P, Hoetelmans RM. The steady-state pharmacokinetics of efavirenz and nevirapine when used in combination in human immunodeficiency virus type 1-infected persons. J Infect Dis. 2001;184(1):37–42.

    CAS  PubMed  Google Scholar 

  45. Chung JY, Cho JY, Lim HS, Kim JR, Yu KS, Lim KS, Shin SG, Jang IJ. Effects of pregnane X receptor (NR1I2) and CYP2B6 genetic polymorphisms on the induction of bupropion hydroxylation by rifampin. Drug Metab Dispos. 2011;39(1):92–7.

    CAS  PubMed  Google Scholar 

  46. Loboz KK, Gross AS, Williams KM, Liauw WS, Day RO, Blievernicht JK, Zanger UM, McLachlan AJ. Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther. 2006;80(1):75–84.

    CAS  PubMed  Google Scholar 

  47. Cho DY, Shen JHQ, Lemler SM, Skaar TC, Li L, Blievernicht J, Zanger UM, Kim KB, Shin JG, Flockhart DA, Desta Z. Rifampin enhances cytochrome P450 (CYP) 2B6-mediated efavirenz 8-hydroxylation in healthy volunteers. Drug Metab Pharmacokinet. 2016;31(2):107–16.

    CAS  PubMed  Google Scholar 

  48. Kharasch ED, Mitchell D, Coles R, Blanco R. Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir. Antimicrob Agents Chemother. 2008;52(5):1663–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kharasch ED, Bedynek PS, Park S, Whittington D, Walker A, Hoffer C. Mechanism of ritonavir changes in methadone pharmacokinetics and pharmacodynamics: I. Evidence against CYP3A mediation of methadone clearance. Clin Pharmacol Ther. 2008;84(4):497–505.

    CAS  PubMed  Google Scholar 

  50. Park J, Vousden M, Brittain C, McConn DJ, Iavarone L, Ascher J, Sutherland SM, Muir KT. Dose-related reduction in bupropion plasma concentrations by ritonavir. J Clin Pharmacol. 2010;50(10):1180–7.

    CAS  PubMed  Google Scholar 

  51. Peltoniemi MA, Saari TI, Hagelberg NM, Laine K, Neuvonen PJ, Olkkola KT. St John’s wort greatly decreases the plasma concentrations of oral S-ketamine. Fundam Clin Pharmacol. 2012;26(6):743–50.

    CAS  PubMed  Google Scholar 

  52. Lei HP, Yu XY, Xie HT, Li HH, Fan L, Dai LL, Chen Y, Zhou HH. Effect of St. John’s wort supplementation on the pharmacokinetics of bupropion in healthy male Chinese volunteers. Xenobiotica. 2010;40(4):275–81.

    CAS  PubMed  Google Scholar 

  53. Younis IR, Lakota EA, Volpe DA, Patel V, Xu Y, Sahajwalla CG. Drug-drug interaction studies of methadone and antiviral drugs: lessons learned. J Clin Pharmacol. 2019;59(8):1035–43.

    CAS  PubMed  Google Scholar 

  54. Richter T, Mürdter TE, Heinkele G, Pleiss J, Tatzel S, Schwab M, Eichelbaum M, Zanger UM. Potent mechanism-based inhibition of human CYP2B6 by clopidogrel and ticlopidine. J Pharmacol Exp Ther. 2004;308(1):189–97.

    CAS  PubMed  Google Scholar 

  55. Guest EJ, Aarons L, Houston JB, Rostami-Hodjegan A, Galetin A. Critique of the two-fold measure of prediction success for ratios: application for the assessment of drug-drug interactions. Drug Metab Dispos. 2011;39(2):170–3.

    CAS  PubMed  Google Scholar 

  56. Thomas A, Best N, Way R. WinBUGS User Manual. 2003;(January).

  57. Ekins S, VandenBranden M, Ring BJ, Wrighton SA. Examination of purported probes of human CYP2B6. Pharmacogenetics. 1997;7(3):165–79.

    CAS  PubMed  Google Scholar 

  58. Totah RA, Sheffels P, Roberts T, Whittington D, Thummel K, Kharasch ED. Role of CYP2B6 in stereoselective human methadone metabolism. Anesthesiology. 2008;108(3):363–74.

    CAS  PubMed  Google Scholar 

  59. Totah RA, Allen KE, Sheffels P, Whittington D, Kharasch ED. Enantiomeric metabolic interactions and stereoselective human methadone metabolism. J Pharmacol Exp Ther. 2007;321(1):389–99.

    CAS  PubMed  Google Scholar 

  60. Marok FZ, Fuhr LM, Hanke N, Selzer D, Lehr T. Physiologically based pharmacokinetic modeling of bupropion and its metabolites in a CYP2B6 drug-drug-gene interaction network. Pharmaceutics. 2021;13(3):1–23.

    Google Scholar 

  61. Parkinson A, Ogilvie BW, Buckley DB, Kazmi F, Czerwinski M, Parkinson O. Biotransformation of Xenobiotics. In: Klaassen CD. eds. Casarett and Doull's Toxicology: The Basic Science of Poisons, Eighth Edition. McGraw Hill; 2013. Accessed July 09, 2022. https://accesspharmacy.mhmedical.com/Content.aspx?bookid=958&sectionid=53483726.

  62. Xie HJ, Yasar Ü, Lundgren S, Griskevicius L, Terelius Y, Hassan M, Rane A. Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J. 2003;3(1):53–61.

    CAS  PubMed  Google Scholar 

  63. Hofmann MH, Blievernicht JK, Klein K, Saussele T, Schaeffeler E, Schwab M, Zanger UM. Aberrant splicing caused by single nucleotide polymorphism c.516G>T [Q172H], a marker of CYP2B6*6, is responsible for decreased expression and activity of CYP2B6 in liver. J Pharmacol Exp Ther. 2008;325(1):284–92.

    CAS  PubMed  Google Scholar 

  64. Rotger M, Tegude H, Colombo S, Cavassini M, Furrer H, Décosterd L, Blievernicht J, Saussele T, Günthard HF, Schwab M, Eichelbaum M, Telenti A, Zanger UM. Predictive value of known and novel alleles of CYP2B6 for efavirenz plasma concentrations in HIV-infected individuals. Clin Pharmacol Ther. 2007;81(4):557–66.

    CAS  PubMed  Google Scholar 

  65. Ayuso P, Neary M, Chiong J, Owen A. Meta-analysis of the effect of CYP2B6, CYP2A6, UGT2B7 and CAR polymorphisms on efavirenz plasma concentrations. J Antimicrob Chemother. 2019;74(11):3281–90.

    CAS  PubMed  Google Scholar 

  66. Ariyoshi N, Ohara M, Kaneko M, Afuso S, Kumamoto T, Nakamura H, et al. Q172H replacement overcomes effects on the metabolism of cyclophosphamide and efavirenz caused by CYP2B6 variant with Arg262. Drug Metab Dispos. 2011;39(11):2045–8.

    CAS  PubMed  Google Scholar 

  67. Radloff R, Gras A, Zanger UM, Masquelier C, Arumugam K, Karasi JC, Arendt V, Seguin-Devaux C, Klein K. Novel CYP2B6 enzyme variants in a Rwandese population: functional characterization and assessment of in silico prediction tools. Hum Mutat. 2013;34(5):725–34.

    CAS  PubMed  Google Scholar 

  68. Watanabe T, Saito T, Rico EMG, Hishinuma E, Kumondai M, Maekawa M, Oda A, Saigusa D, Saito S, Yasuda J, Nagasaki M, Minegishi N, Yamamoto M, Yamaguchi H, Mano N, Hirasawa N, Hiratsuka M. Functional characterization of 40 CYP2B6 allelic variants by assessing efavirenz 8-hydroxylation. Biochem Pharmacol. 2018;156:420–30.

    CAS  PubMed  Google Scholar 

  69. Wang PF, Neiner A, Kharasch ED. Efavirenz metabolism: influence of polymorphic CYP2B6 variants and stereochemistry. Drug Metab Dispos. 2019;47(10):1195–205.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakajima M, Komagata S, Fujiki Y, Kanada Y, Ebi H, Itoh K, et al. Genetic polymorphisms of CYP2B6 affect the pharmacokinetics/pharmacodynamics of cyclophosphamide in Japanese cancer patients. Pharmacogenet Genomics. 2007;17(6):431–45.

    CAS  PubMed  Google Scholar 

  71. Honda M, Muroi Y, Tamaki Y, Saigusa D, Suzuki N, Tomioka Y, Matsubara Y, Oda A, Hirasawa N, Hiratsuka M. Functional characterization of CYP2B6 allelic variants in demethylation of antimalarial artemether. Drug Metab Dispos. 2011;39(10):1860–5.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Italo Poggesi.

Ethics declarations

Funding

No external funding was used in the preparation of this manuscript.

Conflict of interest

Veronica Di Paolo, Francesco Maria Ferrari, Italo Poggesi and Luigi Quintieri declare that they have no potential conflicts of interest that might be relevant to the contents of this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

All data are available as tables in the manuscript.

Code availability

Not applicable.

Author contributions

All authors were involved in the study design, data collection and analysis, interpretation of findings, and writing of the manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 358 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Paolo, V., Ferrari, F.M., Poggesi, I. et al. Quantitative Prediction of Drug Interactions Caused by Cytochrome P450 2B6 Inhibition or Induction. Clin Pharmacokinet 61, 1297–1306 (2022). https://doi.org/10.1007/s40262-022-01153-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-022-01153-y

Navigation