Skip to main content
Log in

A study of microstructural evolution in gas tungsten arc welded AlxCoCrFeNi high entropy alloys

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

High Entropy Alloys (HEAs) have shown remarkable mechanical properties, thus making them ideal for structural applications. AlxCoCrFeNi HEAs exhibit huge variations in phase factions and properties with varying Al content. In this work, Gas Tungsten Arc Welding (GTAW) of AlxCoCrFeNi (x = 0.5, 0.7) high entropy alloys was performed. Various metallurgical and mechanical characterizations such as X-ray Diffraction (XRD), Optical imaging, Scanning Electron Microscopy (SEM) analysis, Hardness, and Electron Back Scattered Diffraction (EBSD) were performed to evaluate the evolution of microstructure in pre-welded and post-welded conditions. Both the alloys (Al0.5CoCrFeNi and Al0.7CoCrFeNi) show high weld efficiency. The Al0.7CoCrFeNi alloy’s hardness increased from 271 ± 10 HV in homogenized condition to 483 ± 15 HV in welded condition, a drastic 78% increase. In contrast, welded Al0.5CoCrFeNi showed just a slight 8% improvement in hardness, from 202 ± 10 HV in homogenized condition to 220 ± 18 HV in welded condition. The high weld efficiency of the welded Al0.7CoCrFeNi alloy was attributed to the drastic increase in the phase fraction of the secondary phases. It can be concluded that phase fraction, twin boundaries, grain refinement, and phase interfaces may satisfactorily explain the huge difference in the relative percent increase of hardness in the welded condition of both alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater 6:299–303. https://doi.org/10.1002/adem.200300567

    Article  CAS  Google Scholar 

  2. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375–377:213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  CAS  Google Scholar 

  3. Miracle DB, Miller JD, Senkov ON, Woodward C, Uchic MD, Tiley J (2014) Exploration and development of high entropy alloys for structural applications. Entropy 16:494–525. https://doi.org/10.3390/E16010494

    Article  CAS  Google Scholar 

  4. Chen J, Zhou X, Wang W, Liu B, Lv Y, Yang W, Xu D, Liu Y (2018) A review on fundamental of high entropy alloys with promising high–temperature properties. J Alloys Compd 760:15–30. https://doi.org/10.1016/J.JALLCOM.2018.05.067

    Article  CAS  Google Scholar 

  5. El-Atwani O, Li N, Li M, Devaraj A, Baldwin JKS, Schneider MM, Sobieraj D, Wróbel JS, Nguyen-Manh D, Maloy SA, Martinez E (2019) Outstanding radiation resistance of tungsten-based high-entropy alloys. Sci Adv 5:eaav2022. https://doi.org/10.1126/sciadv.aav2002

    Article  CAS  Google Scholar 

  6. Gorsse S, Miracle DB, Senkov ON (2017) Mapping the world of complex concentrated alloys. Acta Mater 135:177–187. https://doi.org/10.1016/j.actamat.2017.06.027

    Article  CAS  Google Scholar 

  7. Yang T, Zhao YL, Tong Y, Jiao ZB, Wei J, Cai JX, Han XD, Chen D, Hu A, Kai JJ, Lu K, Liu Y, Liu CT (2018) Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362:933–937. https://doi.org/10.1126/science.aas8815

    Article  CAS  Google Scholar 

  8. Chen YT, Chang YJ, Murakami H, Gorsse S, Yeh AC (2020) Designing high entropy superalloys for elevated temperature application. Scr Mater 187:177–182. https://doi.org/10.1016/J.SCRIPTAMAT.2020.06.002

    Article  CAS  Google Scholar 

  9. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345:1153–1158. https://doi.org/10.1126/science.1254581

    Article  CAS  Google Scholar 

  10. Dang Z, Qin G, Zhao Y, Wang J (2022) Effect of thermo-mechanical distribution on the evolution of IMCs layer and mechanical properties of 2219 aluminum alloy/304 stainless steel joints by inertia friction welding. J Mater Res Technol 21:2215–2227. https://doi.org/10.1016/j.jmrt.2022.10.054

    Article  CAS  Google Scholar 

  11. Lim Y, Morisada Y, Liu H, Fujii H (2021) Ti-6Al-4V/SUS316L dissimilar joints with ultrahigh joint efficiency fabricated by a novel pressure-controlled joule heat forge welding method. J Mater Process Technol 298:117283. https://doi.org/10.1016/j.jmatprotec.2021.117283

    Article  CAS  Google Scholar 

  12. Gungor B, Kaluc E, Taban E, Aydin Sik ŞŞ (2014) Mechanical and microstructural properties of robotic Cold Metal Transfer (CMT) welded 5083–H111 and 6082–T651 aluminum alloys. Mater Des 54:207–211. https://doi.org/10.1016/j.matdes.2013.08.018

    Article  CAS  Google Scholar 

  13. Koilraj M, Sundareswaran V, Vijayan S, Koteswara Rao SR (2012) Friction stir welding of dissimilar aluminum alloys AA2219 to AA5083 - optimization of process parameters using Taguchi technique. Mater Des 42:1–7. https://doi.org/10.1016/j.matdes.2012.02.016

    Article  CAS  Google Scholar 

  14. Suresha CN, Rajaprakash BM, Upadhya S (2011) A study of the effect of tool pin profiles on tensile strength of welded joints produced using friction stir welding process. Mater Manuf Process 26:1111–1116. https://doi.org/10.1080/10426914.2010.532527

    Article  CAS  Google Scholar 

  15. Li J, Meng X, Wan L, Huang Y (2021) Welding of high entropy alloys: progresses, challenges and perspectivesJ. Manuf Process 68:293–331. https://doi.org/10.1016/j.jmapro.2021.05.042

    Article  Google Scholar 

  16. Shen J, Agrawal P, Rodrigues TA, Lopes JG, Schell N, He J, Zeng Z, Mishra RS, Oliveira JP (2023) Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloy. Mater Sci Eng A 867:144722. https://doi.org/10.1016/j.msea.2023.144722

    Article  CAS  Google Scholar 

  17. Buzolin RH, Richter T, Pixner F, Rhode M, Schroepfer D, Enzinger N (2023) Microstructure characterisation of multi-principal element alloys welds produced by electron beam welding. Mater Des 225:111609. https://doi.org/10.1016/J.MATDES.2023.111609

    Article  CAS  Google Scholar 

  18. Park C, Hwang T, Kim GD, Nam H, Kang N (2023) Effect of the initial grain size on laser beam weldability for high-entropy alloys. Crystals 13:65. https://doi.org/10.3390/cryst13010065

    Article  CAS  Google Scholar 

  19. Zhang P, Qi Y, Cheng Q, Sun X (2023) Welding dissimilar alloys of CoCrFeMnNi high-entropy alloy and 304 stainless steel using gas tungsten arc welding. J Mater Eng Perform. https://doi.org/10.1007/s11665-023-08229-1

    Article  Google Scholar 

  20. Oliveira JP, Curado TM, Zeng Z, Lopes JG, Rossinyol E, Park JM, Schell N, Braz Fernandes FM, Kim HS (2020) Gas tungsten arc welding of as-rolled CrMnFeCoNi high entropy alloy. Mater Des 189:108505. https://doi.org/10.1016/j.matdes.2020.108505

    Article  CAS  Google Scholar 

  21. Chen Z, Wang B, Duan B, Zhang X (2020) Mechanical properties and microstructure of laser welded FeCoNiCrMn high-entropy alloy. Mater Lett 262:127060. https://doi.org/10.1016/j.matlet.2019.127060

    Article  CAS  Google Scholar 

  22. Tokarewicz M, Grądzka-Dahlke M (2021) Review of recent research on AlCoCrFeNi high-entropy alloy. Metals 11:1302. https://doi.org/10.3390/met11081302

    Article  CAS  Google Scholar 

  23. Rao JC, Diao HY, Ocelík V, Vainchtein D, Zhang C, Kuo C, Tang Z, Guo W, Poplawsky JD, Zhou Y, Liaw PK (2017) Secondary phases in AlxCoCrFeNi high-entropy alloys: an in-situ TEM heating study and thermodynamic appraisal. Acta Mater 131:206–220. https://doi.org/10.1016/j.actamat.2017.03.066

    Article  CAS  Google Scholar 

  24. Gwalani B, Gangireddy S, Zheng Y, Soni V, Mishra RS, Banerjee R (2019) Influence of ordered L12 precipitation on strain-rate dependent mechanical behavior in a eutectic high entropy alloy. Sci Rep 9:1–13. https://doi.org/10.1038/s41598-019-42870-y

    Article  CAS  Google Scholar 

  25. Wang WR, Wang WL, Wang SC, Tsai YC, Lai CH, Yeh JW (2012) Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26:44–51. https://doi.org/10.1016/j.intermet.2012.03.005

    Article  CAS  Google Scholar 

  26. Sokkalingam R, Mishra S, Cheethirala SR, Muthupandi V, Sivaprasad K (2017) Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy. Metall Mater Trans A 48:3630–3634. https://doi.org/10.1007/s11661-017-4140-8

    Article  CAS  Google Scholar 

  27. Sokkalingam R, Sivaprasad K, Muthupandi V, Duraiselvam M (2018) Characterization of laser beam welded Al0.5CoCrFeNi high-entropy alloy. Key Eng Mater 775:448–453. https://doi.org/10.4028/www.scientific.net/KEM.775.448

    Article  Google Scholar 

  28. Chen S, Liu Q, He T, Lei G (2021) Inhomogeneity of microstructure and mechanics of laser welded CoCrFeNiAl0.3 high entropy alloy. Mater Lett 301:130269. https://doi.org/10.1016/j.matlet.2021.130269

    Article  CAS  Google Scholar 

  29. Zhang M, Wang D, He L, Ye X, Zhang W (2022) Laser beam welding of AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater Lett 308:131137. https://doi.org/10.1016/J.MATLET.2021.131137

    Article  CAS  Google Scholar 

  30. Martin AC, Fink C (2019) Initial weldability study on Al0.5CrCoCu0.1FeNi high-entropy alloy. Weld World 63:739–750. https://doi.org/10.1007/s40194-019-00702-7

    Article  CAS  Google Scholar 

  31. Martin AC, Oliveira JP, Fink C (2020) Elemental effects on weld cracking susceptibility in AlxCoCrCuyFeNi high-entropy alloy. Metall Mater Trans A 51:778–787. https://doi.org/10.1007/s11661-019-05564-8

    Article  CAS  Google Scholar 

  32. Sourav A, Yebaji S, Thangaraju S (2020) Structure-property relationships in hot forged AlxCoCrFeNi high entropy alloys. Mater Sci Eng A 793:139877. https://doi.org/10.1016/j.msea.2020.139877

    Article  CAS  Google Scholar 

  33. Li Z, Pradeep KG, Deng Y, Raabe D, Tasan CC (2016) Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534:227–230. https://doi.org/10.1038/nature17981

    Article  CAS  Google Scholar 

  34. Guo S, Ng C, Lu J, Liu CT (2011) Effect of valence electron concentration on stability of FCC or BCC phase in high entropy alloys. J Appl Phys 109:103505. https://doi.org/10.1063/1.3587228

    Article  CAS  Google Scholar 

  35. Jiang L, Lu YP, Jiang H, Wang TM, Wei BN, Cao ZQ, Li TJ (2016) Formation rules of single phase solid solution in high entropy alloys. Mater Sci Technol 32:588–592. https://doi.org/10.1179/1743284715Y.0000000130

    Article  CAS  Google Scholar 

  36. Kube SA, Sohn S, Uhl D, Datye A, Mehta A, Schroers J (2019) Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC. Acta Mater 166:677–686. https://doi.org/10.1016/j.actamat.2019.01.023

    Article  CAS  Google Scholar 

  37. Pamnani R, Vasudevan M, Jayakumar T, Vasantharaja P, Ganesh KC (2016) Numerical simulation and experimental validation of arc welding of DMR-249A steel. Def Technol 12:305–315. https://doi.org/10.1016/j.dt.2016.01.012

    Article  Google Scholar 

  38. Singh Negi A, Sourav A, Heilmaier M, Biswas S, Thangaraju S (2021) Quantitative phase prediction in dual-phase high-entropy alloys: computationally aided parametric approach. Phys Status Solidi B 258:1–8. https://doi.org/10.1002/pssb.202100106

    Article  CAS  Google Scholar 

  39. Sourav A, Chelvane A, Niranjani VL, Patil B, Biswas S, Karthik V, Natu H, Shanmugasundaram T (2022) (preprint) SSRN Electron J submitted. https://doi.org/10.2139/ssrn.4248665

  40. Fullman RL, Fisher JC (1951) Formation of annealing twins during grain growth. J Appl Phys 22:1350–1355. https://doi.org/10.1063/1.1699865

    Article  CAS  Google Scholar 

  41. Kwon O, DeArdo AJ (1991) Interactions between recrystallization and precipitation in hot-deformed microalloyed steels. Acta Metall Mater 39:539–538. https://doi.org/10.1016/0956-7151(91)90121-G

    Article  Google Scholar 

  42. El-Danaf E, Kalidindi SR, Doherty RD (1999) Influence of grain size and stacking-fault energy on deformation twinning in FCC metals. Metall Mater Trans A 30:1223–1233. https://doi.org/10.1007/s11661-999-0272-9

    Article  Google Scholar 

  43. David SA, Vitek JM (1989) Correlation between solidification parameters and weld microstructures. Int Mater Rev 34:213–245. https://doi.org/10.1179/imr.1989.34.1.213

    Article  CAS  Google Scholar 

  44. Hsieh P, Liao C, Liu H, Lin P, Shen P, Hunag S, Sato YS, Tsai C (2022) Microstructure and mechanical property of gas tungsten arc and friction stir welds of L12 precipitate FCC high-entropy alloy. APL Mater 10:111111. https://doi.org/10.1063/5.0117251

    Article  CAS  Google Scholar 

  45. Fiocchi J, Casati R, Tuissi A, Biffi CA (2022) Laser beam welding of CoCuFeMnNi high entropy alloy: processing, microstructure, and mechanical properties. Adv Eng Mater 24:2200523. https://doi.org/10.1002/ADEM.202200523

    Article  CAS  Google Scholar 

  46. Verma A, Thangaraju S (2022) Microstructural evolution in CoCrFeNi and CoCrCuFeNi alloys processed by autogenous fusion welding. Mater Sci Technol 38:1127–1133. https://doi.org/10.1080/02670836.2022.2071398

    Article  CAS  Google Scholar 

  47. Palguna Y, Rajesh Kannan A, Sairam K, Siva Shanmugam N, Korla R (2022) Microstructure and mechanical properties of wrought Al0.2CoCrFeNiMo0.5 high entropy alloy using gas tungsten arc welding process. Mater Lett 317:132109. https://doi.org/10.1016/J.MATLET.2022.132109

    Article  CAS  Google Scholar 

  48. Buzolin RH, Richter T, Pixner F, Rhode M, Schroepfer D, Enzinger N (2023) Microstructure characterisation of multi-principal element alloys welds produced by electron beam welding. Mater Des 225:11609. https://doi.org/10.1016/J.MATDES.2023.111609

    Article  Google Scholar 

  49. Nam H, Park S, Kim SW, Shim SH, Na Y, Kim N, Song S, Hong SI, Kang N (2022) Enhancement of tensile properties applying phase separation with Cu addition in gas tungsten arc welds of CoCrFeMnNi high entropy alloys. Scr Mater 220:114897. https://doi.org/10.1016/J.SCRIPTAMAT.2022.114897

    Article  CAS  Google Scholar 

  50. Shen J, Agrawal P, Rodrigues TA, Lopes JG, Schell N, Zeng Z, Mishra RS, Oliveira JP (2022) Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloy. Mater Des 223:111176. https://doi.org/10.1016/j.matdes.2022.111176

    Article  CAS  Google Scholar 

  51. Wu Z, David SA, Leonard DN, Feng Z, Bei H (2018) Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy. Sci Technol Weld Join 23:585–595. https://doi.org/10.1080/13621718.2018.1430114

    Article  CAS  Google Scholar 

  52. Jo MG, Kim HJ, Kang M, Madakashira PP, Park ES, Suh JY, Kim DI, Hong ST, Han HN (2018) Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi. Met Mater Int 24:73–83. https://doi.org/10.1007/s12540-017-7248-x

    Article  CAS  Google Scholar 

  53. Kashaev N, Ventzke V, Stepanov N, Shaysultanov D, Sanin V, Zherebtsov S (2018) Laser beam welding of a CoCrFeNiMn-type high entropy alloy produced by self-propagating high-temperature synthesis. Intermetallics 96:63–71. https://doi.org/10.1016/j.intermet.2018.02.014

    Article  CAS  Google Scholar 

  54. Panina E, Yurchenko N, Zherebtsov S, Stepanov N, Salishchev G, Ventzke V, Dinse R, Kashaev N (2019) Laser beam welding of a low density refractory high entropy alloy. Metals 9:1351. https://doi.org/10.3390/met9121351

    Article  CAS  Google Scholar 

  55. Joseph J, Stanford N, Hodgson P, Fabijanic DM (2017) Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys. J Alloys Compd 726:885–895. https://doi.org/10.1016/j.jallcom.2017.08.067

    Article  CAS  Google Scholar 

  56. Reis BP, França RP, Spim JA, Garcia A, Da Costa EM, Santos CA (2013) The effects of dendritic arm spacing (as-cast) and aging time (solution heat-treated) of Al-Cu alloy on hardness. J Alloys Compd 549:324–335. https://doi.org/10.1016/j.jallcom.2012.09.041

    Article  CAS  Google Scholar 

  57. Misra A, Verdier M, Lu YC, Kung H, Mitchell TE, Nastasi M, Embury JD (1998) Structure and mechanical properties of Cu-X (X = Nb, Cr, Ni) nanolayered composites. Scr Mater 39:555–560. https://doi.org/10.1016/S1359-6462(98)00196-1

    Article  CAS  Google Scholar 

  58. Basu I, Ocelík V, De Hosson JTM (2018) BCC-FCC interfacial effects on plasticity and strengthening mechanisms in high entropy alloys. Acta Mater 157:83–95. https://doi.org/10.1016/j.actamat.2018.07.031

    Article  CAS  Google Scholar 

  59. Misra A, Hirth JP, Hoagland RG (2005) Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater 53:4817–4824. https://doi.org/10.1016/j.actamat.2005.06.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. C.P. Ramanarayanan, Vice Chancellor, DIAT (DU) for supporting this work. The authors thank the Director, Defence Metallurgical Research Laboratory (DMRL), and Dr. I. Balasundar for providing us heat treatment facility. We would like to express our gratitude to Mr. Neeraj Mantri from Innotech India Pvt. Ltd., Pune, for helping us with the forging facility.

Funding

This work was supported by the Defence Institute of Advanced Technology, Pune (DIAT/F/Adm/Project/OM/Mate/Corr/P49) and Naval Research Board (NRB), India (NRB/4003/PG/MAT/501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmugasundaram Thangaraju.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission IX - Behaviour of Metals Subjected to Welding.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sourav, A., Gowtam, D.S., Murthy, J.K.N. et al. A study of microstructural evolution in gas tungsten arc welded AlxCoCrFeNi high entropy alloys. Weld World 67, 2163–2174 (2023). https://doi.org/10.1007/s40194-023-01564-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-023-01564-w

Keywords

Navigation