Skip to main content
Log in

Electrochemical Chiral Recognizing Tryptophan Enantiomers Based on Chiral Metal-Organic Framework D-MOF

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In this work, an electrochemical chiral sensor of a nanowire-like chiral metal-organic framework/multiwalled carbon nanotube-chitosan/glassy carbon electrode(D-MOF/MWCNTs-CS/GCE) was proposed for the enantiorecognition of L/D-tryptophan(L/D-Trp). The asymmetrical spatial structure of D-MOF provides the feasibility for the enantiorecognition of Trp enantiomers. Moreover, differential pulse voltammetry(DPV) was carried out to be the detection method and the DPV peak potential difference(ΔEp) between L-Trp and D-Trp was referred as the index of the enantiorecognition performance. Several parameters, such as mass ratios and drop-coated volume of MWCNTs-CS, drop-coated volume and concentration of D-MOF, pH and detection temperature of D-MOF/MWCNTs-CS/GCE were optimized for the largest ΔEp value. And the molecular dynamics(MD) simulation was used to elucidate the enantiorecognition mechanism. Furthermore, the proportions of D-Trp(D-Trp%) in Trp mixtures were detected in a good linear relationship with the DPV peak potentials(Ep), and the proposed electrochemical chiral sensor exhibited good reproducibility, stability and enantiorecognition ability. Additionally, the proposed electrochemical chiral sensor(D-MOF/MWCNTs-CS/GCE) has a good application prospect in the fields of biomedicine, clinical diagnosis, chemical production, pharmaceuticals safety and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eda G., Haluk B., Erhan Z., J. Pharmaceut. Biomed., 2022, 221, 115031

    Article  Google Scholar 

  2. Zhao Y., Zhang Y., Liu H. L., Sun B. G., Anal. Bioanal. Chem., 2022, 414, 4885

    Article  CAS  PubMed  Google Scholar 

  3. Hamase K., Morikawa A., Zaitsu K., J. Chromatogr. B, 2002, 781, 73

    Article  CAS  Google Scholar 

  4. Fuchs S., Berger R., Klomp L., Koning T., Mol. Genet. Metab., 2005, 85, 168

    Article  CAS  PubMed  Google Scholar 

  5. Zhou H., Ran G., Masson J., Wang C., Zhao Y., Song Q., Anal. Chem., 2018, 90, 3374

    Article  CAS  PubMed  Google Scholar 

  6. Hou H. P., Tang S. S., Liu Y. Q., Wang W., Liang A. X., Sun L. Q., Luo A. Q., J. Electroanal. Chem., 2022, 904, 115921

    Article  CAS  Google Scholar 

  7. Guo L. J., Zhang Q., Huang Y. H., Han Q., Wang Y. H., Fu Y. Z., Bioelectrochemistry, 2013, 94, 87

    Article  CAS  PubMed  Google Scholar 

  8. Niu X. H., Yang X., Mo Z. L., Wang J., Pan Z., Liu Z. Y., Shui C., Liu G. G., Liu N. J., Guo R. B., Bioelectrochemistry, 2020, 131, 107396

    Article  CAS  PubMed  Google Scholar 

  9. Chinta J. P., Sensors Actuat. B: Chem., 2017, 248, 733

    Article  CAS  Google Scholar 

  10. Wang C., Zhang L., Li X., Yu A., Zhang S., Talanta, 2020, 218, 121155

    Article  CAS  PubMed  Google Scholar 

  11. Chi Z. M., Li M. M., Xu J., Yang L., Anal. Bioanal. Chem., 2022, 414, 1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zou J., Zhao G. Q., Zhao G. L., Yu J. G., Coordin. Chem. Rev., 2022, 471, 214732

    Article  CAS  Google Scholar 

  13. Guo J. L., Wei X. F., Lian H. T., Li L. S., Sun X. Y., Liu B., ACS Appl. Nano Mater., 2020, 3, 3675

    Article  CAS  Google Scholar 

  14. Sun X. Z., Fu Z. B., Zhang M., Fu H., Lin C. H., Kuang J. J., Zhang H. Y., Hu P., Microchem. J., 2022, 183, 108074

    Article  CAS  Google Scholar 

  15. Niu X. H., Yan S., Chen J. L., Li H. X., Wang K. J., Electrochim. Acta, 2020, 405, 139809

    Article  Google Scholar 

  16. Dong L. Q., Zhang Y. S., Duan X. M., Zhu X. F., Sun H., Xu J. K., Anal. Chem., 2017, 89, 9695

    Article  CAS  PubMed  Google Scholar 

  17. Sun Y. X., Zhang D. D., Sheng Y., Xu D., Zhang R., Bradley M., Anal. Methods, 2021, 13, 2011

    Article  CAS  PubMed  Google Scholar 

  18. Liu N., Liu J., Niu X. H., Wang J., Guo R., Mo Z., Microchim. Acta, 2021, 188

  19. He S., Shang X., Lu W., Tian Y., Xu Z., Zhang W., Anal. Chim. Acta, 2021, 1147, 155

    Article  CAS  PubMed  Google Scholar 

  20. Niu X., Yang X., Mo Z., Wang J., Pan Z., Liu Z., Shui C., Liu G., Liu N., Guo R., Bioelectrochemistry, 2020, 131, 107396

    Article  CAS  PubMed  Google Scholar 

  21. Yang X., Niu X., Mo Z., Guo R., Liu N., Zhao P., Liu Z., Microchim. Acta, 2019, 186, 333

    Article  Google Scholar 

  22. Niu X., Yang X., Mo Z., Liu N., Guo R., Pan Z., Liu Z., Microchim. Acta, 2019, 186, 557

    Article  Google Scholar 

  23. Bao L., Chen X., Yang B., Tao Y., Kong Y., ACS Appl. Mater. Inter., 2016, 8, 21710

    Article  CAS  Google Scholar 

  24. Gong L., Zhao Q., Wu S., Yin Z., Wu D., Cai W., Kong Y., Langmuir, 2021, 37, 14454

    Article  CAS  PubMed  Google Scholar 

  25. Gong T., Zhu S., Huang S., Gu P., Xiong Y., Zhang J., Jiang X., Anal. Chim. Acta, 2022, 1191, 339276

    Article  CAS  PubMed  Google Scholar 

  26. Tao Y., Gu X., Yang B., Deng L., Bao L., Kong Y., Chu F., Qin Y., Anal. Chem., 2017, 89, 1900

    Article  CAS  PubMed  Google Scholar 

  27. Niu X., Yang X., Li H., Shi Q., Wang K., Chirality, 2021, 33, 248

    Article  CAS  PubMed  Google Scholar 

  28. Zou J., Yu J. G., Materials Science and Engineering: C, 2020, 112, 110910

    Article  CAS  PubMed  Google Scholar 

  29. Kuppler R. J., Timmons D. J., Fang Q. R., Li J. R., Makal T., Young M., Yuan D. Q., Zhao D., Zhuang W. J., Zhou H. C., Coord Chem Rev, 2009, 252, 3042

    Article  Google Scholar 

  30. Liu Y. L., Zhao X. J., Yang X. X., Li Y. F., Analyst, 2013, 138, 4526

    Article  CAS  PubMed  Google Scholar 

  31. Yu L. Q., Yan X. P, Chem. Commun, 2013, 49, 2142

    Article  CAS  Google Scholar 

  32. José N. S., Ana A. G., Yolanda M. M., Daniel R. S., Dmytro A., Pilar C. F., Matthew J. R., Carlos M. G., J. Am. Chem. Soc, 2017, 139, 4294

    Article  Google Scholar 

  33. Bagheri N., Khataee A., Habibi B., Javad H., Talanta, 2018, 179, 710

    Article  CAS  PubMed  Google Scholar 

  34. Lee E., Ju H., Jung J. H., Ikeda M., Habata Y., Lee S. S., Inorg. Chem, 2019, 58, 1177

    Article  CAS  PubMed  Google Scholar 

  35. Bard A. J., Faulkne L. R., Electrochemical Methods Fundamentals and Application, John Wiley& Sons, New York, 2001

    Google Scholar 

  36. Patel B. R., Imran S., Ye W. Y., Weng H. Y., Noroozifar M., Kerman K, Electrochim. Acta, 2020, 362, 137094

    Article  CAS  Google Scholar 

  37. Ou J., Tao Y. X., Xue J. J., Kong Y., Dai J. Y., Deng L. H., Electrochem. Commun., 2015, 57, 5

    Article  CAS  Google Scholar 

  38. Yu Y., Tao Y. X., Yang B. Z., Wu D. T., Qin Y., Kong Y., Anal. Chem., 2017, 89, 12930

    Article  CAS  PubMed  Google Scholar 

  39. Hou H. P., Tang S. S., Wang W., Liu M., Liang A. X., Sun L. Q., Luo A. Q., J. Electrochem. Soc., 2022, 169, 037506

    Article  CAS  Google Scholar 

  40. Gong T., Zhu S., Huang S. Q., Gu P. C, Xiong Y., Zhang J., Jiang X. H., Anal. Chim. Acta, 2022, 1191, 339276

    Article  CAS  PubMed  Google Scholar 

  41. He S. Y., Shang X., Lu W., Yang T., Xu Z. A., Zhang W., Anal. Chim. Acta, 2021, 1147, 155e164

    Article  CAS  PubMed  Google Scholar 

  42. Wang L. L., Gong W. C., Wang F., Yu Z. Y., Chen Z. L., Methods, 2016, 8, 3481e3487

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFA0904104).

The authors thank Biological & Medical Engineering Core Facilities, Beijing Institute of Technology for kindly providing the laboratory facilities for testing. Moreover, the authors thank Chengdu Tianji Technology Co., Ltd. for their technical support in the construction of the molecular dynamics(MD) simulation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Yi or Aiqin Luo.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Material (ESM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Tang, S., Wang, W. et al. Electrochemical Chiral Recognizing Tryptophan Enantiomers Based on Chiral Metal-Organic Framework D-MOF. Chem. Res. Chin. Univ. 39, 976–984 (2023). https://doi.org/10.1007/s40242-023-3004-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-023-3004-6

Keywords

Navigation