Skip to main content
Log in

A visual chiroptical system with chiral assembly graphene quantum dots for D-phenylalanine detection

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Chirality is a fundamental phenomenon of nature, and the enantioselective recognition of amino acids isomers is especially important for life science. In this study, chiroptical system based on chiral assembly graphene quantum dots (GQDs) was developed for visual testing of D-phenylalanine (D-Phe). Here, GQDs were used as the fluorescent element, and chiral functional moieties of 1,3,5-triformylphloroglucinol-functionalized chiral ( +)-diacetyl-L-tartaric anhydride (TPTA) were used as the chiral recognition elements. Based on the formed chiral microenvironment, the fluorescence intensity of TPTA-assembled GQDs had a good linear relationship with D-Phe in the concentration range of 0.1–5 μM, and the detection limit was 0.023 μM. According to the variation in luminance of TPTA-assembled GQDs, visual testing to D-Phe was realized using a smartphone-assisted chiroptical system with a detection limit of 0.050 μM. The spiked recoveries of both chiroptical sensing methods based on TPTA-assembled GQDs from the food matrix ranged from 86.20 to 110.0%. Furthermore, TPTA-assembled GQDs were successfully applied to intracellular chiroptical imaging in response to D-Phe in vitro. The developed chiral nanomaterial TPTA-assembled GQDs with excellent photochemical stability, optical properties, and bioimaging capabilities provide a promising technique for the visual detection of amino acid isomers in the field of smart devices.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu J. Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale. 2013;5(10):4015–39. https://doi.org/10.1039/C3NR33849E.

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Sun G, Li N, Chen P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev. 2016;45(8):2239–62. https://doi.org/10.1039/C5CS00811E.

    Article  CAS  PubMed  Google Scholar 

  3. Libisch F, Stampfer C, Burgdörfer J. Graphene quantum dots: beyond a Dirac billiard. Phys Rev B. 2009;79(11):115423. https://doi.org/10.1103/PhysRevB.79.115423.

    Article  CAS  Google Scholar 

  4. Lin L, Rong M, Luo F, Chen D, Wang Y, Chen X. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. Trends Analyt Chem. 2014;54:83–102. https://doi.org/10.1016/j.trac.2013.11.001.

    Article  CAS  Google Scholar 

  5. Kamal Z, Zarei Ghobadi M, Mohseni SM, Ghourchian H. High-performance porphyrin-like graphene quantum dots for immuno-sensing of Salmonella typhi. Biosens Bioelectron. 2021;188:113334. https://doi.org/10.1016/j.bios.2021.113334.

    Article  CAS  PubMed  Google Scholar 

  6. Loh KP, Bao Q, Eda G, Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat Chem. 2010;2(12):1015–24. https://doi.org/10.1038/nchem.907.

    Article  CAS  PubMed  Google Scholar 

  7. Yan X, Cui X, Li B, Li L. Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 2010;10(5):1869–73. https://doi.org/10.1021/nl101060h.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao B, Yang S, Deng J, Pan K. Chiral graphene hybrid materials: structures, properties, and chiral applications. Adv Sci. 2021;8(7):2003681. https://doi.org/10.1002/advs.202003681.

    Article  CAS  Google Scholar 

  9. Wu Q, Sun Y, Gao J, Dong S, Luo G, Li H, Zhao L. Applications of hybrid organic–inorganic materials in chiral separation. Trends Analyt Chem. 2017;95:140–8. https://doi.org/10.1016/j.trac.2017.08.005.

    Article  CAS  Google Scholar 

  10. Evans PJ, Ouyang J, Favereau L, Crassous J, Fernández I, Perles J, Martín N. Synthesis of a helical bilayer nanographene. Angew Chem Int Ed. 2018;57(23):6774–9. https://doi.org/10.1002/anie.201800798.

    Article  CAS  Google Scholar 

  11. Cruz CM, Márquez IR, Mariz IFA, Blanco V, Sánchez-Sánchez C, Sobrado JM, Martín-Gago JA, Cuerva JM, Maçôas E, Campaña AG. Enantiopure distorted ribbon-shaped nanographene combining two-photon absorption-based upconversion and circularly polarized luminescence. Chem Sci. 2018;9(16):3917–24. https://doi.org/10.1039/C8SC00427G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kato K, Segawa Y, Scott LT, Itami K. A quintuple [6]helicene with a corannulene core as a C5-symmetric propeller-shaped π-system. Angew Chem Int Ed. 2018;57(5):1337–41. https://doi.org/10.1002/anie.201711985.

    Article  CAS  Google Scholar 

  13. Wu Q, Gao J, Chen L, Dong S, Li H, Qiu H, Zhao L. Graphene quantum dots functionalized β-cyclodextrin and cellulose chiral stationary phases with enhanced enantioseparation performance. J Chromatogr A. 2019;1600:209–18. https://doi.org/10.1016/j.chroma.2019.04.053.

    Article  CAS  PubMed  Google Scholar 

  14. Ou J, Zhu Y, Kong Y, Ma J. Graphene quantum dots/β-cyclodextrin nanocomposites: a novel electrochemical chiral interface for tryptophan isomer recognition. Electrochem Commun. 2015;60:60–3. https://doi.org/10.1016/j.elecom.2015.08.005.

    Article  CAS  Google Scholar 

  15. Chen F, Pei H, Jia Q, Guo W, Zhang X, Guo R, Liu N, Mo Z. Construction of cyclodextrin functionalized nitrogen-doped graphene quantum dot electrochemical sensing interface for recognition of tryptophan isomers. Mater Chem Phys. 2021;273:125086. https://doi.org/10.1016/j.matchemphys.2021.125086.

    Article  CAS  Google Scholar 

  16. Chandra S, Kandambeth S, Biswal BP, Lukose B, Kunjir SM, Chaudhary M, Babarao R, Heine T, Banerjee R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J Am Chem Soc. 2013;135(47):17853–61. https://doi.org/10.1021/ja408121p.

    Article  CAS  PubMed  Google Scholar 

  17. Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J Am Chem Soc. 2012;134(48):19524–7. https://doi.org/10.1021/ja308278w.

    Article  CAS  PubMed  Google Scholar 

  18. Dey K, Pal M, Rout KC, Kunjattu HS, Das A, Mukherjee R, Kharul UK, Banerjee R. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J Am Chem Soc. 2017;139(37):13083–91. https://doi.org/10.1021/jacs.7b06640.

    Article  CAS  PubMed  Google Scholar 

  19. Qian H, Yang C, Yan X. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun. 2016;7(1):12104. https://doi.org/10.1038/ncomms12104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P. Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small. 2015;11(14):1620–36. https://doi.org/10.1002/smll.201402648.

    Article  CAS  PubMed  Google Scholar 

  21. Genchi G. An overview on D-amino acids. Amino Acids. 2017;49(9):1521–33. https://doi.org/10.1007/s00726-017-2459-5.

    Article  CAS  PubMed  Google Scholar 

  22. Lorenzo MP, Dudzik D, Varas E, Gibellini M, Skotnicki M, Zorawski M, Zarzycki W, Pellati F, García A. Optimization and validation of a chiral GC–MS method for the determination of free d-amino acids ratio in human urine: application to a gestational diabetes mellitus study. J Pharmaceut Biomed. 2015;107:480–7. https://doi.org/10.1016/j.jpba.2015.01.015.

    Article  CAS  Google Scholar 

  23. Fu H, Hu O, Fan Y, Hu Y, Huang J, Wang Z, She Y. Rational design of an “on-off-on” fluorescent assay for chiral amino acids based on quantum dots and nanoporphyrin. Sensor Actuat B-Chem. 2019;287:1–8. https://doi.org/10.1016/j.snb.2019.02.023.

    Article  CAS  Google Scholar 

  24. Shen K, Wang L, He Q, Jin Z, Chen W, Sun C, Pan Y. Sensitive bromine-labeled probe D-BPBr for simultaneous identification and quantification of chiral amino acids and amino-containing metabolites profiling in human biofluid by HPLC/MS. Anal Chem. 2020;92(2):1763–9. https://doi.org/10.1021/acs.analchem.9b03252.

    Article  CAS  PubMed  Google Scholar 

  25. Gu J, Dai H, Kong Y, Tao Y, Chu H, Tong Z. Chiral electrochemical recognition of cysteine enantiomers with molecularly imprinted overoxidized polypyrrole-Au nanoparticles. Synth Met. 2016;222:137–43. https://doi.org/10.1016/j.synthmet.2016.05.007.

    Article  CAS  Google Scholar 

  26. Schreiber R, Luong N, Fan Z, Kuzyk A, Nickels PC, Zhang T, Smith DM, Yurke B, Kuang W, Govorov AO, Liedl T. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat Commun. 2013;4(1):2948. https://doi.org/10.1038/ncomms3948.

    Article  CAS  PubMed  Google Scholar 

  27. Liu S, Chen Y, Wang Y, Zhao G. Group-targeting detection of total steroid estrogen using surface-enhanced Raman spectroscopy. Anal Chem. 2019;91(12):7639–47. https://doi.org/10.1021/acs.analchem.9b00534.

    Article  CAS  PubMed  Google Scholar 

  28. Liu H, Shao J, Shi L, Ke W, Zheng F, Zhao Y. Electroactive NPs and D-amino acids oxidase engineered electrochemical chiral sensor for D-alanine detection. Sensor Actuat B-Chem. 2020;304:127333. https://doi.org/10.1016/j.snb.2019.127333.

    Article  CAS  Google Scholar 

  29. Zhang Z, Zhong C, Fan F, Liu G, Chang S. Terahertz polarization and chirality sensing for amino acid solution based on chiral metasurface sensor. Sensor Actuat B-Chem. 2021;330:129315. https://doi.org/10.1016/j.snb.2020.129315.

    Article  CAS  Google Scholar 

  30. Liu J, Fu B, Zhang Z. Ionic current rectification triggered photoelectrochemical chiral sensing platform for recognition of amino acid enantiomers on self-standing nanochannel arrays. Anal Chem. 2020;92(13):8670–4. https://doi.org/10.1021/acs.analchem.0c02341.

    Article  CAS  PubMed  Google Scholar 

  31. Zhu X, Yuan X, Han L, Liu H, Sun B. A smartphone-integrated optosensing platform based on red-emission carbon dots for real-time detection of pyrethroids. Biosens Bioelectron. 2021;191: 113460. https://doi.org/10.1016/j.bios.2021.113460.

    Article  CAS  PubMed  Google Scholar 

  32. Quesada González D, Merkoçi A. Mobile phone-based biosensing: an emerging “diagnostic and communication” technology. Biosens Bioelectron. 2017;92:549–62. https://doi.org/10.1016/j.bios.2016.10.062.

    Article  CAS  PubMed  Google Scholar 

  33. Nelis JLD, Tsagkaris AS, Dillon MJ, Hajslova J, Elliott CT. Smartphone-based optical assays in the food safety field. Trends Analyt Chem. 2020;129:115934. https://doi.org/10.1016/j.trac.2020.115934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang F, Chen D, Li R, Wang Y, Zhang G, Li S, Zheng J, Huang N, Gu Y, Wang C, Shu C. Eco-friendly synthesis of size-controllable amine-functionalized graphene quantum dots with antimycoplasma properties. Nanoscale. 2013;5(3):1137–42. https://doi.org/10.1039/C2NR33191H.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang W, Zhao Y, Zhang D, Zhu X, Liu H, Sun B. Efficient and robust dual modes of fluorescence sensing and smartphone readout for the detection of pyrethroids using artificial receptors bound inside a covalent organic framework. Biosens Bioelectron. 2021;194:113582. https://doi.org/10.1016/j.bios.2021.113582.

    Article  CAS  PubMed  Google Scholar 

  36. Vijayakumar M, Mahesvaran K, Patel DK, Arunkumar S, Marimuthu K. Structural and optical properties of Dy3+ doped aluminofluoroborophosphate glasses for white light applications. Opt Mater. 2014;37:695–705. https://doi.org/10.1016/j.optmat.2014.08.015.

    Article  CAS  Google Scholar 

  37. Booth TD, Wahnon D, Wainer IW. Is chiral recognition a three-point process? Chirality. 1997;9(2):96–8. https://doi.org/10.1002/(SICI)1520-636X(1997)9:2%3c96::AID-CHIR2%3e3.0.CO;2-E.

    Article  CAS  Google Scholar 

  38. Young D. ABJ(M) chiral primary three-point function at two-loops. J High Energy Phys. 2014;2014(7):120. https://doi.org/10.1007/JHEP07(2014)120.

    Article  Google Scholar 

  39. Fang H, Wang N, Xie L, Huang P, Deng K, Wu F. An excited-state intramolecular proton transfer (ESIPT)-based aggregation-induced emission active probe and its Cu(II) complex for fluorescence detection of cysteine. Sensor Actuat B-Chem. 2019;294:69–77. https://doi.org/10.1016/j.snb.2019.05.022.

    Article  CAS  Google Scholar 

  40. Ang CY, Tan SY, Lu Y, Bai L, Li M, Li P, Zhang Q, Selvan ST, Zhao Y. “Turn-on” fluorescence probe integrated polymer nanoparticles for sensing biological thiol molecules. Sci Rep. 2014;4(1):7057. https://doi.org/10.1038/srep07057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 32072335, 31822040), the National Key R&D Program of China (No. 2018YFC1602300), and the Research Foundation for Youth Scholars of Beijing Technology and Business University (No. QNJJ2021-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 77 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhang, Y., Liu, H. et al. A visual chiroptical system with chiral assembly graphene quantum dots for D-phenylalanine detection. Anal Bioanal Chem 414, 4885–4896 (2022). https://doi.org/10.1007/s00216-022-04113-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-022-04113-4

Keywords

Navigation