Skip to main content
Log in

Elemental Effects on Weld Cracking Susceptibility in AlxCoCrCuyFeNi High-Entropy Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

A Correction to this article was published on 31 July 2020

This article has been updated

Abstract

Weld solidification and weldability of AlxCoCrCuyFeNi high-entropy alloys (HEA) were characterized as a function of Al and Cu molar ratio in the alloy composition. Autogenous gas tungsten arc welding (GTAW) was performed on the as-melted ingots. Fusion zone and heat-affected zone microstructures were investigated using optical and electron microscopy, and compared to thermodynamic CALPHAD-based calculations. Weld cracking susceptibility was compared to cast pin tear test (CPTT) results. It was found that strong Cu segregation on solidification promotes hot cracking in fusion welds on AlCoCrCuyFeNi alloys (y > 0.1). Cu-rich liquid forms during the final stages of solidification and facilitates solidification cracking in the fusion zone. The Cu-rich interdendritic readily remelts during reheating and promotes liquation cracking in the heat-affected zone. The cracking mechanisms in the welds change to brittle intergranular cracking in low and no Cu alloy compositions due to a high-hardness BCC microstructure (> 500 HV). Lowering the Al molar ratio in AlxCoCrCu0.1FeNi alloys (x ≤ 0.5) mitigates brittle cracking by promoting FCC solidification structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

  • 31 July 2020

    The Acknowledgments in the original article are incomplete. Following is the updated text.

References

  1. [1] J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang: Adv. Eng. Mater., 2004, vol. 6, pp. 299–303.

    Article  CAS  Google Scholar 

  2. [2] M.-H. Tsai and J.-W. Yeh: Mater. Res. Lett., 2014, vol. 2, pp. 107–23.

    Article  Google Scholar 

  3. [3] D.B. Miracle and O.N. Senkov: Acta Mater., 2017, vol. 122, pp. 448–511.

    Article  CAS  Google Scholar 

  4. [4] W.-R. Wang, W.-L. Wang, and J.-W. Yeh: J. Alloys Compd., 2014, vol. 589, pp. 143–52.

    Article  CAS  Google Scholar 

  5. [5] C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, and S.-Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1263–71.

    Article  CAS  Google Scholar 

  6. [6] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh: Intermetallics, 2012, vol. 26, pp. 44–51.

    Article  Google Scholar 

  7. [7] C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang: Metall. Mater. Trans. A, 2005, vol. 36, pp. 881–93.

    Article  CAS  Google Scholar 

  8. [8] C.-C. Tung, J.-W. Yeh, T. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen: Mater. Lett., 2007, vol. 61, pp. 1–5.

    Article  CAS  Google Scholar 

  9. [9] Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh: J. Alloys Compd., 2009, vol. 488, pp. 57–64.

    Article  CAS  Google Scholar 

  10. [10] C.-M. Lin and H.-L. Tsai: Intermetallics, 2011, vol. 19, pp. 288–94.

    Article  CAS  Google Scholar 

  11. [11] S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart: Acta Mater., 2011, vol. 59, pp. 182–90.

    Article  CAS  Google Scholar 

  12. M. Nahmany, Z. Hooper, A. Stern, V. Geanta, and I. Voiculescu: Metallogr., Microstruct., Anal., 2016, vol. 5, pp. 229–40.

  13. [13] T. Yue, H. Xie, X. Lin, H. Yang, and G. Meng: Entropy, 2013, vol. 15, pp. 2833–45.

    Article  CAS  Google Scholar 

  14. [14] T.M. Yue, H. Xie, X. Lin, H.O. Yang, and G.H. Meng: J. Alloys Compd., 2014, vol. 587, pp. 588–93.

    Article  CAS  Google Scholar 

  15. [15] B.A. Welk, R.E.A. Williams, G.B. Viswanathan, M.A. Gibson, P.K. Liaw, and H.L. Fraser: Ultramicroscopy, 2013, vol. 134, pp. 193–9.

    Article  CAS  Google Scholar 

  16. [16] A.C. Martin and C. Fink: Weld. World, 2019, vol. 63, pp. 739–50.

    Article  CAS  Google Scholar 

  17. [17] K. Poorhaydari, B.M. Patchett, and D.G. Ivey: Weld. J., 2005, vol. 84, pp. 149s–155s.

    Google Scholar 

  18. [18] B.T. Alexandrov and J.C. Lippold: Weld. World, 2013, vol. 57, pp. 635–48.

    Article  CAS  Google Scholar 

  19. G. Vander-Voort and E. Manilova: Microsc. Microanal., 2004, vol. 10, pp. 690–1.

    Article  Google Scholar 

  20. [20] J.M. Sosa, D.E. Huber, B. Welk, and H.L. Fraser: Integrating Materials, 2014, vol. 3, pp. 123-40.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute of Materials Research (IMR) at The Ohio State University, and by the American Welding Society (AWS) Foundation. The authors express their gratitude to Brady Soulivong, high school intern in the Welding Engineering Program at The Ohio State University. Electron microscopy was performed at the Center for Electron Microscopy and Analysis (CEMAS) at The Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolin Fink.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 26, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, A.C., Oliveira, J.P. & Fink, C. Elemental Effects on Weld Cracking Susceptibility in AlxCoCrCuyFeNi High-Entropy Alloy. Metall Mater Trans A 51, 778–787 (2020). https://doi.org/10.1007/s11661-019-05564-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05564-8

Navigation