Skip to main content
Log in

Effects of electropulsing on the machinability and microstructure of GH4169 superalloy during turning process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The effects of electropulsing on the machinability and microstructure of the machined surface of GH4169 superalloy are investigated in the present work. The results indicate that the machinability and the surface quality of GH4169 superalloy achieve evident improvements during the electropulsing-assisted turning process (EP-TP) at appropriate electropulsing parameters compared with the traditional dry turning process (TD-TP). In EP-TP at the frequency of 400 Hz and the root-mean-square (RMS) current density of 0.64 A mm−2, the main cutting force, the axial surface roughness, and the surface microhardness are reduced dramatically. In addition, the quality of machined surface and the ability of plastic deformation are also facilitated significantly under the effects of electropulsing. For GH4169 superalloy, the enhanced ability of the plastic deformation and the promoted mobility of dislocations in the cutting layer under the influence of the coupling of thermal and athermal effects of the exerted electropulsing are likely the primary reasons for the observed phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lv P, Sun X, Cai J, Zhang C, Liu X, Guan Q (2017) Microstructure and high temperature oxidation resistance of nickel based alloy GH4169 irradiated by high current pulsed electron beam. Surf Coat Technol 309:401–409. https://doi.org/10.1016/j.surfcoat.2016.11.041

    Article  Google Scholar 

  2. Yao CF, Jin QC, Huang XC, DX W, Ren JX, Zhang DH (2013) Research on surface integrity of grinding Inconel718. Int J Adv Manuf Technol 65(5–8):1019–1030. https://doi.org/10.1007/s00170-012-4236-7

    Article  Google Scholar 

  3. Kuppan P, Rajadurai A, Narayanan S (2008) Influence of EDM process parameters in deep hole drilling of Inconel 718. Int J Adv Manuf Technol 38(1–2):74–84. https://doi.org/10.1007/s00170-007-1084-y

    Article  Google Scholar 

  4. Sharman A, Dewes RC, Aspinwall DK (2001) Tool life when high speed ball nose end milling Inconel 718. J Mater Process Technol 118(1-3):29–35. https://doi.org/10.1016/S0924-0136(01)00855-X

    Article  Google Scholar 

  5. Ezugwu EO, Wang ZM, Machado AR (1999) The machinability of nickel-based alloys. J Mater Process Technol 86(1-3):1–16. https://doi.org/10.1016/S0924-0136(98)00314-8

    Article  Google Scholar 

  6. Li L, He N, Wang M, Wang ZG (2002) High speed cutting of Inconel 718 with coated carbide and ceramic inserts. J Mater Process Technol 129(1-3):127–130. https://doi.org/10.1016/S0924-0136(02)00590-3

    Article  Google Scholar 

  7. Jawaid A, Koksal S, Sharif S (2001) Cutting performance and wear characteristics of PVD coated and uncoated carbide tools in face milling Inconel 718 aerospace alloy. J Mater Process Technol 116(1):2–9. https://doi.org/10.1016/S0924-0136(01)00850-0

    Article  Google Scholar 

  8. Rahman M, Seah WKH, Teo TT (1997) The machinability of Inconel 718. J Mater Process Technol 63(1-3):199–204. https://doi.org/10.1016/S0924-0136(96)02624-6

    Article  Google Scholar 

  9. Dudzinski D, Devillez A, Moufki A, Larrouquère D, Zerrouki V, Vigneau J (2004) A review of developments towards dry and high speed machining of Inconel 718 alloy. Int J Mach Tool Manu 44(4):439–456. https://doi.org/10.1016/S0890-6955(03)00159-7

    Article  Google Scholar 

  10. Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009) Machinability investigation of Inconel 718 in high-speed turning. Int J Adv Manuf Technol 45(5–6):421–429. https://doi.org/10.1007/s00170-009-1987-x

    Article  Google Scholar 

  11. Altin A, Nalbant M, Taskesen A (2007) The effects of cutting speed on tool wear and tool life when machining Inconel 718 with ceramic tools. Mater Des 28(9):2518–2522. https://doi.org/10.1016/j.matdes.2006.09.004

    Article  Google Scholar 

  12. Bhatt A, Attia H, Vargas R, Thomson V (2010) Wear mechanisms of WC coated and uncoated tools in finish turning of Inconel 718. Tribol Int 43(5–6):1113–1121. https://doi.org/10.1016/j.triboint.2009.12.053

    Article  Google Scholar 

  13. Zhou J, Avdovic P, Ståhl JE (2012) Study of surface quality in high speed turning of Inconel 718 with uncoated and coated CBN tools. Int J Adv Manuf Technol 58(1–4):141–151. https://doi.org/10.1007/s00170-011-3374-7

    Article  Google Scholar 

  14. Amini S, Fatemi MH, Atefi R (2014) High speed turning of Inconel 718 using ceramic and carbide cutting tools. Arab J Sci Eng 39(3):2323–2330. https://doi.org/10.1007/s13369-013-0776-x

    Article  Google Scholar 

  15. Hsu CY, Lin YY, Lee WS, Lo SP (2008) Machining characteristics of Inconel 718 using ultrasonic and high temperature-aided cutting. J Mater Process Technol 198(1–3):359–365. https://doi.org/10.1016/j.jmatprotec.2007.07.015

    Article  Google Scholar 

  16. Anderson M, Patwa R, Shin YC (2006) Laser-assisted machining of Inconel 718 with an economic analysis. Int J Mach Tools Manuf 46(14):1879–1891. https://doi.org/10.1016/j.ijmachtools.2005.11.005

    Article  Google Scholar 

  17. Mitrofanov AV, Babitsky VI, Silberschmidt VV (2004) Finite element analysis of ultrasonically assisted turning of Inconel 718. J Mater Process Technol 153-154:233–239. https://doi.org/10.1016/j.jmatprotec.2004.04.299

    Article  Google Scholar 

  18. Li S, Wu Y, Nomura M (2016) Effect of grinding wheel ultrasonic vibration on chip formation in surface grinding of Inconel 718. Int J Adv Manuf Technol 86(1–4):1113–1125. https://doi.org/10.1007/s00170-015-8149-0

    Article  Google Scholar 

  19. ZW D, Chen Y, Zhou K, Li C (2015) Research on the electrolytic-magnetic abrasive finishing of nickel-based superalloy GH4169. Int J Adv Manuf Technol 81(5–8):897–903

    Google Scholar 

  20. Sprecher AF, Mannan SL, Conrad H (1986) Overview no. 49 : on the mechanisms for the electroplastic effect in metals. Acta Metall 34(7):1145–1162. https://doi.org/10.1016/0001-6160(86)90001-5

    Article  Google Scholar 

  21. Troitskii OA (1985) Pressure shaping by the application of a high energy. Mater Sci Eng 75(1–2):37–50

    Article  Google Scholar 

  22. Jiang Y, Tang G, Shek C, Zhu Y, Guan L, Wang S, Xu Z (2009) Improved ductility of aged Mg-9Al-1Zn alloy strip by electropulsing treatment. J Mater Res 24(5):1810–1814. https://doi.org/10.1557/jmr.2009.0197

    Article  Google Scholar 

  23. Liu T, Li X, Tang G, Song G (2016) Effect of ultrasonic impact treatment assisted with high energy electropulsing on microstructure of D36 carbon steel. J Mater Res 31(24):3956-3967

  24. Qin RS, Rahnama A, WJ L, Zhang XF, Elliottbowman B (2014) Electropulsed steels. Mater Sci Technol 30(9):1040–1044. https://doi.org/10.1179/1743284714Y.0000000533

    Article  Google Scholar 

  25. Wu HB, To S (2016) Effects of electropulsing treatment on material properties and ultra-precision machining of titanium alloy. Int J Adv Manuf Technol 82(9–12):2029–2036. https://doi.org/10.1007/s00170-015-7379-5

    Article  Google Scholar 

  26. Lou Y, Wu H (2017) Improving machinability of titanium alloy by electro-pulsing treatment in ultra-precision machining. Int J Adv Manuf Technol 93(5-8):2299-2304

  27. Jiang Y, Tang G, Guan L, Wang S, Xu Z, Shek C, Zhu Y (2008) Effect of electropulsing treatment on solid solution behavior of an aged Mg alloy AZ61 strip. J Mater Res 23(10):2685–2691. https://doi.org/10.1557/JMR.2008.0328

    Article  Google Scholar 

  28. Samuel EI, Bhowmik A, Qin R (2010) Accelerated spheroidization induced by high intensity electric pulse in a severely deformed eutectoid steel. J Mater Res 25(6):1020–1024. https://doi.org/10.1557/JMR.2010.0140

    Article  Google Scholar 

  29. Jiang Y, Tang G, Shek C, Zhu Y, Xu Z (2009) On the thermodynamics and kinetics of electropulsing induced dissolution of β-Mg17Al12 phase in an aged Mg–9Al–1Zn alloy. Acta Mater 57(16):4797–4808. https://doi.org/10.1016/j.actamat.2009.06.044

    Article  Google Scholar 

  30. Ma B, Zhao Y, Ma J, Guo H, Yang Q (2013) Formation of local nanocrystalline structure in a boron steel induced by electropulsing. J Alloys Compd 549:77–81. https://doi.org/10.1016/j.jallcom.2012.09.047

    Article  Google Scholar 

  31. Hameed S, Rojas HAG, Egea AJS, Alberro AN (2016) Electroplastic cutting influence on power consumption during drilling process. Int J Adv Manuf Technol 87(5-8):1835-1841

  32. Wang H, Chen L, Liu D, Song G, Tang G (2015) Study on electropulsing assisted turning process for AISI 304 stainless steel. Mater Sci Technol 31(13):1564–1571. https://doi.org/10.1179/1743284715y.0000000034

    Article  Google Scholar 

  33. Baranov SA, Staschenko VI, Sukhov AV, Troitskiy OA, Tyapkin AV (2011) Electroplastic metal cutting. Russ Electr Eng 82(9):477–479. https://doi.org/10.3103/s1068371211090033

    Article  Google Scholar 

  34. Li X, Li X, Zhu J, Ye X, Tang G (2016) Microstructure and texture evolution of cold-rolled Mg-3Al-1Zn alloy by electropulse treatment stimulating recrystallization. Scr Mater 112:23–27. https://doi.org/10.1016/j.scriptamat.2015.09.001

    Article  Google Scholar 

  35. Ye Y, Kuang J, Kure-Chu S-Z, Song G, Sun Z, Tang G (2016) Improvement of microstructure and surface behaviors of welded S50C steel components under electropulsing assisted ultrasonic surface modification. J Mater Res 31(14):2125–2135. https://doi.org/10.1557/jmr.2016.127

    Article  Google Scholar 

  36. Wang H, Song G, Tang G (2016) Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process. Mater Sci Eng A 662:456–467. https://doi.org/10.1016/j.msea.2016.03.097

    Article  Google Scholar 

  37. Kuang J, Li X, Ye X, Tang J, Liu H, Wang J, Tang G (2015) Microstructure and texture evolution of magnesium alloys during electropulse treatment. Metall Mater Trans A 46(4):1789–1804. https://doi.org/10.1007/s11661-014-2735-x

    Article  Google Scholar 

  38. Tang G, Zhang J, Zheng M, Zhang J, Fang W, Li Q (2000) Experimental study of electroplastic effect on stainless steel wire 304L. Mater Sci Eng A 281(1–2):263–267. https://doi.org/10.1016/S0921-5093(99)00708-X

    Article  Google Scholar 

  39. Liu F, Xu Z (1988) A new method measuring and calculationg the energy efficiency, cutting torque and cutting force. Manuf Technol Mach Tool 31(6):14–15

    Google Scholar 

  40. Green CR, McNeal TA, Roth JT (2009) Springback elimination for Al-6111 alloys using electrically-assisted manufacturing (EAM). Trans North Am Manuf Res Inst SME 37:403–410

    Google Scholar 

  41. Conrad H (2000) Electroplasticity in metals and ceramics. Mater Sci Eng: Struct Mater Prop Microstruct Process 287(2):276–287. https://doi.org/10.1016/S0921-5093(00)00786-3

    Article  Google Scholar 

  42. Okazaki K, Kagawa M, Conrad H (1980) An evaluation of the contributions of skin, pinch and heating effects to the electroplastic effect in titanium. Mater Sci Eng 45(2):109–116

    Article  Google Scholar 

  43. Wang H, Song G, Tang G (2016) Evolution of surface mechanical properties and microstructure of Ti 6Al 4V alloy induced by electropulsing-assisted ultrasonic surface rolling process. J Alloys Compd 681:146–156. https://doi.org/10.1016/j.jallcom.2016.04.067

    Article  Google Scholar 

  44. Xu Z, Tang G, Tian S, He J (2006) Research on the engineering application of multiple pulses treatment for recrystallization of fine copper wire. Mater Sci EngA 424(1):300–306. https://doi.org/10.1016/j.msea.2006.03.012

    Article  Google Scholar 

  45. Zhang W, Sui ML, Zhou YZ, Li DX (2003) Evolution of microstructures in materials induced by electropulsing. Micron 34(3–5):189–198. https://doi.org/10.1016/S0968-4328(03)00025-8

    Article  Google Scholar 

  46. Tang DW, Zhou BL, Cao H, He GH (1991) Dynamic thermal expansion under transient laser-pulse heating. Appl Phys Lett 59(24):3113–3114. https://doi.org/10.1063/1.105755

    Article  Google Scholar 

  47. Rabinowicz E (1965) Friction and wear of materials. Wiley, New York, pp 10-30

  48. Postnikov SN (1978) Electrophysical and electrochemical phenomena in friction, cutting, and lubrication. Van Nostrand Reinhold, New York

Download references

Funding

The authors wish to acknowledge the financial support from the Engineering Laboratory Project of Shenzhen Development and Reform Commission (No. 2015-1033) and the Shenzhen Science and Technology supporting Plan Project (No. GJHS20160331183313435).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Wang, H., Ye, Y. et al. Effects of electropulsing on the machinability and microstructure of GH4169 superalloy during turning process. Int J Adv Manuf Technol 95, 2835–2842 (2018). https://doi.org/10.1007/s00170-017-1407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-017-1407-6

Keywords

Navigation