Skip to main content
Log in

Residual Stress Removal Under Pulsed Electric Current

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effect of a pulsed electric current on the residual stress evolution of metal materials has been investigated. It was found that the surface and internal residual stresses in the as-quenched samples were reduced dramatically by electropulsing. A large number of experimental data show that the residual stress reduction is proportional to the initial residual stress and related to the material properties and electropulsing parameters. Under the combined actions of drift electrons, Joule heating, and residual stress, the dislocation mobility was enhanced, resulting in plastic strain and the decrease in residual stress. Drift electrons played a unique role in the electropulsing treatment, acting as an additional force pushing dislocations forward. The dislocations ultimately accumulated at a grain boundary, forming a parallel arrangement. Finally, the phenomenological equation of the residual stress evolution under electropulsing was derived from the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.J. Withers, H. Bhadeshia, Mater. Sci. Technol. 17, 355 (2001)

    Article  CAS  Google Scholar 

  2. P.J. Withers, H. Bhadeshia, Mater. Sci. Technol. 17, 366 (2001)

    Article  CAS  Google Scholar 

  3. I.C. Noyan, J.B. Cohen, Residual Stress: Measurement by Diffraction and Interpretation (Springer, Berlin, 2013)

    Google Scholar 

  4. L. Guan, G. Tang, P.K. Chu, J. Mater. Res. 25, 1215 (2010)

    Article  CAS  Google Scholar 

  5. N.E. Kir’yanchev, O. Troitskii, Probl. Prochn. 5, 101 (1983)

    Google Scholar 

  6. O.A. Troitsky, V.I. Likhtman, Sov. Phys. Dokl. 8, 91 (1963)

    Google Scholar 

  7. K. Okazaki, M. Kagawa, H. Conrad, Scr. Mater. 12, 1063 (1978)

    CAS  Google Scholar 

  8. K. Okazaki, M. Kagawa, H. Conrad, Scr. Mater. 13, 277 (1979)

    CAS  Google Scholar 

  9. K. Okazaki, M. Kagawa, H. Conrad, Scr. Mater. 13, 473 (1979)

    CAS  Google Scholar 

  10. H. Conrad, K. Okazaki, Kentucky Univ. Lexington, Department of Metallurgical Engineering and Materials Science (1979)

  11. A.F. Sprecher, S.L. Mannan, H. Conrad, Acta Mater. 34, 1145 (1986)

    Article  CAS  Google Scholar 

  12. H. Conrad, Mater. Sci. Eng. A 287, 276 (2000)

    Article  Google Scholar 

  13. H. Conrad, Mater. Sci. Eng. A 322, 100 (2002)

    Article  Google Scholar 

  14. X. Li, Y. Ye, R. Zhang, S.Z. Kure-Chu, G. Tang, Mater. Sci. Eng. A 742, 722 (2019)

    Article  CAS  Google Scholar 

  15. Y. Ye, S.Z. Kure-Chu, Z. Sun, X. Li, H. Wang, G. Tang, Mater. Des. 149, 214 (2018)

    Article  CAS  Google Scholar 

  16. Z. Xu, H. Wang, Z. Sun, Y. Ye, G. Tang, Mater. Sci. Technol. 33, 1454 (2017)

    Article  CAS  Google Scholar 

  17. H. Wang, G. Song, G. Tang, Surf. Coat. Technol. 282, 149 (2015)

    Article  CAS  Google Scholar 

  18. R.F. Zhu, J.N. Liu, G.Y. Tang, S.Q. Shi, M.W. Fu, Z.T.H. Tse, J. Alloys Compd. 584, 225 (2014)

    Article  CAS  Google Scholar 

  19. Y.D. Ye, X.P. Li, Z.Y. Sun, H.B. Wang, G.Y. Tang, Acta Metall. Sin. (Engl. Lett.) 31, 1265 (2018)

    Article  CAS  Google Scholar 

  20. X.P. Li, S.Z. Kure-Chu, T. Ogasawara, H. Yashiro, H.B. Wang, Z.Z. Xu, G.Y. Tang, Acta Metall. Sin. (Engl. Lett.) 31, 1258 (2018)

    Article  CAS  Google Scholar 

  21. J.Y. Gao, X.B. Liu, H.F. Zhou, X.F. Zhang, Acta Metall. Sin. (Engl. Lett.) 31, 1240 (2018)

    Article  Google Scholar 

  22. Y.H. Zhu, C.M. Luk, Acta Metall. Sin. (Engl. Lett.) 31, 1361 (2018)

    Article  CAS  Google Scholar 

  23. Z. Sun, H. Wang, Y. Ye, Z. Xu, G. Tang, Int. J. Adv. Manuf. Technol. 95, 2835 (2018)

    Article  Google Scholar 

  24. B. Kinsey, G. Cullen, A. Jordan, S. Mates, CIRP Ann. 62, 279 (2013)

    Article  Google Scholar 

  25. H. Xie, X. Dong, K. Liu, Z. Ai, F. Peng, Q. Wang, J. Wang. Mater. Sci. Eng. A 637, 23 (2015)

    Article  CAS  Google Scholar 

  26. Y.I. Ragozin, I.V. Polianin, in Proceedings of the Fourth International Conference on Residual Stresses, vol. 926 (1994)

  27. G.V. Stepanov, A.I. Babutskii, I.A. Mameev, M. Ferraris, V. Casalegno, M. Salvo, Strength Mater. 40, 452 (2008)

    Article  CAS  Google Scholar 

  28. L. Pan, B. Wang, Z. Xu, J. Alloys Compd. 792, 994 (2019)

    Article  CAS  Google Scholar 

  29. G. Stepanov, A. Babutsky, L. Kruszka, Mater. Sci. Forum 638, 2429 (2010)

    Article  CAS  Google Scholar 

  30. G.V. Stepanov, A.I. Babutskii, I.A. Mameev, Strength Mater. 41, 623 (2009)

    Article  CAS  Google Scholar 

  31. J. Wang, X. He, B. Wang, J. Guo, Chin. J. Mater. Res. 21, 41 (2007)

    Google Scholar 

  32. W.L. He, BGu Pan, Mater. Sci. Eng. A 662, 404 (2016)

    Article  CAS  Google Scholar 

  33. X. Huang, Mater. Sci. Eng. A 528, 6287 (2011)

    Article  CAS  Google Scholar 

  34. N.S. Rossini, M. Dassisti, K.Y. Benyounis, A.G. Olabi, Mater. Des. 35, 572 (2012)

    Article  Google Scholar 

  35. R. Gou, Y. Zhang, X. Xu, L. Sun, Y. Yang, NDT E Int. 44, 387 (2011)

    Article  CAS  Google Scholar 

  36. Z. Wang, H. Song, J. Alloys Compd. 470, 522 (2009)

    Article  CAS  Google Scholar 

  37. K. Okazaki, M. Kagawa, H. Conrad, Mater. Sci. Eng. 45, 109 (1980)

    Article  CAS  Google Scholar 

  38. H. Conrad, A.F. Sprecher, in Dislocations in Solids, ed. by F.R.N. Nabarro (Elsevier, Amsterdam, 1989), p. 497

    Google Scholar 

  39. Y.L. Wei, A. Godfrey, W. Liu, Q. Liu, X. Huang, N. Hansen, G. Winther, Scr. Mater. 65, 355 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51874023, 51601011 and U1860206), the Fundamental Research Funds for the Central Universities, Recruitment Program of Global Experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinfang Zhang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Zhang, X. Residual Stress Removal Under Pulsed Electric Current. Acta Metall. Sin. (Engl. Lett.) 33, 281–289 (2020). https://doi.org/10.1007/s40195-019-00941-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00941-z

Keywords

Navigation